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Abstract. Three-dimensional Brinkmann waves which are critical for qua-

dratic curvature functionals are determined. Generically, if the metric is criti-
cal for some functional then it is critical for all of them. In contrast, there are

four special functionals that do not share critical metrics with any other qua-

dratic functional. It is also shown that these metrics provide explicit solutions
for different massive gravity models.

1. Introduction

Generalizations of three-dimensional general relativity, allowing propagating de-
grees of freedom in spacetimes, have gained increasing interest during last years.
Topologically massive gravity, which complements the Einstein-Hilbert functional
with a Lorentz Chern-Simons term, yields a third order field equation [12]. Mas-
sive gravity introduces quadratic curvature invariants into the action, giving rise to
fourth order equations [3, 4]. Although special classes of solutions already exist in
the literature (see, for example, [1, 10, 19, 24]), the main purpose of this work is to
investigate a family of local solutions generalizing the classical pp-waves.

Brinkmann waves, characterized by the existence of a parallel null line field [5],
have been extensively studied and they appear as the underlying structure in a
number of interesting situations. Brinkmann metrics have vanishing scalar invari-
ants (VSI) in some special cases which were considered in [24]. Our work extends
those results to arbitrary Brinkmann waves.

1.1. Quadratic curvature functionals. Let M be a closed oriented manifold
and let M1 denote the space of Lorentzian metrics of volume one on M . The
scalar curvature generates all curvature invariants of order one. The Einstein-
Hilbert functional, given by the total scalar curvature: g 7→

∫
M
d3x
√
|g| τ , has

been widely studied and it is well-known that critical metrics for this functional
restricted to M1 are the Einstein ones. Natural generalizations of this functional
are built using scalar curvature invariants of order two, which are generated by
{τ2, ‖ρ‖2, ‖R‖2,∆τ} (see [2]). These functionals have been investigated both from
a purely geometric point of view and from a physics perspective, as in conformal
gravity (see, for example, [16, 20, 25]).

In dimension three the curvature tensor R is determined by the Ricci tensor ρ
so that ‖R‖2 = 2‖ρ‖2 − 1

2τ
2. Hence, the space of quadratic curvature functionals

is generated by

S : g 7→
∫
M

d3x
√
|g| τ2, and T : g 7→

∫
M

d3x
√
|g| ‖ρ‖2.
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Thus, every quadratic curvature functional is a multiple of S or Ft = T + tS for
some t ∈ R. Euler-Lagrange equations corresponding to critical metrics for these
functionals restricted toM1 were given by Berger in [2] for closed manifolds. Thus,
critical metrics for the functional S in dimension three are characterized by

(1) − 2∇2τ + 2
3∆τg + 2τ

(
ρ− 1

3τg
)

= 0,

and critical metrics for the functional T in dimension three satisfy

(2) ∆ρ−∇2τ + 2
(
R[ρ]− 1

3‖ρ‖
2g
)

= 0,

where R[ρ] denotes the action of the curvature tensor on the Ricci tensor (R[ρ]ij =
Rikjlρ

kl). The Euler-Lagrange equations for the functionals Ft have the following
expression:

(3) ∆ρ− (1 + 2t)∇2τ + 2
3 t∆τg + 2(R[ρ]− 1

3‖ρ‖
2g) + 2tτ(ρ− 1

3τg) = 0.

The functionals above can also be considered for non-compact manifolds, which
play a role in General Relativity. In this case one must assume that the correspond-
ing integrals exist. The Euler-Lagrange equations, which are the same as in the
compact case, are obtained by considering variations of the metrics with compact
support (see, for example, the discussions in [14, 16]).

It follows directly from equation (1) that metrics with τ = 0 are S-critical. Also,
from equation (2), it follows that Einstein metrics are T -critical. If a metric is S
and Ft-critical for some t ∈ R, then it follows from equations (1), (2) and (3) that
it is also critical for T and, hence, for all Ft. Moreover, if a metric is critical for
Ft1 and Ft2 with t1 6= t2, then it is critical for all quadratic curvature functionals.

1.2. Brinkmann waves. A Lorentzian manifold admitting a parallel vector field
U (i.e., ∇U = 0) splits locally as a metric product when U is non-null. If U is
null (lightlike), however, the previous splitting result does not hold, although one
has still a special situation. Spacetimes admitting such a null U have been widely
studied in General Relativity, where they are called pp-waves (plane-fronted waves
with parallel rays) in the transversally flat case, i.e., if the curvature endomorphism
satisfies R(U⊥, U⊥) = 0 [13]. Furthermore, the spacetime is a plane wave if the
curvature tensor is transversally parallel (i.e., ∇U⊥R = 0). Plane gravitational
waves, being Ricci flat plane waves, play a special role in Relativity (see [21, 22, 23]
for further details). Recent detections of gravitational waves have increased the
interest on these classes of spacetimes.

More generally, a Lorentzian manifold is said to be a Brinkmann wave if it admits
a parallel null line field. Coordinates (u, x, y) may be chosen for a three-dimensional
Brinkmann wave g so that (see [5])

(4) g = 2dudy + dx2 + ϕ(u, x, y)dy2.

The parallel null line field is locally generated by a null recurrent vector field (i.e.,
∇U = ω ⊗ U for some 1-form ω). For a metric (4), the vector field ∂u is null
and recurrent. The generating null vector field may be chosen to be parallel if and
only if the Ricci operator is two-step nilpotent, in which case coordinates may be
further specialized so that the defining function ϕ(u, x, y) does not depend on the
null coordinate and (M, g) is a three-dimensional pp-wave. Moreover, in this case
(M, g) is a plane wave if and only if the function ϕ is a quadratic polynomial on
the coordinate x, which, after an appropriate change of coordinates, reduces to
ϕ(x, y) = a(y)x2.

To fix notation, we use subscripts to denote partial derivatives, thus ϕ` denotes
the partial derivative ∂`ϕ. The Ricci tensor of a Brinkmann metric as in (4) is
given by the following non-zero components:

(5) ρ(∂u, ∂y) = 1
2ϕuu, ρ(∂x, ∂y) = 1

2ϕux, ρ(∂y, ∂y) = 1
2 (ϕϕuu − ϕxx) .
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Hence it has Ricci curvatures 0 and 1
2ϕuu, the later with multiplicity two Thus,

the scalar curvature is given by τ = ϕuu and the norm of the Ricci tensor by
‖ρ‖2 = 1

2ϕ
2
uu. The integrand of S is always non-negative, hence metrics with τ = 0

are S-critical, as can be checked directly in equation (1). Also, for Brinkmann
waves the integrand of T is non-negative, but this is not a general fact in Lorentzian
geometry. As a consequence, we will see in Section 3 that there exist metrics with
‖ρ‖2 = 0 which are not T -critical. Furthermore, the functional F−1/2 has zero
energy in the Brinkmann context. This makes the value t = −1/2 special, as will
be shown in Lemma 3.1.

1.3. Outline of the paper. In this work we analyze equations (1) and (3) to
classify three-dimensional Brinkmann waves which are critical for quadratic curva-
ture functionals. We begin by characterizing critical metrics for the functional S
as those with vanishing scalar curvature in Section 2. We identify metrics that are
critical for all quadratic curvature functionals by studying the generic functional Ft
in Section 3 and we obtain three special cases: F−1/3, F−1/4 and F−1/2, that admit
critical metrics which are not critical for another quadratic curvature functional.
The distinguished functionals F−1/3, F−1/4 and F−1/2 have a clear geometric mean-

ing, since they correspond to the functionals given by the L2-norms of the trace-free
Ricci tensor ρ0 = ρ − 1

3τg and the curvature tensor R, and the mean distance of
Brownian motion, respectively. These are examined in detail in Section 4. Special
classes of Brinkmann metrics are considered in Section 5, namely manifolds with
constant scalar curvature, locally symmetric, locally conformally flat and confor-
mally symmetric. Finally, in Section 6, we turn our attention to massive gravity
models. We use Brinkmann metrics to construct explicit solutions corresponding
to topologically massive gravity and new massive gravity actions.

2. S-critical metrics

We already know that metrics with vanishing scalar curvature are critical for the
functional S, the following result shows that these are indeed the only S-critical
Brinkmann metrics.

Theorem 2.1. A three-dimensional Brinkmann metric g is critical for the func-
tional S if and only if the scalar curvature vanishes, i.e. there exist coordinates
(u, x, y) so that g has the form of expression (4) with ϕ(u, x, y) = f(x, y)u+h(x, y).

Proof. A metric is critical for the functional S if and only if it satisfies equation (1).
This is, the symmetric tensor field S = ∇2τ− 1

3∆τg−τ(ρ− 1
3τg) vanishes. A direct

calculation using coordinates as in (4) gives:

S(∂u, ∂u) = ϕuuuu, S(∂u, ∂x) = ϕuuux,

S(∂x, ∂y) = − 1
2ϕuxϕuu + ϕuuxy − 1

2ϕxϕuuu,

S(∂x, ∂x) = −2S(∂u, ∂y) = 1
3

(
ϕ2
uu + 2ϕuuxx + ϕuϕuuu − 2ϕuuuy − 2ϕϕuuuu

)
,

S(∂y, ∂y) = 1
6

(
3ϕxxϕuu + 3ϕuϕuuy + 6ϕuuyy + 3ϕxϕuux − 3ϕyϕuuu − ϕϕ2

uu

−2ϕϕuuxx − ϕϕuϕuuu − 4ϕϕuuuy + 2ϕ2ϕuuuu
)
.

From S(∂u, ∂u) = 0 and S(∂u, ∂x) = 0 one obtains that ϕ has the form

ϕ(u, x, y) = f3(y)u3 + f2(x, y)u2 + f1(x, y)u+ f0(x, y).

Using this expression S(∂u, ∂y) reduces to

S(∂u, ∂y) = 1
6

(
−6f3

(
f1 + 2uf2 + 3u2f3

)
− 4f2xx − (2f2 + 6uf3)2 + 12f ′3

)
.

Now, differentiating twice with respect to u gives

S(∂u, ∂y)uu = −18f3
2,
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so f3 = 0 and ϕ(u, x, y) = f2(x, y)u2 + f1(x, y)u + f0(x, y). Simplifying again, we
get

S(∂x, ∂y) = −f2 (f1x + 2uf2x) + 2f2xy and S(∂x, ∂y)u = −2f2f2x,

so f2 does not depend on x. Hence S(∂u, ∂y) = − 2
3f

2
2 and f2 = 0. We conclude

that ϕ(u, x, y) = f1(x, y)u+ f0(x, y) and check that S vanishes identically. �

3. Ft-critical metrics: the generic case

It follows from (3) that a metric is Ft-critical if and only if the tensor field
Ft = ∆ρ−(1+2t)∇2τ+ 2

3 t∆τg+2(R[ρ]− 1
3‖ρ‖

2g)+2tτ(ρ− 1
3τg) vanishes identically.

Considering Brinkmann coordinates as in (4), a long but straightforward calculation
shows that Ft is determined by

(6)

Ft(∂u, ∂u) = −(1 + 2t)ϕuuuu,

Ft(∂u, ∂x) = −(1 + 2t)ϕuuux, Ft(∂x, ∂x) = −2Ft(∂u, ∂y),

Ft(∂u, ∂y) = 1
6

(
(1 + 2t)ϕ2

uu − 4tϕuuuy + (3 + 4t)ϕuuxx + 2tϕuϕuuu

−(3 + 4t)ϕϕuuuu) ,

Ft(∂x, ∂y) = 1
2 (ϕuxxx − 4tϕuuxy + (1 + 2t)ϕuxϕuu + 2tϕxϕuuu − ϕϕuuux) ,

Ft(∂y, ∂y) = 1
6

(
(1 + 2t)ϕϕ2

uu − 3ϕxxxx − 3ϕ2
ux − 6ϕuxxy − 6tϕxxϕuu

+ 2(3 + 2t)ϕϕuuxx − 3ϕuϕuxx − 3(1 + 2t)ϕuϕuuy

+ 2tϕϕuϕuuu − 6(1 + 2t)ϕuuyy + 3(1− 2t)ϕxϕuux

+ 3(1 + 2t)ϕyϕuuu + 2(3 + 4t)ϕϕuuuy − (3 + 4t)ϕ2ϕuuuu ) .

Although there is a generic behavior for the different values of the parameter t,
there are three exceptional cases corresponding to − 1

2 , − 1
3 and − 1

4 .

Lemma 3.1. If a three-dimensional Brinkmann metric is Ft-critical for some t
different from − 1

2 , − 1
3 and − 1

4 , then the scalar curvature vanishes and (M, g) is
critical for all quadratic curvature functionals.

Proof. We assume that t 6= − 1
2 ,−

1
3 ,−

1
4 and that the metric g is given by (4).

Since t 6= − 1
2 , it follows from Ft(∂u, ∂u) = 0 and Ft(∂u, ∂x) = 0 that ϕ(u, x, y) =

f3(y)u3 + f2(x, y)u2 + f1(x, y)u+ f0(x, y). We simplify expressions in (6) to obtain

Ft(∂u, ∂y)uu = −12(1 + 3t)f2
3 .

Since t 6= − 1
3 , f3 = 0 and ϕ(u, x, y) = f2(x, y)u2 + f1(x, y)u + f0(x, y). Now, we

compute

2Ft(∂x, ∂y)u − 3Ft(∂u, ∂y)x = (1 + 4t)f2xxx.

Since t 6= − 1
4 , we conclude f2xxx = 0. Moreover, this implies that

Ft(∂x, ∂y)u = −2(1 + 2t)f2f2x.

Since t 6= − 1
2 , it follows that f2 does not depend on x and ϕ(u, x, y) = f2(y)u2 +

f1(x, y)u+ f0(x, y). This expression leads to

F(∂u, ∂y) = 2
3 (1 + 2t)f2

2 .

Hence f2 = 0 and ϕ(u, x, y) = f1(x, y)u + f0(x, y), which shows that the scalar
curvature vanishes and the metric is S-critical by Theorem 2.1. Since the metric is
critical for two functionals, it is critical for all quadratic curvature functionals. �
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Theorem 3.2. A three-dimensional Brinkmann metric (4) is critical for all qua-
dratic curvature functionals if and only if ϕ(u, x, y) = f1(x, y)u+ f0(x, y) with

f1(x, y) =A(y)x2 +B(y)x+ C(y),

f0(x, y) =− 1
60A(y)2x6 − 1

20A(y)B(y)x5 − 1
24

(
B(y)2 + 2A(y)C(y) + 4A′(y)

)
x4

+D(y)x3 + E(y)x2 + F (y)x+G(y).

Proof. Since g is S-critical, the scalar curvature vanishes and thus ϕ(u, x, y) =
f1(x, y)u + f0(x, y). Now, since g is T -critical, the tensor field F0 in (6) vanishes.
The only possibly non-zero components are F0(∂x, ∂y) and F0(∂y, ∂y). We compute

F0(∂x, ∂y) = − 1
2f1xxx,

from where f1xxx = 0 and hence f1(x, y) = A(y)x2 + B(y)x + C(y). Now, we
compute

2F0(∂y, ∂y) = 6A2x2 + 6ABx+B2 + 2AC + 4A′ + f0xxxx,

to obtain that f0 is given by

f0(x, y) =− 1
60A(y)2x6 − 1

20A(y)B(y)x5 − 1
24 (B(y)2 + 2A(y)C(y) + 4A′(y))x4

+D(y)x3 + E(y)x2 + F (y)x+G(y),

which completes the proof . �

It follows from Theorem 2.1 that pp-waves, having vanishing scalar curvature,
are S-critical. Any pp-wave can be described in local Brinkmann coordinates (4)
by a function ϕ = ϕ(x, y). A direct consequence of Theorem 3.2 is that pp-waves
are critical for all quadratic curvature functionals if and only if ϕ(x, y) = D(y)x3 +
E(y)x2 + F (y)x + G(y). A standard argument shows that in this case one may
specialize the local Brinkmann coordinates so that ϕ(x, y) = κ(y)x3 + a(y)x2.

Let S = ρ − τ
4 g be the Schouten tensor of (M, g). The Cotton tensor Cijk =

∇iSjk − ∇jSik measures the failure of the Schouten tensor to be Codazzi. Since
M is assumed to be of dimension three, we define the (0, 2)-Cotton tensor Cij =

1

2
√
|g|
Cnmiεnm`g`j , where ε123 = 1 is the anti-symmetric symbol. A straightforward

calculation from (4) shows that the only non-zero component of the divergence of
the Cotton tensor of a Brinkmann metric is div C(∂y, ∂y) = − 1

2ϕxxxx. Hence one
has

Corollary 3.3. A three-dimensional pp-wave is critical for some quadratic curva-
ture functional Ft if and only if the Cotton tensor is divergence-free, and hence it
is critical for all quadratic curvature functionals. Moreover, in such a case there
exist Brinkmann coordinates as in (4) so that ϕ(x, y) = κ(y)x3 + a(y)x2.

4. Ft-critical metrics: special cases

From the proof of Lemma 3.1 we distinguish two situations: vanishing and non-
vanishing scalar curvature. If a metric with vanishing scalar curvature is Ft-critical
for some t, then it is critical for all quadratic curvature functionals, whereas a
metric with non-vanishing scalar curvature cannot be critical for any functional
but, perhaps, for Ft with t = − 1

2 ,−
1
3 , or − 1

4 . The analysis of these last three cases
is the objective of this section.



6 BROZOS-VÁZQUEZ, CAEIRO-OLIVEIRA, GARCÍA-RÍO

4.1. F−1/3-critical metrics. The norm of the trace-free Ricci tensor ρ0 = ρ− τ
3 g is

given by ‖ρ0‖2 = ‖ρ‖2− 1
3τ

2. Hence the functional F−1/3 is precisely the functional

given by the L2-norm of the trace-free Ricci tensor in dimension three.

Theorem 4.1. Let g be a Brinkmann metric (4) with non-zero scalar curvature.
If g is F−1/3-critical, then the scalar curvature has the form

(7) τ = 6f3(y)u+ 2λx2 + 2f21(y)x+ 2f20(y)

where λ ∈ R. Conversely, given a function τ̃ as in (7), there exists a F−1/3-critical
Brinkmann metric given by (4) with scalar curvature τ̃ .

Proof. A metric is critical for the functional F−1/3 if and only if the tensor F−1/3

given in equation (6) vanishes. We use that F−1/3 (∂u, ∂u) = 0 and F−1/3(∂u, ∂x) =

0, to see that ϕ(u, x, y) = f3(y)u3 + f2(x, y)u2 + f1(x, y)u+ f0(x, y).
If f3(y) = 0, then 27F−1/3(∂x, ∂x)x + 30F−1/3(∂x, ∂y)u = 4f2f2x, so f2 does not

depend on x. Now, we compute again F−1/3(∂x, ∂x) = 4
9 (f2)2 to see that f2 = 0,

which contradicts the assumption τ 6= 0. Hence, we assume f3(y) 6= 0 henceforth.
From equation (6), we compute 9F−1/3(∂u, ∂y) = −2f2

2 + 6f1f3 − 12f ′3 − 5f2xx.
Since F−1/3(∂u, ∂y) = 0, it follows that

f1(x, y) = 1
6f3(y)

(
2f2(x, y)2 + 12f ′3(y) + 5f2xx(x, y)

)
.

We use this expression to substitute f1 in F−1/3(∂x, ∂y) and obtain

F−1/3(∂x, ∂y)u = − 1
6f2xxx.

Hence f2xxx = 0 and f2 has the form f2(x, y) = f22(y)x2 + f21(y)x+ f20(y). Now,
we simplify F−1/3(∂y, ∂y) to compute

F−1/3(∂y, ∂y)u = 1
9f3

(
20f3

22x
4 + 40f21f

2
22x

3 + 24f22(f2
21 + f20f22)x2

+ 4(f3
21 + 6f20f21f22)x+ 4f20f

2
21 + 4f2

20f22 + 36f2
22 + 21f3f

′
22

−18f2
3 f0xx

)
.

From where it follows that

f0(x, y) = 1
27f3(y)2

(
f22(y)3x6 + 3f22(y)2f21(y)x5 + 3f22(y)(f22(y)f20(y) + f21(y)2)x4

+ (6f22(y)f20(y)f21(y) + f21(y)3)x3

+(27f22(y)2 + 3f22(y)f20(y)2 + 3f20(y)f21(y)2 + 63
4 f3(y)f ′22(y))x2

)
+ f01(y)x+ f00(y).

Assuming that f0 is as above, we obtain that F−1/3(∂x, ∂y)x = − 1
3f
′
22, so f22 = λ

is constant. We further simplify as follows

F−1/3(∂x, ∂y) = − 2
9f3

(
(9λ+ f2

20)f21 − 9f01f
2
3 + 6f3f

′
21

)
,

and from F−1/3(∂x, ∂y) = 0 we obtain

f01(y) = 1
9f3(y)2

(
9λf21(y) + f20(y)2f21(y) + 6f3(y)f ′21(y)

)
.

Finally, the remaining term of F−1/3 reduces to

F−1/3(∂y, ∂y) = 1
27f2

3

(
−f3f

′
00 − 2(λ+ f ′3)f00 + 2

3f
′′
20

+ 1
9f3

(f2
20f
′
20 + 2f21f

′
21 + 17λf ′20 + 6f ′20f

′
3)

+ 1
27f2

3
2λ(15f20 + f3

20 + 3f2
21)
)
.
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In summary, the function ϕ has the form ϕ(u, x, y) = f3(y)u3 + f2(x, y)u2 +
f1(x, y)u+ f0(x, y) with

f3(y) 6=0,

f2(x, y) =λx2 + f21(y)x+ f20(y),

f1(x, y) = 1
3f3(y)

(
(λx2 + f21(y)x+ f20(y))2 + 5λ+ 6f ′3(y)

)
,

f0(x, y) = 1
27f3(y)2

(
λ3x6 + 3λf21(y)x5 + 3λ(λf20(y) + f21(y)2)x4

+ (6λf20(y)f21(y) + f21(y)3)x3

+ (27λ2 + 3λf20(y)2 + 3f20(y)f21(y)2)x2

+3((9λ+ f20(y)2)f21(y) + 6f3(y)f ′21(y))x
)

+ f00(y),

where f00 is a solution of the linear ODE

− f3f
′
00 − 2(λ+ f ′3)f00 + 2

3f
′′
20 + 1

9f3
(f2

20f
′
20 + 2f21f

′
21 + 17λf ′20 + 6f ′20f

′
3)

+ 1
27f2

3
2λ(15f20 + f3

20 + 3f2
21) = 0.

(8)

We directly compute the scalar curvature to see that it is given by (7). Conversely,
given a function τ̃ as in (7), it prescribes functions f3, f21, f20 and a constant λ
that determine functions f3, f2 and f0 through the expressions above and the ODE
(8). With these functions, the Brinkmann metric given by ϕ(u, x, y) = f3(y)u3 +
f2(x, y)u2 + f1(x, y)u+ f0(x, y) is F−1/3-critical with scalar curvature τ̃ . �

4.2. F−1/4-critical metrics. Since the curvature tensor is determined by the Ricci

tensor in dimension three, ‖R‖2 = 2‖ρ‖2 − 1
2τ

2, the functional F−1/4 is equivalent

to that one defined by the L2-norm of the curvature tensor.

Theorem 4.2. Let g be a Brinkmann metric (4) with non-zero scalar curvature.
If g is F−1/4-critical, then the scalar curvature satisfies

(9) τu = 0, 4τxx + τ2 = 0.

Conversely, for any solution τ̃ of the equations (9), there exists a F−1/4-critical
Brinkmann metric with scalar curvature τ̃ .

Proof. Let g be a Brinkmann metric as in (4). Considering the tensor field F−1/4

given by (6), we proceed as in Lemma 3.1 to see that ϕ(u, x, y) = f2(x, y)u2 +
f1(x, y)u + f0(x, y). Hence the scalar curvature τ = ϕuu = 2f2(x, y) does not
depend on the coordinate u and the first equation in (9) follows. Moreover

F−1/4(∂u, ∂y) = − 1
3

(
f2

2 + 2f2xx

)
= − 1

3 (4τxx + τ2),

which gives the second equation in (9). Now, we use that 2f2xx = −f2
2 to compute

f2xxx = −f2f2x, f2xxy = −f2f2y, f2xxxx = 1
2f2

3 − f2
2
x,

and simplify F−1/4(∂x, ∂y) = − 1
2

(
f1xxx + f2f1x + 2f2xy

)
in (6) to obtain the equa-

tion

(10) f1xxx + f2f1x + 2f2xy = 0.

Once f2 (or, equivalently, τ) is settled, equation (10) provides the only relation to
be satisfied by f1. Assuming that f1 is a solution of (10), we use

f1xxxx = 2f2f2y − f2xf1x − f2f1xx,

to simplify 2F−1/4(∂y, ∂y) in (6) and obtain the following equation:

(11) f0xxxx−f2f0xx−3f2xf0x+f2
2f0 +2f2yy+f1

2
x+f1(f2y+f1xx)+2f1xxy = 0.

Once again, if f2 and f1 are settled, then (11) is the only equation determining f0.
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The previous analysis shows that the scalar curvature of a F−1/4-critical Brink-
mann metric (4) satisfies equation (9). Conversely, if (9) is satisfied, then there
exist solutions f1 and f0 of the linear PDEs (10) and (11), respectively, so that the
corresponding Brinkmann metric determined by ϕ(u, x, y) = f2(x, y)u2+f1(x, y)u+
f0(x, y) is F−1/4-critical. �

Remark 4.3. Solutions of the nonlinear wave equation 2f2xx + f2
2 = 0 are given by

f2(x, y) = −(−2)2/3 3
√

3P((x + α(y))
3
√
− 1

3

22/3 ; g2, g3), where P(−; g2, g3) denotes the
Weierstrass elliptic function with invariants g2 = 0, g3 = β(y), and α and β are
arbitrary functions (see, for example, [9, 18]).

4.3. F−1/2-critical metrics. For any three-dimensional Brinkmann wave we have

that ‖ρ‖2 − 1
2τ

2 = 0. Moreover, the term of degree three in the asymptotic ex-
pansion of the mean distance for the Brownian motion on a Riemannian manifold
is determined by the quadratic expression E = −6∆τ − ‖R‖2 + ‖ρ‖2 (see [17]).
Hence, the associated quadratic curvature functional is equivalent to F−1/2 in the
three-dimensional setting.

Lemma 4.4. If a Brinkmann metric (4) is F−1/2-critical, then the scalar curvature
is a harmonic function and, moreover,

(12) ∆gϕ+ 3
2ϕ

2
u = C1(y)u+ C2(y)x+ C3(y),

for some functions C1, C2, C3. Conversely, any Brinkmann metric (4) determined
by a function ϕ satisfying (12) is F−1/2-critical.

Proof. We fix t = − 1
2 and work with the expressions in (6). The possibly non-

vanishing terms are

F−1/2(∂x, ∂x) =− 2F1/2(∂u, ∂y) = 1
3 (ϕuuxx − ϕuϕuuu + 2ϕuuuy − ϕϕuuuu) = 1

3∆gτ,

F−1/2(∂x, ∂y) = 1
2 (−ϕuxxx − 2ϕuuxy + ϕxϕuuu + ϕϕuuux),

F−1/2(∂y, ∂y) = 1
6 (3ϕxxxx + 3ϕ2

ux + 6ϕuxxy − 3ϕxxϕuu − 6ϕxϕuux

+ ϕu(3ϕuxx + ϕϕuuu) + ϕ(−4ϕuuxx − 2ϕuuuy + ϕϕuuuu)).

Using that F−1/2(∂x, ∂x) = 1
3∆gτ = 0, we simplify F−1/2(∂y, ∂y) to see that

F−1/2(∂y, ∂y) = 1
2 (ϕxxxx + ϕ2

ux + ϕuϕuxx + 2ϕuxxy − ϕxxϕuu − 2ϕxϕuux − ϕϕuuxx),

and the previous three expressions reduce to

F−1/2(∂u, ∂y) =− 1
6 (ϕxx + 1

2ϕ
2
u + 2ϕuy − ϕϕuu)uu = − 1

6 (∆gϕ+ 3
2ϕ

2
u)uu,

F−1/2(∂x, ∂y) =− 1
2 (ϕxx + 1

2ϕ
2
u + 2ϕuy − ϕϕuu)ux = − 1

2 (∆gϕ+ 3
2ϕ

2
u)ux,

F−1/2(∂y, ∂y) = 1
2 (ϕxx + 1

2ϕ
2
u + 2ϕuy − ϕϕuu)xx = 1

2 (∆gϕ+ 3
2ϕ

2
u)xx.

Hence, a Brinkmann metric (4) is F−1/2-critical if and only if the function ϕ satisfies
equation (12) for some functions C1, C2, C3. �

Next we use the Cauchy-Kovalevskaya Theorem to construct local solutions of
(12). Let (M, g) be a three-dimensional Brinkmann wave as in (4), and let Σ be the
hyperplane x = 0 with the induced Brinkmann metric gΣ = 2dudy+ ϕ̃(u, y)dy2. A
straightforward calculation shows that the second fundamental form of Σ ⊂ M is
given by I = − 1

2ϕxdy ⊗ dy ⊗ ∂x, since ∂u, ∂y are tangent to Σ and ∂x is normal to
Σ. Hence (Σ, gΣ) is totally geodesic if and only if ϕx = 0.

Theorem 4.5. Let (Σ, gΣ) be a two-dimensional analytic Brinkmann manifold.
Then it can be extended to a three-dimensional F−1/2-critical analytic Brinkmann
wave (M, g) such that (Σ, gΣ) is a totally geodesic submanifold of (M, g).
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Proof. We consider a two-dimensional Brinkmann metric gΣ given in local coordi-
nates (u, y) by gΣ = 2dudy + ϕ̃(u, y)dy2. Let g be a three-dimensional Brinkmann
metric as in (4) so that gΣ corresponds to the induced metric on the plane x = 0.

Lemma 4.4 shows that g is F−1/2-critical if and only if

(13) ϕxx + 1
2ϕ

2
u + 2ϕuy − ϕϕuu = C1(y)u+ C2(y)x+ C3(y)

for arbitrary functions C1, C2 and C3. We choose these functions to be analytic
and note that x = 0 is a non-characteristic surface for this PDE (see, for ex-
ample, [15]). Now, we set ϕ|x=0

= ϕ̃ and ϕx|x=0
=0 as initial data and use the

Cauchy-Kovalevskaya Theorem to conclude that there exists an analytic solution ϕ
to equation (13). This solution allows to extend gΣ to g so that the plane x = 0 is
a totally geodesic submanifold of g using the local coordinates in (4). �

Remark 4.6. Theorem 4.5 shows the possibility of generating examples of F−1/2-
critical metrics with a clear geometric interpretation. Furthermore, one can also
consider equation (12) with other non-characteristics surfaces, different from the
plane x = 0, and produce different families of F−1/2-critical metrics with other
initial data.

5. Special classes of Brinkmann metrics

In this section we consider some special families of Brinkmann waves motivated
by geometric conditions which are related to homogeneity and local conformal flat-
ness. For each special class we determine all critical metrics.

5.1. Brinkmann metrics with constant scalar curvature. Brinkmann metrics
with vanishing scalar curvature were discussed in Section 3. The case of non-zero
constant scalar curvature reduces to the functional F−1/2 and it is covered by the
following result.

Theorem 5.1. If a Brinkmann metric with non-zero constant scalar curvature is
Ft-critical, then t = − 1

2 and, moreover, for any κ ∈ R, there exist three-dimensional
Brinkmann F−1/2-critical metrics with τ = κ.

Proof. If a Brinkmann metric with non-zero constant scalar curvature is critical
for a quadratic curvature functional, then by Theorem 2.1 and Lemma 3.2 it can-
not be critical for S or Ft with t /∈ {− 1

2 ,−
1
3 ,−

1
4}. Theorem 4.1 shows that the

scalar curvature of a F−1/3-critical Brinkmann metric has the form τ(u, x, y) =
6f3(y)u + 2f2(x, y), with f3(y) 6= 0 unless τ = 0. Then this functional does not
have critical metrics with non-zero constant scalar curvature. It follows from Theo-
rem 4.2 that the scalar curvature of a F−1/4-critical Brinkmann metric has the form
τ(u, x, y) = 2f2(x, y), where f2 is an Weierstrass elliptic function. Therefore the
only quadratic curvature functional which may admit Brinkmann critical metrics
of non-zero constant scalar curvature is F−1/2.

We set Brinkmann coordinates and use Lemma 4.4 to identify F−1/2-critical
metrics by equation (12). If τ = k, then ϕuu = k and the function ϕ has the form
ϕ(u, x, y) = k

2u
2 + α(x, y)u+ β(x, y). Hence, equation (12) is expressed as

αxxu+ βxx + 1
2α

2 + 2αy − kβ = C1(y)u+ C2(y)x+ C3(y).

Differentiating with respect to u, we see that αxx = C1(y), so

α(x, y) = 1
2C1(y)x2 + ξ(y)x+ η(y).
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Hereafter we remove the dependence of y on the functions to simplify notation.
Equation (12) now reads as

C1u+ 1
8C

2
1x

4 + 1
2C1ξx

3 + 1
2 (C1η + ξ2 + 2C ′1)x2 + (ηξ + 2ξ′)x

+ 1
2η

2 + 2η′ − kβ + βxx = C1u+ C2x+ C3.

Differentiating with respect to x we obtain

1
2C

2
1x

3 + 3
2C1ξx

2 + (C1η + ξ2 + 2C ′1)x+ (ηξ + 2ξ′)− kβx + βxxx = C2,

so β has the following form:

β(x, y) = 1
8kC1(y)2x4 + 1

2kC1(y)ξ(y)x3

+ 1
2k2 (3C1(y)2 + kC1(y)η(y) + kξ(y)2 + 2kC ′1(y))x2

+ 1
k2 (−kC2(y) + 3C1(y)ξ(y) + kη(y)ξ(y) + 2kξ′(y))x

+ Ξ(x, y) + ε(y),

with

Ξ(x, y) =
√
k
k (γ(y)e

√
kx − δ(y)e−

√
kx) if k > 0, and

Ξ(x, y) =
√
−k
k (γ(y) sin(

√
−kx)− δ(y) cos(

√
−kx)) if k < 0.

Finally, we check that equation (12) has solutions for

C3(y) = 1
2k2 (6C1(y)2 + 2kC1(y)η(y)

+ k(−2k2ε(y) + kη(y)2 + 2ξ(y)2 + 4C ′1(y) + 4kη′(y))).

Hence there exists a family of F−1/2-critical metrics with τ = k for arbitrary func-
tions C1, ξ, η, γ, δ, ε defining ϕ as above. �

Remark 5.2. Note that the proof of Theorem 5.1 goes through if, using Brinkmann
coordinates as in (4), we assume that τ is only a function of the variable y. Hence
the theorem above extends to this setting.

Remark 5.3. As natural generalizations of homogeneous geometries, Lorentz met-
rics with vanishing scalar curvature invariants (VSI) or constant scalar curvature
invariants (CSI) have been extensively studied [11, 24]. Three-dimensional VSI
spacetimes split into the families A.1 and B.1, following notation in [11]. Metrics
within the family A.1 are Brinkmann with vanishing scalar curvature and corre-
spond to the discussion in Sections 2 and 3. The family B.1 can be described in
local coordinates (u, v, x) as

g = −2du

[
dv +

1

2

{
− v

2

x2
+ vf1(u, x) + f0(u, x)

}
du− 2v

x
dx

]
+ dx2,

for arbitrary functions f0(u, x) and f1(u, x). A straightforward calculation shows
that the symmetric tensor Ft is completely determined by the components Ft(∂u, ∂u)
and Ft(∂u, ∂x) = − 1

2f1xxx
− 1

xf1xx
. Hence f1(u, x) = −α(u) log(x) + xγ(u) + β(u)

and metrics in family B.1 which are Ft-critical are determined by the linear fourth-
order PDE

2x4 Ft(∂u, ∂u) = x4
(
f0xxxx

(u, x) + γ(u)2
)

+ x3 (4f0xxx
(u, x)− α(u)γ(u))

+ x2
(
α(u)β(u) + 2 (α′(u)− 6f0xx

(u, x)) + α(u)2(1− log(x))
)

+ 24x f0x
(u, x)− 24f0(u, x) .
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Hence a VSI metric in family B.1 is Ft-critical for some t ∈ R if and only if it is
critical for all quadratic curvature functionals, in which case

f1(u, x) = −α(u) log(x) + xγ(u) + β(u),

f0(u, x) = x4
{
A4(u) + 1

36γ(u)2(6 log(x)− 11)
}

+ x3
{
A3(u) + 1

4α(u)γ(u)(2 log(x)− 1)
}

+ x2
{
A2(u) + 1

2α
′(u)(2 log(x) + 1) + 1

4α(u)β(u)(2 log(x) + 1)

+ 1
8α(u)2

(
2 log(x)− 2 log2(x)− 3

)}
+ xA1(u).

5.2. Locally symmetric metrics. A three-dimensional Lorentzian metric is lo-
cally symmetric if it is Einstein, a product R×N(c) (where N is a surface of constant
Gauss curvature), or a Cahen-Wallach symmetric space, which is a particular case
of plane wave expressed in Brinkmann coordinates (4) with ϕ(u, x, y) = κx2 [7].

As already mentioned, Einstein manifolds are critical for all quadratic curvature
functionals. However, non-flat products of the form R ×N(c) are critical only for
the functional F−1/2. In the Riemannian setting, these product metrics are the
only homogeneous metrics which are critical for this particular functional (see [6]).
The next result shows that in Lorentzian signature, also Cahen-Wallach symmetric
spaces are critical for F−1/2, indeed they are critical for all quadratic curvature
functionals by Theorem 3.2.

Corollary 5.4. Any three-dimensional locally symmetric Lorentzian metric is crit-
ical for the functional F−1/2. Moreover, Cahen-Wallach metrics are critical for all
quadratic curvature functionals.

5.3. Locally conformally flat Brinkmann metrics. Local conformal flatness
in dimension n ≥ 4 is characterized by the vanishing of the Weyl tensor. Hence
any locally conformally flat metric is critical for the L2-norm of the Weyl conformal
tensor which, by the Gauss-Bonnet Theorem, is equivalent to the functional F−1/3

in dimension four. The situation is quite different in dimension three, where local
conformal flatness is characterized by the vanishing of the Cotton tensor. There are
locally conformally flat Brinkmann metrics which are not critical for any quadratic
curvature functional. Indeed, locally conformally flat critical metrics are given by
Corollary 3.3 and Corollary 5.4 as follows.

Theorem 5.5. Let (M, g) be a three-dimensional locally conformally flat Brinkmann
wave which is critical for a quadratic curvature functional. Then, one of the fol-
lowing two possibilities holds:

(1) (M, g) is a plane-wave.
(2) (M, g) is a locally symmetric product R×N(c), where N(c) is a Lorentzian

surface of constant Gauss curvature.

Proof. A three-dimensional metric is locally conformally flat if and only if the Cot-
ton tensor vanishes. For manifolds in local coordinates as in (4), the (0, 2)-Cotton
tensor is determined by

(14)

C(∂u, ∂x) = − 1
4ϕuuu, C(∂u, ∂y) = − 1

2C(∂x, ∂x) = 1
4ϕuux,

C(∂x, ∂y) = 1
2ϕuxx + 1

4ϕuuy −
1
4ϕϕuuu,

C(∂y, ∂y) = − 1
2ϕxxx −

1
4ϕuϕux −

1
2ϕuxy + 1

4ϕxϕuu + 1
2ϕϕuux.

From (14) we obtain that ϕ has the following form:

ϕ(u, x, y) = A(y)u2 −
(

1

2
x2A′(y)−B(y)x− C(y)

)
u+Q(x, y).
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It follows from (6) that Ft(∂x, ∂x) = 4
3 (1 + 2t)A(y)2 and, thus, either A(y) = 0 or

t = − 1
2 .

If A(y) = 0, then τ = 0 and a direct analysis of the equations (14) shows that
ϕ(u, x, y) = (Bx + C)u − 1

48B
2x4 − 1

12 (2B′ + BC)x3 + Dx2 + Ex + F for some

functions B, C, D, E and F on the variable y. Now, Ft(∂y, ∂y) = B2

4 , so B = 0.
Therefore, the Ricci operator is two-step nilpotent and the metric is a pp-wave.
Now, in appropriate coordinates we have ϕ(x, y) = D(y)x2 +E(y)x+F (y). Hence
the metric is a plane wave and coordinates may be further specialized so that
ϕ(x, y) = a(y)x2.

If A(y) 6= 0 and t = − 1
2 , we work with the term F−1/2(∂y, ∂y) and (14) to see

that A(y) is a constant and ϕ reduces to ϕ(u, x, y) = κu2 + (B(y)x + C(y))u +
1

4κB(y)2x2 + 1
2κ (B(y)C(y) + 2B′(y))x + D(y). Hence (M, g) is locally symmetric

and the unit spacelike vector field X = − 1
2κB(y)∂u + ∂x is parallel, from where it

follows that the metric splits locally as a product R ×N(c) where N is a Lorentz
surface of constant Gauss curvature. �

5.4. Conformally symmetric Brinkmann metrics. A three-dimensional man-
ifold is conformally symmetric if the Cotton tensor is parallel. Clearly, locally
symmetric and locally conformally flat manifolds are conformally symmetric. It
was shown in [8] that any other example is locally a Brinkmann metric (4) de-
termined by a function ϕ(u, x, y) = x3 + α(y)x. The following is an immediate
consequence of Theorem 3.2.

Corollary 5.6. A three-dimensional conformally symmetric manifold which is nei-
ther locally conformally flat nor locally symmetric is critical for all quadratic cur-
vature functionals.

6. Brinkmann metric solutions in massive gravity

In this final section we use Brinkmann metrics to construct new solutions in
massive gravity. Brinkmann metrics with vanishing scalar curvature have VSI and
one gets the solutions previously obtained in [24]. It is worth emphasizing, how-
ever, the existence of additional solutions with non vanishing scalar curvature (see
Theorem 6.3 below).

6.1. Topologically massive gravity functional. The topologically massive grav-
ity functional, STMG = SEH + 1

ωSCS , is defined by adding the gravitational Chern-

Simons term SCS = 1
2

∫
d3x
√
|g|εijkΓris

(
∂jΓ

s
rk + 2

3ΓsjvΓ
v
kr

)
to the Einstein-Hilbert

functional, where εijk is the fully anti-symmetric symbol in three dimensions with
ε123 = 1. The Euler-Lagrange equations for the functional STMG are given by (see
[1] and references therein)

(15) ρ− 1
3τg + 1

ωC = 0,

where C denotes the Cotton tensor.
The next result shows that the only Brinkmann metric solutions of topologically

massive gravity have vanishing scalar curvature and they reduce to those previously
investigated in [24].

Theorem 6.1. A Brinkmann metric (4) is a solution for the topologically massive
gravity functional if and only if ϕ(u, x, y) = f1(x, y)u+ f0(x, y), with

f1(x, y) = − 1
ωα(y)e−ωx + β(y),

f0(x, y) = − 1
8ω4α(y)2e−2ωx − 1

2ω3 {(ωx+ 2)(α(y)β(y)− 2α′(y))− 2ωγ(y)} e−ωx

+ ξ(y)x+ η(y),

where α, β, γ, ξ and η are arbitrary functions.
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Proof. We consider the symmetric tensor field T = ρ− 1
3τg + 1

ωC on a Brinkmann

manifold (4). It follows from expressions (5) and (14) that T(∂u, ∂x) = − 1
4ωϕuuu,

which shows that ϕ has the form

ϕ(u, x, y) = f2(x, y)u2 + f1(x, y)u+ f0(x, y).

Then T(∂u, ∂y) = 1
3f2 + 1

2ωf2x, so f2(x, y) = A(y)e−
2xω
3 . Now, we have T(∂x, ∂y) =

1
18ω{9 (ωf1x + f1xx) + e−

2xω
3

(
9A′(y)− 4uω2A(y)

)
}. Since the last expression van-

ishes identically, we conclude A(y) = 0. Hence, f2 = 0 and, thus, τ = 0.
It now follows that T(∂x, ∂y) = 1

2f1x+ 1
2ωf1xx, from where f1(x, y) = − 1

ωα(y)e−ωx+
β(y) for some functions α and β. Finally the remaining term of T reduces to

T(∂y, ∂y) =
1

4ω2
α(y)2e−2ωx − 1

4ω
{α(y)β(y) + 2α′(y)} e−ωx − 1

2ω
(f0xxx + ωf0xx) ,

which determines the function f0. �

Remark 6.2. Three-dimensional Brinkmann solutions for the topologically massive
gravity functional STMG are critical for the functional S, since its scalar curvature
vanishes. Moreover, they are critical for some other quadratic curvature functional
only if the metric is flat.

6.2. New massive gravity functional. The new massive gravity functional is
defined by adding a multiple of the quadratic curvature functional F−3/8 to the

Einstein-Hilbert functional: SNMG = SEH − 1
m2F−3/8. The Euler-Lagrange equa-

tions for the functional SNMG are given by (see[3, 4])

(16) ρ− 1
3τg −

1
2m2 (K − 1

3 (|ρ|2 − 3
8τ

2)g) = 0,

where K = 2∆ρ − 1
2∇

2τ − 3
2τρ + 4R[ρ] − ( 1

2∆τ + |ρ|2 − 3
8τ

2)g is a symmetric
(0, 2)-tensor field.

Theorem 6.3. A Brinkmann metric is a solution for the new massive gravity
functional if and only if one of the following holds

(1) The scalar curvature vanishes, and the metric (4) is determined by a func-
tion ϕ(u, x, y) = f1(x, y)u+ f0(x, y) with

f1(x, y) = 1
mA(y)emx − 1

mB(y)e−mx + C(y),

f0(x, y) = − 1
6m4A(y)2e2mx − 1

6m4B(y)2e−2mx − 1
4m3H1(x, y)emx

− 1
4m3H2(x, y)e−mx + ξ(y)x+ η(y),

where the functions H1 and H2 are given by,

H1(x, y) = 2m(A(y)C(y) + 2A′(y))x− (5A(y)C(y) + 4mα(y) + 10A′(y)),

H2(x, y) = 2m(B(y)C(y) + 2B′(y))x+ (5B(y)C(y)− 4mβ(y) + 10B′(y)).

(2) The scalar curvature is constant τ = 4m2, and the metric (4) is determined
by a function ϕ(u, x, y) = 2m2u2 + f1(x, y)u+ f0(x, y) with

f1(x, y) = A(y)x2 +B(y)x+ C(y),

f0(x, y) = 1
8m2A(y)2x4 + 1

4m2A(y)B(y)x3

+ 1
8m4

{
m2B(y)2 + 2m2A(y)C(y) + 3A(y)2 + 4m2A′(y)

}
x2

+ 1
4m2

{
α(y)e2mx + β(y)e−2mx

}
+ ξ(y)x+ η(y).
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Proof. The non-zero components of the tensor field N = ρ− 1
3τg −

1
m2F−3/8 for a

metric (4) are given by

N(∂u, ∂u) = ϕuuuu

4m2 , N(∂u, ∂x) = ϕuuux

4m2 , N(∂x, ∂x) = −2N(∂u, ∂y) + ϕN(∂u, ∂u),

N(∂u, ∂y) = − 1
24m2

(
ϕ2
uu − 4m2ϕuu + 6ϕuuxx − 3ϕuϕuuu + 6ϕuuuy − 6ϕϕuuuu

)
,

N(∂x, ∂y) = 1
8m2

(
(4m2 − ϕuu)ϕux − 4ϕuxxx − 6ϕuuxy + 3ϕxϕuuu + 4ϕϕuuux

)
,

N(∂y, ∂y) = 1
24m2

(
12ϕxxxx + 12ϕ2

ux + 12ϕuϕuxx + 24ϕuxxy + 4m2ϕϕuu − ϕϕ2
uu

− 3(4m2 + 3ϕuu)ϕxx + 3ϕuϕuuy − 12ϕϕuuuy + 3ϕϕuϕuuu

+6ϕ2ϕuuuu − 21ϕxϕuux − 18ϕϕuuxx − 3ϕyϕuuu + 6ϕuuyy
)
.

From N(∂u, ∂u) = 0 and N(∂u, ∂x) = 0 one obtains that ϕ has the form

ϕ(u, x, y) = f3(y)u3 + f2(x, y)u2 + f1(x, y)u+ f0(x, y).

The component N(∂u, ∂y) reduces to

N(∂u, ∂y)= 1
12m2

{
9f2

3u
2+ 6(2m2 + f2)f3u+ 4m2f2− 2f2

2+ 9f1f3− 18f ′3− 6f2xx

}
.

Differentiating twice with respect to u gives N(∂u, ∂y)uu = 3
2m2 f3

2. Hence f3 = 0

and ϕ(u, x, y) = f2(x, y)u2 + f1(x, y)u+ f0(x, y). Now we compute the derivatives

2N(∂u, ∂y)x −N(∂x, ∂y)u = − 1
6m2 (f2 + 2m2)f2x,

so f2 does not depend on the coordinate x. Hence ϕ(u, x, y) = f2(y)u2 +f1(x, y)u+
f0(x, y) and one has that N(∂x, ∂x) = 1

3m2 (f2 − 2m2)f2. This shows that either

f2 = 0 or f2 = 2m2, that correspond to Assertions (1) and (2), respectively.
If f2 = 0, then N(∂x, ∂y) = 1

2f1x − 1
2m2 f1xxx and the function f1 has the form

f1(x, y) = 1
mA(y)emx − 1

mB(y)e−mx + C(y).

The remaining term N(∂y, ∂y) now reduces to

N(∂y, ∂y) = 1
2m2

{
2A2e2mx + 2B2e−2mx +m(AC + 2A′)emx

−m(BC + 2B′)e−mx −m2f0xx + f0xxxx

}
,

from where Assertion (1) follows.
If f2 = 2m2, then N(∂x, ∂y) = − 1

2m2 f1xxx and, hence, f1(x, y) = A(y)x2 +
B(y)x+ C(y). Using this expression the remaining term N(∂y, ∂y) reduces to

N(∂y, ∂y) =
1

2m2

{
6A2x2 + 6ABx+B2 + 2AC + 4A′ − 4m2f0xx + f0xxxx

}
,

from where Assertion (2) follows. �

Remark 6.4. Metrics in Assertion (1) of Theorem 6.3 are critical for the functional
S and correspond to those in [24], while metrics in Assertion (2) are critical for the
functional F−1/2.

7. Conclusions

Motivated by new gravitational theories like topologically massive gravity and
new massive gravity, whose solutions correspond to critical metrics of curvature
functionals which involve quadratic terms, we develop a systematic study of critical
Brinkmann waves for all possible quadratic curvature functionals.

A different behavior is observed depending on whether the scalar curvature van-
ishes or not. We showed that Brinkmann waves are critical for the functional
determined by the L2-norm of the scalar curvature if and only if the scalar curva-
ture vanishes. If the scalar curvature is zero, then a Brinkmann wave is critical for
a quadratic curvature functional Ft if and only if it is critical for all quadratic func-
tionals simultaneously. We emphasize that these metrics, which are given explicitly
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in Theorem 3.2, are not necessarily Ricci flat nor pp-waves. Generically they have
three-step nilpotent Ricci operator.

A Brinkmann wave with non-zero scalar curvature is critical for a quadratic
curvature functional if and only if it is critical for Ft with t ∈ {− 1

4 ,−
1
3 ,−

1
2}.

The quadratic functionals F−1/4, F−1/3, and F−1/2 behave differently, and there
exist Brinkmann waves which are critical for F−1/4, F−1/3, or F−1/2 without being
critical for any other quadratic curvature functional. A explicit description of these
metrics is given in Theorem 4.2, Theorem 4.1, and Theorem 4.4, respectively.

It is shown that if a Brinkmann wave with non-zero constant scalar curvature
is critical for some quadratic curvature functional, then it is F−1/2-critical. More-
over we show that any two-dimensional Brinkmann wave may be embedded as
a totally geodesic hypersurface in a three-dimensional Brinkmann wave which is
F−1/2-critical.

As an application of these results we construct new explicit solutions in mas-
sive gravity theories. Firstly, we show that Brinkmann wave solutions of topo-
logically massive gravity have vanishing scalar curvature and they reduce to the
examples found in the work of Siampos and Spindel [24]. Secondly, we determine
all Brinkmann waves which provide solutions to new massive gravity, i.e., critical
metrics for the functional SNMG = SEH − 1

m2F−3/8. The scalar curvature is nec-
essarily constant and we obtain the solutions in [24] if it vanishes (these solutions
are critical for the L2-norm of the scalar curvature). In the case of non-zero scalar
curvature, Theorem 6.3 provides new explicit solutions which are critical for the
functional F−1/2.
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