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Abstract. On a smooth metric measure spacetime (M, g, e−fdvolg), we de-

fine a weighted Einstein tensor. It is given in terms of the Bakry-Émery Ricci
tensor as a tensor which is symmetric, divergence-free, concomitant of the

metric and the density function. We consider the associated vacuum weighted

Einstein field equations and show that isotropic solutions have nilpotent Ricci
operator. Moreover, the underlying manifold is a Brinkmann wave if it is 2-

step nilpotent and a Kundt spacetime if it is 3-step nilpotent. More specific

results are obtained in dimension 3, where all isotropic solutions are given in
local coordinates as plane waves or Kundt spacetimes.

1. Introduction

Spacetimes can be generalized by introducing a density function f that gives rise
to a smooth metric measure space (M, g, e−fdvolg). The influence of the density

on the geometry of the manifold is expressed in terms of the Bakry-Émery Ricci
tensor, which is defined as

(1) ρf = ρ+ Hesf −µdf ⊗ df

where ρ is the Ricci tensor, f is a smooth function on M , Hesf is the Hessian of f
and µ is a constant. Note that, if f is constant, then one recovers the usual Ricci
tensor. The Bakry-Émery Ricci tensor has been extensively studied, especially in
the Riemannian setting (we refer to [28] and references therein for some geometric
properties). Although it was introduced in relation to diffusion processes [1], it
gave rise to the notion of quasi-Einstein manifolds (see, for example, [10, 11, 12] for
some results in Riemannian signature and [7] in Lorentzian signature). This tensor
also appears in Riemannian signature linked to the study of the static perfect fluid
equation [24].

The Bakry-Émery Ricci tensor is an essential object in smooth metric measure
spacetimes and, in a certain sense, it plays a substituting role of the usual Ricci
tensor. An example of this are scalar—tensor gravitational theories, in particular
when the Jordan frame replaces the Einstein frame to be used as conformal gauge.
For instance, in this context, in the Brans-Dicke family of theories the density
function is taken as a scalar field non-minimally coupled to the metric tensor in the
Einstein frame [39].

An extension of previous results to the framework of smooth metric measure
spaces was given by Case [13] and Woolgar and Wylie [40], who stated new ver-
sions of the singularity and the timelike splitting theorems in terms of the Bakry-
Émery Ricci tensor. Moreover, Rupert and Woolgar [36] explored the extension of
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Émery Ricci tensor, Kundt spacetime, Brinkmann wave, pp-wave, plane wave.
Supported by projects PID2019-105138GB-C21/AEI/10.13039/ 501100011033 (Spain) and

ED431C 2019/10 (Xunta de Galicia, Spain).

1

This Accepted Manuscript is available for reuse under a CC BY-NC-ND licence after the 12 month embargo 
period provided that all the terms of the licence are adhered to.

How to cite: 
Brozos-Vázquez, M., Mojón-Álvarez, D., 2022. Vacuum Einstein field equations in smooth metric measure 
spaces: the isotropic case. Class. Quantum Grav. 39, 135013. https://doi.org/10.1088/1361-6382/ac72e9 

https://doi.org/10.1088/1361-6382/ac72e9
https://creativecommons.org/licenses/by-nc-nd/4.0/


2 M. BROZOS-VÁZQUEZ, D. MOJÓN-ÁLVAREZ

analogues of theorems from black holes in General Relativity by imposing energy
conditions on this tensor and the density function f .

The Einstein tensor on a spacetime (M, g) is symmetric, divergence-free, con-
comitant of the metric tensor g and its first two derivatives and linear in the second
derivatives of g. Moreover, Lovelock [29] showed that, in dimension four, these
properties essentially characterize the Einstein tensor as G = ρ+

(
Λ− τ

2

)
g, where

Λ is a constant. Our first objective is to define a tensor on a smooth metric measure
space that suitably generalizes the Einstein tensor while also satisfying analogous
characterizing properties. In other words, we want to define field equations sim-
ilar to those found in scalar-tensor gravitational theories, making use only of the
Bakry-Émery Ricci tensor and the characterizing properties of G.

1.1. A weighted analogue of the Einstein tensor. From (1), consider µ = 1

and the positive function h = e−f to rewrite a Bakry-Émery Ricci tensor as follows:

ρh = ρ− Hesh
h

.

The particular choice µ = 1 is motivated by the properties we will obtain for the
new tensor that we are going to define, but is also justified by geometric reasons
(see Remark 1.2 and Corollary 3.4 below). Since a generalization of the Einstein
tensor must be concomitant of the metric tensor, we shall allow a summand which
is a multiple of g. Thus, we shall consider a tensor of the form ρh + λg, where λ is
a function on M . A linearization of this tensor results in

Gh = hρ−Hesh +λhg.

Let Ric denote the Ricci operator (ρ(X,Y ) = g(RicX,Y )) and let τ denote the
scalar curvature. Einstein manifolds have constant scalar curvature and we will
show (see Lemma 1.1 below) that the weighted analog that we are going to de-
fine also has this property. Hence, we assume that τ is constant to compute the
divergence of Gh:

div(Gh) = div(hρ)− div Hesh + div(λhg)

= h div ρ+ ι∇hρ− d∆h− ι∇hρ+ d(λh)

= 1
2h dτ − d∆h+ d(λh)

= d(λh−∆h),

where ι denotes the interior product, ιXρ = ρ(X, ·), and we have used the contracted
Bianchi identity div ρ = 1

2dτ and the Bochner formula div Hesh = d∆h + ι∇hρ.

Thus, for Gh to be divergence-free if τ is constant, we get that λh = ∆h+Λ, where
Λ plays the role of a cosmological constant. Consequently, we define a weighted
Einstein tensor on a smooth metric measure space (M, g, h dvolg) by

(2) Gh = hρ−Hesh +(∆h+ Λ)g,

as a symmetric, divergence-free tensor, concomitant of the metric g and the pos-
itive density h and their first two derivatives. Moreover, understanding Λ as a
cosmological constant, the remaining tensor hρ−Hesh +∆hg is linear in the func-
tion h. Notice that Gh is a strict generalization of the Einstein tensor, since Gh

is a multiple of G if h is constant and, in particular, Gh = G if h = 1 and τ is
constant. Henceforth we work in a proper smooth metric measure space, therefore
h is assumed to be nowhere constant so that ∇h 6= 0 on any open subset.
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1.2. The vacuum weighted Einstein field equation. From the weighted Ein-
stein tensor, the weighted Einstein field equation is set to be Gh = T , where T is a
stress-energy tensor. In a vacuum setting, we have T = 0, so we define the vacuum
weighted Einstein field equation as Gh = 0, this is

(3) hρ−Hesh +(∆h+ Λ)g = 0.

Equation (3) with Λ = 0 was considered in Riemannian signature in [20] from a
different point of view, as it arises from the linearization of the scalar curvature
function (see Remark 1.2 below). Moreover, it was shown that, for non-constant
h, the scalar curvature of any solution is constant. The argument extends to the
Lorentzian setting and arbitrary Λ as follows (we include details in the interest of
self-containment).

Lemma 1.1. Let (M, g, h dvolg) be a smooth metric measure space that solves the
vacuum weighted Einstein field equation, then the scalar curvature is constant.

Proof. We take the divergence of equation (3) to see, using the Bochner formula and
the contracted Bianchi identity, that 0 = h div ρ+ ι∇hρ− div Hesh +d∆h = 1

2h dτ .
Hence, since h 6= 0 in every open subset, we conclude that τ is constant. �

Remark 1.2. We shall point out that equation (3) with Λ = 0 is also formally related
to the static perfect fluid equation (see [24, 26]), which is studied in a purely Rie-
mannian context, since it derives from a Lorentzian situation by reducing a timelike
dimension. Moreover, the same equation appears with a different motivation in the
following context. Let Lg be the linearization of the scalar curvature function on a
closed manifold. Its formal L2-adjoint is given by L∗gf = −f Ricg + Hesf −(∆gf)g
(we refer to [2, 4, 20] for details). Considering the space of manifolds with con-
stant scalar curvature, critical metrics for the volume functional admit non-trivial
solutions for the equation L∗gf = κg for κ constant. This analysis was localized to
the case where the metric deformation is supported on the closure of a bounded
domain in [18, 30], defining the V -static spaces.

The causal character of ∇h crucially influences the geometry of solutions to the
Einstein field equation. Depending on the character of ∇h the approach in treating
an equation like (3) is different, as are often distinct the features of the solutions.
In this note we focus on the case in which ∇h is a lightlike vector field. Thus, we fix
notation and say that a smooth metric measure space (M, g, h dvolg) is an isotropic
solution of the vacuum weighted Einstein field equation if (3) is satisfied and ∇h is
lightlike.

1.3. Main results. Our main aim is to characterize isotropic solutions to the vac-
uum weighted Einstein field equation (3), i.e. solutions with lightlike ∇h, and
describe their underlying geometric structure. At first we consider spacetimes of
arbitrary dimension n ≥ 3. We will see that, in general, solutions are realized
on Kundt spacetimes and, in certain cases, on Brinkmann waves. Moreover, the
scalar curvature vanishes and the Ricci operator is nilpotent. We summarize the
description of the geometry of the solutions in terms of the nilpotency of the Ricci
operator as follows.

Theorem 1.3. Let (M, g, h dvolg) be an isotropic solution of the vacuum weighted
Einstein field equation. Then one of the following possibilities holds:

(1) (M, g) is Ricci-flat and Hesh = 0.
(2) The Ricci operator is 2-step nilpotent and (M, g) is a Brinkmann wave.
(3) The Ricci operator is 3-step nilpotent and (M, g) is a Kundt spacetime.
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In dimension three the geometry of the manifold is more rigid than in higher
dimension. This implies, for example, that all Brinkmann waves that are solutions
of (3) are indeed plane waves. Moreover, this rigidity allows us to describe the
geometry of isotropic solutions of the vacuum weighted Einstein field equation in
more detail in local coordinates, together with the explicit expression of the function
h, as follows.

Theorem 1.4. Let (M, g, h dvolg) be a non-flat 3-dimensional isotropic solution of
the vacuum weighted Einstein field equation. Then, the Ricci operator is nilpotent
and one of the following holds:

(1) If Ric is 2-step nilpotent then (M, g) is a plane wave and there exist local
coordinates (u, v, x) such that

(4) g(u, v, x) = dv

(
2du− α′′(v)

α(v)
x2dv

)
+ dx2,

where h(u, v, x) = α(v) is an arbitrary positive function with α′′(v) 6= 0.
(2) If Ric is 3-step nilpotent then (M, g) is a Kundt spacetime and there exist

local coordinates (u, v, x) so that h(u, v, x) = v > 0 and

(5) g(u, v, x) = dv(du+ F (u, v, x)dv +W (u, v, x)dx) + dx2,

where

F (u, v, x) = u2

x2 + γ1(v, x)u+ γ0(v, x),

W (u, v, x) = − 2u
x ,

with γ1(v, x) = α1(v)− 2 log(x)
v and

γ0(v, x) =
x2((log(x)− 2) log(x) + 2)

v2
+
x2α1(v)(1− log(x))

v
+ x2α2(v) + xα3(v),

for arbitrary functions α1, α2 and α3.

1.4. Outline of the paper. In what follows we will analyze the weighted Ein-
stein field equation (3), mainly focusing on the underlying geometric structure of
isotropic solutions. We will show that solutions are characterized by the presence
of a distinguished lightlike vector field, so we begin by recalling some definitions of
spacetimes with this property in Section 2. In Section 3 we obtain the first geomet-
ric consequences of equation (3) and prove Theorem 1.3. Afterwards, in Section 4
we restrict the context to dimension three to classify solutions on pp-waves, pro-
vide some illustrative examples, and prove Theorem 1.4. Finally, in Section 5 we
provide some remarks on 4-dimensional spacetimes: we prove that 4-dimensional
Ricci-flat isotropic solutions are pp-waves; show that the classification result in
three dimensions does not extend to four dimensions by giving an appropriate ex-
ample; and build Ricci-flat 4-dimensional warped products from the solutions given
in Section 4.

2. Families of spacetimes with distinguished lightlike vector field

When considering the vacuum weighted Einstein equation, several families char-
acterized by the presence of a distinguished lightlike vector field play a pivotal
role. In this section we recall some definitions and basic facts about those that will
appear in the subsequent analysis.
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2.1. Kundt spacetimes. Kundt spacetimes are interesting both from a geomet-
rical and a physical point of view. Due to their holonomy structure, Kundt space-
times appear in a number of physical situations. We refer to [15] for a detailed
description of their geometry and to [5] for relations with supersymmetric solutions
of supergravity theories and their role in string theory.

We first work in arbitrary dimension n ≥ 3. For a lightlike vector field V , the
optical scalars of expansion, shear and twist are given, respectively, by

(6) θ =
1

n− 2
∇iV i, σ2 = (∇iV j)∇(iVj) − (n− 2)θ2, ω2 = (∇iV j)∇[iVj],

where parentheses denote symmetrization and brackets denote anti-symmetrization
when placed in the subindices. Kundt spacetimes are characterized by a lightlike
geodesic vector field with zero optical scalars, which means that it is expansion-free,
shear-free and twist-free (see [14, 15, 35]). We also refer to [31] for an alternative
characterization.

For an n-dimensional Kundt spacetime, the metric can be written in appropriate
local coordinates (u, v, x1, . . . , xn−2) as [15, 35]

(7) g = dv

(
2du+ F (u, v, x)dv +

n−2∑
i=1

Wxi(u, v, x)dxi

)
+

n−2∑
i,j=1

gij(v, x)dxidxj ,

where F , Wxi and gij are functions of the specified coordinates.
In dimension three, the geometry of Kundt spacetimes is more rigid than in

higher dimensions. Thus, the presence of an expansion-free lightlike geodesic vector
field guarantees that the spacetime is Kundt, i.e. the vector field automatically
has vanishing optical scalars [14]. In this case, the expression (7) can be further
normalized so that g11 = 1. Thus, the metric can be written in local coordinates
(u, v, x) as

(8) g(u, v, x) = dv(2du+ F (u, v, x)dv +W (u, v, x)dx) + dx2.

2.2. Brinkmann waves. A more specific situation appears when on a Kundt
spacetime the distinguished lightlike geodesic vector field V is recurrent, i.e. ∇XV =
ω(X)⊗V , for a 1-form ω. A spacetime admitting a parallel lightlike line field is said
to be a Brinkmann wave. In general, if the tangent bundle admits an orthogonal
direct sum decomposition into non-degenerate subspaces which are invariant under
the holonomy representation, then the manifold splits as a product [41]. However,
if the holonomy representation admits an invariant subspace where the metric is
degenerate and there are no proper non-degenerate invariant subspaces, then the
holonomy group acts indecomposably (not irreducibly). In this case there is not
such a splitting and Brinkmann waves illustrate these phenomena in Lorentzian
geometry.

Local coordinates given for Kundt spacetimes in (8) can be further specialized
for Brinkmann waves. Thus the metric of a 3-dimensional Brinkmann wave can be
written as

(9) g(u, v, x) = dv (2du+ F (u, v, x)dv) + dx2,

where V = ∂u is lightlike and recurrent. Moreover, if this vector field can be
rescaled to a parallel one, then ∂uF = 0 (see, for example, [27]).

2.3. pp-waves and plane waves. A special family of Brinkmann waves is that of
the so-called pp-waves. These spacetimes appear in a number of special situations
in General Relativity and, in particular, as solutions of the Einstein equations (we
refer to [37] for further details). In arbitrary dimension, pp-waves are Brinkmann
waves which admit a parallel vector field V such that R(V ⊥, V ⊥) = 0. When
particularizing to dimension three, however, the fact that V is recurrent ensures the
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condition R(V ⊥, V ⊥) = 0. Hence, all 3-dimensional Brinkmann waves with parallel
vector field V are pp-waves. Thus, local special coordinates as in (9) characterize
pp-waves if F is a function of v and x.

A pp-wave with transversally parallel curvature tensor (i.e. such that ∇V ⊥R = 0)
is called a plane wave. Again, we refer to [37] for examples of contexts where these
spacetimes play a role, which are numerous. In local coordinates, the metric of
3-dimensional plane waves can be given by (9) where F (u, v, x) = α(v)x2. Notice
that, if α is constant, these metrics correspond to Cahen-Wallach symmetric spaces
[8].

3. The vacuum Einstein field equation in arbitrary dimension

We consider a smooth metric measure space (M, g, h dvolg) of dimension n and
begin by analyzing the vacuum Einstein field equation. Taking traces in (3) we
have

(10) 0 = hτ + (n− 1)∆h+ nΛ,

so ∆h can be given in terms of h, τ and Λ as ∆h = −hτ+nΛ
n−1 . The following result

shows that, for isotropic solutions, ∇h is geodesic and an eigenvector of the Ricci
operator.

Lemma 3.1. Let (M, g, h dvolg) be an isotropic solution to the vacuum weighted

Einstein field equation. Then ∇∇h∇h = 0 and Ric(∇h) = hτ+Λ
(n−1)h∇h.

Proof. Since g(∇h,∇h) = 0, we have

0 = (∇Xg)(∇h,∇h) = −2 Hesh(∇h,X) for all vector fields X.

Hence hesh(∇h) = ∇∇h∇h = 0 and, from equation (3), Ric(∇h) = −∆h+Λ
h ∇h =

hτ+Λ
(n−1)h∇h. �

Let α = hτ+Λ
(n−1)h be the eigenvalue of Ric associated to ∇h. Since ∇h is lightlike

and Ric(∇h) = α∇h, the Ricci operator has real eigenvalues. Moreover, since
the Ricci operator is self-adjoint, there exists a pseudo-orthonormal basis B =
{∇h, U,E1, . . . , En−2} such that g(∇h, U) = g(Ei, Ei) = 1 (other terms of g being
zero) and such that the Ricci operator satisfies Ric(∇h) = α∇h, Ric(U) = ν∇h+
αU +µE1, Ric(E1) = µ∇h+β1E1 and Ric(Ei) = βiEi if i 6= 1 (see [33] for details).

In the next lemma we show that the Ricci operator is indeed nilpotent and,
moreover, the constant Λ and the Laplacian of h vanish.

Lemma 3.2. Let (M, g, h dvolg) be an isotropic solution of the vacuum weighted
Einstein field equation. Then Ric is nilpotent, ∆h = 0 and Λ = 0.

Proof. By Lemma 1.1, the scalar curvature τ is constant. We use the contracted
second Bianchi identity to see that div ρ(∇h) = 1

2dτ(∇h) = 0. Hence we have

(11) 0 = div ρ(∇h) = (∇∇hρ)(U,∇h) + (∇Uρ)(∇h,∇h) +
∑
i

(∇Eiρ)(Ei,∇h).

We compute each of these three terms separately. Note that, since α = hτ+Λ
(n−1)h , we

have ∇h(α) = 0. Also, since ∇∇h∇h = 0 and ρ(∇∇hU,∇h) = αg(∇∇hU,∇h) =
α{∇hg(U,∇h)− g(U,∇∇h∇h)} = 0, we have

(∇∇hρ)(U,∇h) = ∇h(ρ(U,∇h))− ρ(∇∇hU,∇h)− ρ(U,∇∇h∇h) = ∇h(α) = 0.

Since ρ(∇h,∇h) = 0, we see that

(∇Uρ)(∇h,∇h) = U(ρ(∇h,∇h))− 2ρ(∇U∇h,∇h) = −2αg(∇∇h∇h, U) = 0.
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Now, since ρ(Ei,∇h) = 0 for all i, since
∑
i ρ(∇EiEi,∇h) = −α∆h, and since∑

i ρ(Ei,∇Ei∇h) = tr(Ric ◦ hesh), we obtain∑
i

(∇Eiρ)(Ei,∇h) =
∑
i

{Eiρ(Ei,∇h)− ρ(∇EiEi,∇h)− ρ(Ei,∇Ei∇h)}

= α∆h− tr(Ric ◦ hesh).

Hence, from (11) we obtain that

(12) α∆h− tr(Ric ◦ hesh) = 0.

Now we set hesh(E1) = ?∇h + γ1E1 and hesh(Ei) = γiEi for i ≥ 2. From (3) we
have

0 = Gh(∇h, U) = hα+ ∆h+ Λ,
0 = Gh(Ei, Ei) = hβi − γi + ∆h+ Λ,

so γi = h(βi − α). Hence, from equation (12) we have

0 = α
∑
i

γi −
∑
i

βiγi =
∑
i

γi(α− βi) = −
∑
i

γ2
i

h
.

This implies γi = 0 for all i, and therefore ∆h = 0. Moreover, βi = α for all i.
Now, from (10) we get that hτ +nΛ = 0. Since τ and Λ are constant, but h is not,
we conclude τ = Λ = 0. Furthermore, βi = hτ+Λ

(n−1)h = 0 and Ric is nilpotent. �

Remark 3.3. Due to Lemma 3.2, if a solution to the vacuum weighted Einstein
field equation is isotropic, then Λ = 0. This implication does not hold if ∇h is not
lightlike.

If we consider an n-dimensional Einstein manifold (M, g), with ρ = τ
ng, that

satisfies equation (3), then

Hesh =

(
hτ

n
+ ∆h+ Λ

)
g.

Notice that solutions to this equation are necessarily solutions of the local Möbius
equation Hesh = ∆h

n g (see [34, 38]), which provide conformal changes of Einstein
metrics that are also Einstein. We refer to [25] for a survey of this topic in pseudo-
Riemannian geometry. Also, the local Möbius equation was applied to give the
warped product structure of a Schwarzschild space-time in [19].

For illustrative purposes, since 3-dimensional Einstein manifolds have constant
sectional curvature, one can solve the local Möbius equation on the de Sitter and
the Anti-de-Sitter spacetimes of dimension three to provide simple examples of
solutions of (3) with Λ 6= 0 as follows:

(1) We consider de Sitter space with coordinates (x, y, z) and metric

gdS = κ2
(
− cos2 ydx2 + dy2 + sin2 ydz2

)
.

The scalar curvature is given by τ = 6
κ2 . A direct calculation shows that a

function of the form h(x, y, z) = −κ
2Λ
2 +sin(y)(c1 cos(z)+c2 sin(z)) gives so-

lutions to the vacuum weighted Einstein equation for constants c1, c2. Since
‖∇h‖2 = 1

κ2

(
cos2(y) (c2 sin(z) + c1 cos(z)) 2 + (c2 cos(z)− c1 sin(z)) 2

)
≥

0, the gradient of h is spacelike or lightlike. In conclusion, there exist
local solutions of (3) for arbitrary Λ.

Moreover, notice that a conformal change of the form h−2gdS corre-
sponds to a constant sectional curvature metric with scalar curvature τ =

3
2κ2

(
κ4Λ2 − 4c21 − 4c22

)
.
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(2) We consider the Anti-de Sitter space with coordinates (x, y, z) and metric

gAdS = κ2
(
− cosh2 ydx2 + dy2 + sinh2 ydz2

)
.

The scalar curvature is given by τ = − 6
κ2 . Functions of the form h(x, y, z) =

κ2Λ
2 + sinh(y)(c1 cos(z) + c2 sin(z)) provide solutions to (3) for constants

c1 and c2. Note that the gradient of h is always spacelike, since ‖∇h‖2 =
1
κ2

(
cosh2(y) (c2 sin(z) + c1 cos(z)) 2 + (c2 cos(z)− c1 sin(z)) 2

)
> 0. There-

fore, there are solutions with spacelike ∇h for arbitrary Λ.
Moreover, the conformal metric h−2gAdS corresponds again to Anti-de

Sitter space with negative scalar curvature τ = − 3
2κ2

(
κ4Λ2 + 4c21 + 4c22

)
.

Now, we continue the analysis of isotropic solutions to the vacuum weighted
Einstein field equation. As a consequence of Lemma 3.2 we have that τ = 0,
∆h = 0 and Λ = 0, so equation (3) reduces to

(13) hρ = Hesh .

Notice that this equation is linear in the function h. A more general version of (13)
was considered in [6] for affine manifolds.

Proof of Theorem 1.3. We keep working in the pseudo-orthonormal basis B
where, as a consequence of Lemma 3.2, the Ricci operator acts as follows:

Ric(∇h) = Ric(Ei) = 0, for i = 2, . . . , n− 2,

Ric(U) = ν∇h+ µE1, Ric(E1) = µ∇h.

We distinguish three cases: Ric is zero (µ = ν = 0), Ric is 2-step nilpotent (ν 6= 0
and µ = 0) and Ric is 3-step nilpotent (µ 6= 0).

If the manifold is Ricci-flat, µ = ν = 0, then equation (13) reduces to Hesh = 0.
Hence ∇h is a parallel vector field, so the manifold is a Ricci-flat Brinkmann wave
with parallel vector field ∇h. This proves Theorem 1.3 (1).

If ν 6= 0 and µ = 0, then the Ricci operator and, by (13), the Hessian operator
are 2-step nilpotent. We have ∇∇h∇h = ∇Ei∇h = 0 for all i = 1, . . . , n− 2, while
∇U∇h = hν∇h, so ∇h is a lightlike recurrent vector field and the manifold is a
Brinkmann wave. Theorem 1.3 (2) follows.

If µ 6= 0, then the Ricci and the Hessian operator are 3-step nilpotent. We
already know, by Lemma 3.1, that the lightlike vector field ∇h is geodesic. We
analyze the optical scalars (6) for ∇h. Because ∇h is a gradient, it is twist-free
(ω2 = 0). Moreover, we check that

θ =
1

n− 2
∇iV i =

1

n− 2
∆h = 0,

as a consequence of Lemma 3.2. Since hesh is nilpotent and θ = 0, ∇h is also
shear-free:

σ2 = ||Hesh ||2 − (n− 2)θ2 = 0.

Hence, ∇h is a lightlike geodesic vector field with vanishing optical scalars, so we
conclude that (M, g) is a Kundt spacetime. This proves Theorem 1.3 (3). �

The Ricci tensor of a warped product of the form N ×f I, where N is n-
dimensional and I ⊂ R is a real interval, is given by [33]:

ρ(X,Y ) = ρN (X,Y )− 1

f
Hesf (X,Y ), ρ(X, ∂t) = 0, ρ(∂t, ∂t) = −∆ff,

where X,Y are vector fields tangent to N , t is a coordinate parameterizing I by
arc length, and ρN is the Ricci tensor of N . Necessary and sufficient conditions for
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a warped product N ×f I to be Einstein follow:

ρN − 1

f
Hesf = λgN ,(14)

−∆f = λf,(15)

where λ is constant. By replacing λ in equation (14) one gets fρN−Hesf +∆fgN =
0, which corresponds to equation (3) with Λ = 0. Thus, for any Einstein warped
product N ×f I, the smooth metric measure space (N, gN , f dvolg) is a solution of
the vacuum weighted Einstein field equation (3) with Λ = 0.

As a consequence of the results in Section 3, isotropic solutions to the vacuum
weighted Einstein field equation satisfy ∆h = 0 and Λ = 0. Hence we obtain the
following consequence.

Corollary 3.4. A smooth metric measure space (N, g, h dvolg) with isotropic den-
sity h is a solution to the vacuum weighted Einstein field equation (3) if and only
if N ×h R is Einstein. Furthermore, in this case N ×h R is Ricci-flat.

4. The vacuum Einstein field equation in dimension three

4.1. pp-waves. We begin this section by classifying solutions to the vacuum Ein-
stein field equation with the underlying structure of a pp-wave.

Theorem 4.1. Let (M, g) be a 3-dimensional pp-wave. If (M, g, h dvolg) is a non-
flat solution of (3), then Λ = 0 and one of the following possibilities holds:

(1) ∇h is lightlike and (M, g) is a plane wave which in local coordinates can be
written as

g(u, v, x) = dv

(
2du− α′′(v)

α(v)
x2dv

)
+ dx2

where h(u, v, x) = α(v) is an arbitrary positive function with α′′(v) 6= 0.
(2) ∇h is spacelike and (M, g) can be written in local coordinates as in (9) with

F (v, x) =
(γ1α(v) + 2γ0(v)γ′′0 (v)) log(γ0(v) + γ1x)

γ2
1

− 2xγ′′0 (v)

γ1
+ β(v),

where h(u, v, x) = γ1x + γ0(v), γ1 ∈ R\{0}, and γ0, α, β are arbitrary
functions such that γ1α(v) + 2γ0(v)γ′′0 (v) 6= 0 and γ1x+ γ0(v) > 0.

Proof. Since (M, g) is a pp-wave, there exist local coordinates so that the metric is
given by (9) where F (u, v, x) = F (v, x). Thus, we compute the expression of Gh:

Gh(∂u, ∂u) = −∂2
uh, G

h(∂x, ∂x) = Λ + 2∂u∂vh− F∂2
uh, G

h(∂u, ∂x) = −∂u∂xh,

Gh(∂v, ∂v) = F
(
−F∂2

uh+ ∂2
xh+ 2∂u∂vh+ Λ

)
+

∂vF∂uh−∂xF∂xh−2∂2
vh−h∂

2
xF

2 ,

Gh(∂v, ∂x) = −∂v∂xh+ ∂xF∂uh
2 , Gh(∂u, ∂v) = Λ + ∂2

xh+ ∂u∂vh− F∂2
uh.

From Gh(∂u, ∂u) = Gh(∂u, ∂x) = 0 we get that h(u, v, x) = h1(v)u+h0(v, x). Now,
from Gh(∂x, ∂x) = Λ + 2h′1(v) = 0, we get that h1(v) = −Λ

2 v + k for a constant k.

From Gh(∂u, ∂v) = Λ + h′1(v) + ∂2
xh0(v, x) = 0, the function h reduces to the form

h(u, v, x) =
(
−Λ

2 v + k
)
u− Λ

4 x
2 + h01(v)x+ h00(v).

If we differentiate Gh(∂v, ∂x) = −h′01(v)+ 1
4 (2k − vΛ) ∂xF (v, x) = 0 with respect

to x, we obtain 1
4 (2k − vΛ) ∂2

xF (v, x) = 0. If ∂2
xF (v, x) = 0 then the manifold is

Ricci flat and, hence, flat. Therefore, we conclude that Λ = k = 0 and Gh(∂v, ∂x) =
−h′01(v) = 0, so h01 is indeed constant. The function h reduces to h(u, v, x) =
h01x+ h00(v), with ∇h = h′00(v)∂u + h01∂x and ‖∇h‖2 = h2

01.
We analyze separately the isotropic case (∇h is lightlike: h01 = 0) and the

non-isotropic case (∇h is spacelike: h01 6= 0). If h01 = 0, then the only non-
vanishing component of Gh is Gh(∂v, ∂v) = −h′′00(v) − 1

2h00(v)∂2
xF (v, x). From
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Gh = 0 we obtain that F (v, x) is a polynomial of degree two of the form F (v, x) =

−h
′′
00(v)
h00(v)x

2+F1(v)x+F0(v) with h′′00(v) 6= 0, otherwise the manifold is flat. Therefore

g is a plane wave and F can be further normalized so that F (v, x) = −h
′′
00(v)
h00(v)x

2

(see, for example, [27]). This corresponds to Assertion (1).
We assume now that ∇h is spacelike, i.e. h01 6= 0. There is only one remaining

nonzero term of Gh:

Gh(∂v, ∂v) =
1

2

(
−∂2

xF (v, x)(h00(v) + h01x)− h01∂xF (v, x)− 2h′′00(v)
)
.

We solve Gh(∂v, ∂v) = 0 to obtain the form of F in terms of γ0(v) = h00(v) and
γ1 = h01 as given in Assertion (2). �

4.2. Brinkmann waves. It was shown in Theorem 1.3 that Brinkmann waves
play a role when the Ricci operator is 2-step nilpotent. We now show that all
3-dimensional isotropic solutions in this case are indeed plane waves.

Proof of Theorem 1.4(1). We assume that the Ricci operator is 2-step nilpotent.
By Theorem 1.3, (M, g) is a Brinkmann wave where ∇h is a recurrent vector field.
In dimension three, the fact that the Ricci operator is 2-step nilpotent ensures that
the Brinkmann wave admits a parallel null vector field (see [27]) and the manifold
is a pp-wave. Now the result follows from Theorem 4.1 (1). �

Remark 4.2. Notice that, as a consequence of Theorem 1.4 (1), for any function h(v)
with h′′(v) 6= 0 there always exists a plane wave (M, gpw) so that (M, gpw, h dvolgpw)
is an isotropic solution to the vacuum weighted Einstein field equation (3).

Among plane waves metrics, given by expression (9) with F (v, x) = α(v)x2,
there are two families that are locally homogeneous [21]:

(1) The family Pc, defined by F (v, x) = −β(v)x2 with β′ = cβ3/2 for a constant
c and β > 0.

(2) The family of Cahen-Wallach symmetric spaces CWε, defined by F (v, x) =
εx2.

Since solutions in Theorem 1.4 (1) are of the form F (v, x) = −α
′′(v)
α(v) x

2, we have

the following:

(1) Metrics in (9) with F (v, x) = − 4
c2v2x

2 belong to the family Pc and, for

h(u, v, x) = a1(cv)
c−
√
c2+16
2c + a2(cv)

c+
√
c2+16
2c , are homogeneous solutions to

the vacuum weighted Einstein field equation (3). These metrics show null
singularities and are geodesically incomplete (we refer to [3] for details).

(2) For h(u, v, x) = b1e
v
√
ε+b2e

−v
√
ε, if ε > 0, and for h(u, v, x) = b1 cos

(
v
√
−ε
)

+b2 sin
(
v
√
−ε
)
, if ε < 0, Cahen-Wallach spaces CWε are solutions to the

vacuum weighted Einstein field equation (3). Moreover, these metrics are
geodesically complete (see [3, 9]). Also, for appropriate h > 0 one has
Hesh 6= 0, so there exist global solutions to (3).

Remark 4.3. We analyze isotropic solutions to the vacuum weighted Einstein field
equation (3) with a Brinkmann wave as a background metric by considering local co-
ordinates as in (9). By Lemma 3.2, we have Λ = τ = ∆h = 0. The scalar curvature
takes the form τ = ∂2

uF (u, v, x), thus we obtain F (u, v, x) = F1(v, x)u + F0(v, x).
With this reduction, the only nonzero component of the square of the Ricci operator
is Ric2(∂v) = 1

4 (∂xF1)
2
∂u. A direct calculation shows Gh(∂u, ∂u) = −∂2

uh(u, v, x)

and Gh(∂u, ∂x) = −∂u∂xh(u, v, x) and, from Gh(∂u, ∂u) = Gh(∂u, ∂x) = 0, we
get that h(u, v, x) = h1(v)u + h0(v, x). We differentiate the term Gh(∂x, ∂x) =
−h1(v)F1(v, x) + 2h′1(v) with respect to x to see that h1(v)∂xF1(v, x) = 0. Hence
h1 = 0 or ∂xF1(v, x) = 0.
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If h1(v) = 0, then h(u, v, x) = h0(v, x) and 0 = ‖∇h‖2 = (∂xh0(v, x))
2
, so

the density function reduces to h(u, v, x) = h00(v) > 0. Now, we compute 0 =
Gh(∂v, ∂x) = 1

2h00(v)∂xF1(v, x) to obtain that in any case ∂xF1(v, x) = 0. This
condition yields F1(v, x) = F1(v) and (M, g) is at most 2-step nilpotent. It now
follows that the manifold is a pp-wave (see, for example, [27]). Hence, from Theo-
rem 4.1, we conclude the following:

If (M, g, h dvolg) is an isotropic solution to the vacuum weighted
Einstein field equation with (M, g) a 3-dimensional Brinkmann wave,
then (M, g) is a plane wave as described in Theorem 1.4 (1).

Moreover, notice that none of the Kundt spacetimes in Theorem 1.4 (2) are Brinkmann
waves, since they are isotropic solutions with 3-step nilpotent Ricci operator.

In the cases where ∇h is not lightlike, however, we observe a loss of rigidity
in the underlying manifold. Indeed, there exist non-isotropic solutions which are
Brinkmann waves but not pp-waves. The following example illustrates this fact.

Example 4.4. Let (M, g) be a Brinkmann wave with metric given by (9) where

F (v, x) =

(
4uv − x2

)
log(vx) + x2

2v2
.

The Ricci operator is given by

Ric(∂u) = 0, Ric(∂v) =
4uv + 2x2 log(vx) + x2

4v2x2
∂u +

1

vx
∂x, Ric(∂x) =

1

vx
∂u,

so it is 3-step nilpotent and, thus, it is not a pp-wave. A straightforward calculation
shows that, for h(u, v, x) = vx and Λ = 0, (M, g, h) is a solution of equation (3).
Moreover, ∇h = x∂u + v∂x, so ‖∇h‖2 = v2 and ∇h is spacelike.

As a consequence of Lemma 3.2, all isotropic solutions to the vacuum weighted
Einstein equation (3) have vanishing scalar curvature. However, this is not neces-
sarily the case if ∇h is not lightlike, as the following examples of Brinkmann waves
show.

Example 4.5. We consider κ 6= 0 and define the following examples:

(1) For κ > 0, let g be a Brinkmann metric defined by (9) with

F (u, v, x) =
u2κ

2
+ α(v)

(
u+ 2

√
2

κ
arctanh

(
tan

(
x
√
κ

2
√

2

)))
.

Then the scalar curvature is τ = κ and the manifold satisfies equation (3)
for h(u, v, x) = cos

(
x
√

κ
2

)
and Λ = 0. Moreover,

∇h = −
√
κ

2
sin

(
x

√
κ

2

)
∂x and ‖∇h‖ =

1

2
κ sin2

(
x

√
κ

2

)
> 0,

so the vector field ∇h is spacelike, since ∇h 6= 0.
(2) For κ < 0, let g be a Brinkmann metric defined by (9) with

F (u, v, x) =
u2κ

2
+

√
2

−κ
α(v)e

− x
√
−κ√
2 .

Then the scalar curvature is τ = κ and the manifold satisfies equation (3)

for h(u, v, x) = e
√
−κ
2 x and Λ = 0. Moreover,

∇h =

√
−κ
2
e
√
−κ
2 x∂x and ‖∇h‖ = −1

2
κe
√
−2κx > 0,

so the vector field ∇h is globally defined and it is spacelike.
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In conclusion, any constant scalar curvature τ is realizable by a solution of the
vacuum Einstein field equation (3) with vanishing cosmological constant and a
Brinkmann wave as a background metric.

4.3. Kundt spacetimes. We consider a 3-dimensional Kundt spacetime and work
with a metric given in local coordinates as in (8).

Lemma 4.6. Let (M, g) be a 3-dimensional Kundt spacetime with lightlike geodesic
and expansion-free vector field V . If Ric(V ) = 0 and τ = 0 then there exist local
coordinates (u, v, x) such that g is of the form given in (8) with

(16)
F (u, v, x) = u2

x2 + γ1(v, x)u+ γ0(v, x),

W (u, v, x) = − 2u
x .

Proof. We consider the form of the metric given in (8), where V = ∂u. A direct
calculation shows that

Ric(V ) =
1

2

(
∂2
uF − ∂uW 2 + ∂u∂xW − 2W∂2

uW
)
∂u +

1

2
∂2
uW∂x.

Hence, since Ric(V ) = 0, we have that ∂2
uW = 0, so W (u, v, x) = ω1(v, x)u +

ω0(v, x). Now, Ric(V ) = 1
2

(
∂2
uF + ∂xω1 − ω2

1

)
∂u and τ = ∂2

uF + 2∂xω1 − 3
2ω

2
1 .

From these relations we obtain that 2∂xω1 − ω2
1 = 0 and, solving this differential

equation, we obtain ω1(v, x) = − 2
x+ϕ(v) . Moreover, since ∂2

uF = ω2
1−∂xω1 = ∂xω1,

we get that F (u, v, x) = u2

(x+ϕ(v))2 + γ1(v, x)u+ γ0(v, x).

Appropriate changes of coordinates allow us to simplify the form of the functions
F and W as follows. We refer to [14] for changes of coordinates of 3-dimensional
Kundt spacetimes with functions F and W which are polynomial of degrees 3
and 2, respectively, in the variable u; and to [35] for changes of coordinates in
a broader context. Firstly, by setting (u, v, x) = (ũ, ṽ, x̃ + ϕ(ṽ)) one can write

F (u, v, x) = u2

x2 +γ1(v, x)u+γ0(v, x) and W (u, v, x) = − 2u
x +ω0(v, x). Moreover, a

new change of the form (u, v, x) = (ũ+ψ(ṽ, x̃), ṽ, x̃) for ψ(ṽ, x̃) solving the equation
ω0 + ω1ψ + ∂x̃ψ = 0 transforms W into a function of the form given above. �

Proof of Theorem 1.4(2). Let (M, g, h dvolg) an isotropic solution of (3). If
the Ricci operator is 3-step nilpotent then, by Theorem 1.3, (M, g) is a Kundt
spacetime where ∇h is the distinguished null geodesic expansion-free vector field.
Hence, there exist coordinates (u, v, x) as in (8) with ∇h = ∂u. For a general
function h(u, v, x) we compute

∇h(u, v, x) =
((
ω2 − F

)
∂uh− ω∂xh+ ∂vh

)
∂u + ∂uh ∂v + (∂xh− ω∂uh) ∂x

to see that ∇h = ∂u if and only if h(u, v, x) = v + κ, where κ is a constant. We
normalize the variable v and consider h(u, v, x) = v. Now, based on Lemma 4.6,
we consider F and W given by expression (16). A direct calculation of the tensor
Gh shows that the nonzero components, up to symmetries, are

Gh(∂v, ∂v) = −uvx∂xγ1(v,x)−vx∂xγ0(v,x)+vγ0(v,x)+u
x2

− v∂
2
xγ0(v,x)+uv∂2

xγ1(v,x)+γ1(v,x)
2 ,

Gh(∂v, ∂x) = 1
2v∂xγ1(v, x) + 1

x .

From Gh(∂v, ∂x) = 0 we get that γ1(v, x) = α1(v)− 2 log(x)
v . Now, simplifying and

solving Gh(∂v, ∂v) = 0, we obtain for γ0 the expression in Theorem 1.4 (2). This
completes the proof of Theorem 1.4 (2). �
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Remark 4.7. A spacetime is said to have vanishing scalar invariants (VSI) (re-
spectively, constant scalar invariants (CSI)) if all polynomial scalar invariants con-
structed from the curvature tensor and its covariant derivatives are zero (respec-
tively, constant).

Three-dimensional locally CSI spacetimes were classified in [17], showing that
they are locally homogeneous or a Kundt spacetime. Metrics in Theorem 1.4 (2)
are a subclass of VSI Kundt metrics (cf. [16]).

Remark 4.8. In [2], it was shown that an n-dimensional compact Riemannian man-
ifold which is critical for the Einstein-Hilbert functional, restricted to the space of
metrics with constant scalar curvature and unit volume, satisfies the Critical Point
Equation (CPE):

(f + 1)ρ−Hesf +
(

∆f − τ

n

)
g = 0,

for a certain function f . Since the scalar curvature is assumed to be constant, this
is a divergence-free equation formally similar to equation (3). Besse conjectured
in [2] that the only critical compact Riemannian manifolds are standard spheres.
Since then, a number of papers have provided positive results under some extra
assumptions (see, for example, [23, 32]). A similar analysis to the one performed
in Sections 3 and 4 leads to classification results for solutions of this equation in
the isotropic case if translated to Lorentzian signature. Furthermore, examples of
solutions to this equation can be found among Kundt spacetimes and pp-waves.
Thus, for example, since ∆f = τ = 0 for isotropic solutions, 3-dimensional Cahen-
Wallach symmetric spaces (CWε) provide geodesically complete solutions to the

CPE, which are not Einstein, for f(u, v, x) = c1e
v
√
ε + c2e

−v
√
ε − 1, if ε > 0, and

for f(u, v, x) = c1 cos
(
v
√
−ε
)

+ c2 sin
(
v
√
−ε
)
− 1, if ε < 0 (cf. Remark 4.2).

5. Some remarks on four-dimensional spacetimes

In view of Theorem 1.3, if an isotropic solution to equation (3) is Ricci flat,
then Hesh = 0, so ∇h is a parallel lightlike vector field and the spacetime is a
Brinkmann wave. The Ricci tensor determines the curvature in dimension three,
so Ricci-flat 3-dimensional manifolds are necessarily flat. However, there are 4-
dimensional isotropic solutions which are Ricci-flat but not flat. The following
result shows that all these spacetimes are indeed pp-waves.

Theorem 5.1. Let (M, g, h dvolg) be a 4-dimensional isotropic Ricci-flat solution
of the vacuum weighted Einstein field equation. Then (M, g) is a pp-wave.

Proof. If (M, g, h dvolg) is an isotropic solution of (3) then, from Lemma 3.2, we
have ∆h = 0 and Λ = 0. Since ρ = 0, equation (3) implies Hesh = 0. For arbitrary
vector fields X, Y , Z we have

(17) R(X,Y, Z,∇h) = (∇X Hesh)(Y, Z)− (∇Y Hesh)(X,Z) = 0.

Let B = {∇h, U,E1, E2} be a pseudo-orthonormal basis such that g(∇h, U) =
g(Ei, Ei) = 1 for i = 1, 2. Hence ∇h⊥ = span{∇h,E1, E2}. Due to (17), we have
that R(∇h,Ei) = 0. We check that R(E1, E2) = 0 by computing

0 = ρ(E2, U) = R(E2, U, U,∇h) +R(E2, E1, U,E1) = R(E1, E2, E1, U),

0 = ρ(E1, U) = R(E1, U, U,∇h) +R(E1, E2, U,E2) = −R(E1, E2, E2, U),

0 = ρ(E1, E1) = 2R(E1, U,E1,∇h) +R(E1, E2, E1, E2) = R(E1, E2, E1, E2).

Therefore, (M, g) is a Brinkmann wave with parallel lightlike vector field ∇h such
that R(∇h⊥,∇h⊥) = 0, so (M, g) is a pp-wave. �
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Remark 5.2. A pp-wave of any dimension is given in local coordinates by expression
(7) with ∂uF = 0, Wxi = 0 and gij = δij . The only possibly nonzero component

of its Ricci tensor is ρ(∂v, ∂v) = − 1
2∆̄F , where ∆̄ =

∑
i
∂2

∂x2
i

is the Laplacian with

respect to the flat spatial metric given by gij . Hence, a pp-wave is Ricci-flat if
and only if ∆̄F = 0. In dimension four, as a consequence of Theorem 5.1, the
only Ricci-flat isotropic solutions of the vacuum weighted Einstein field equation
are pp-waves of this type.

On the other hand, setting h(u, v, x) = v in a pp-wave of arbitrary dimension, a
straightforward calculation shows that ∇h = ∂u is lightlike and Hesh = 0. Thus,
any pp-wave with ∆̄F = 0 is a Ricci-flat isotropic solution of the vacuum weighted
Einstein field equation with h(u, v, x) = v.

A natural question that arises in view of Theorem 1.4 is whether an analogous
of assertion (1) holds in higher dimension. The following example shows that, in
general, isotropic solutions in Brinkmann waves to equation (3) do not need to be
pp-waves, even if the Ricci operator is 2-step nilpotent.

Example 5.3. We consider local coordinates (u, v, x1, x2) and the metric given,
up to symmetry, by the following non-vanishing components:

g(∂u, ∂v) = 1, g(∂v, ∂x2) = x1x2 + vx2
2,

g(∂v, ∂v) = (−2vx2 − x1 + 2vx2)u+
−2v2x3

1x2−vx4
1+3vx2

1x
2
2+12vx2

1x2+x3
1

6v .

The function h(u, v, x1, x2) = v has lightlike gradient vector field ∇h = ∂u. A
direct computation shows that this metric and the function h provide a solution to
the vacuum Einstein field equation (3) with Λ = 0.

The vector field ∇h is recurrent, since ∇∇h = −x1

2 dv ⊗ ∇h. Therefore, it is
a Brinkmann wave. Moreover, the Ricci tensor has only one nonzero component:
ρ(∂v, ∂v) = −x1

2v , so it is 2-step nilpotent.

Notice that ∇h⊥ = span{∂u, ∂x1
, ∂x2
}. We check that

R(∂x1 , ∂x2 , ∂v, ∂x2) =
1

2
,

so R(∇h⊥,∇h⊥) 6= 0, which means that the spacetime given by g is not a pp-wave.
Consequently, Theorem 1.4 (1) cannot be extended to higher dimension.

It was pointed out in Corollary 3.4 that isotropic solutions of the vacuum weighted
Einstein field equation give rise to 4-dimensional warped products which are Ricci-
flat. The following are 4-dimensional examples obtained by applying this construc-
tion.

Example 5.4. We adopt notation from Theorem 4.1. Let N1 be the plane wave
given in Theorem 4.1 (1), let h1(u, v, x) = α(v) and let t be the coordinate of R.
The 4-dimensional warped product M1 = N1×h1

R is Ricci-flat and its Weyl tensor
(hence its curvature tensor) is determined, up to symmetries, by the following terms:

W (∂v, ∂x, ∂v, ∂x) =
α′′(v)

α(v)
and W (∂v, ∂t, ∂v, ∂t) = −α(v)α′′(v).

Note that M1 is still a Brinkmann wave with parallel lightlike vector field V = ∂u.
Furthermore, it satisfies the curvature conditions R(V ⊥, V ⊥) = 0 and ∇V ⊥R = 0,
so it is indeed a plane wave.

Let N2 be the pp-wave given in Theorem 4.1 (2) and h2(u, v, x) = γ1x + γ0(v).
Then M2 = N2 ×h2 R is a 4-dimensional Ricci-flat warped product. Moreover, the
Weyl tensor is determined, up to symmetries, by:

W (∂v, ∂x, ∂v, ∂x) =
γ1α(v) + 2γ0(v)γ′′0 (v)

2(γ0(v) + γ1x)2
,W (∂v, ∂t, ∂t, ∂v) = γ0(v)γ′′0 (v)+

γ1α(v)

2
.
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As in the previous example, V = ∂u is still parallel and M2 satisfies R(V ⊥, V ⊥) = 0,
thus retaining the pp-wave character of N2.

We adopt notation from Theorem 1.4 (2). Let N3 be the Kundt spacetime given
by (5) and h3(u, v, x) = v. The 4-dimensional warped product M3 = N3 ×h3 R is a
Ricci-flat Kundt spacetime and its Weyl tensor is given, up to symmetries, by

W (∂u, ∂v, ∂v, ∂x) = − 1
vx , W (∂v, ∂t, ∂v, ∂t) = − 1

2vα1(v)− uv
x2 + log(x),

W (∂v, ∂t, ∂x, ∂t) = v
x , W (∂v, ∂x, ∂v, ∂x) =

vα1(v)− 6uv
x2
−2 log(x)

2v2 .

Since these examples are Ricci flat 4-dimensional manifolds, they are solutions to
the vaccum Einstein field equation. As such, their geometric information is encoded
on the Weyl tensor, so it is convenient to analyze their Petrov type (we refer to
[22, 37] for details). Since M1 and M2 are pp-waves, they are of type N (one
easily checks that ι∂uW = 0). The warped product M3, however, does not satisfy
ιXW = 0 for any vector field X, but ι∂uW = − 1

vx dv ⊗ (dv ∧ dx), therefore it is of
type III (see [22]). All these examples present a repeated principal null direction
spanned by the distinguished lightlike vector field ∂u. This is a common trait of
Ricci-flat Kundt spacetimes, as a consequence of the Goldberg-Sachs theorem (see
[37]).

6. Conclusions

As a generalization of usual spacetimes, smooth metric measure spaces include
a density function that affects their geometry through the Bakry-Émery Ricci ten-
sor. Based on this tensor, we propose a generalization of the Einstein tensor to
this setting as Gh = hρ − Hesh +(∆h + Λ)g (weighted Einstein tensor), where Λ
plays the role of a cosmological constant. Gh preserves the main properties of
being symmetric, concomitant of the metric g, the density function h and their
first two derivatives, and divergence-free (for manifolds with constant scalar cur-
vature). Moreover, the expression of Gh is related to the formal L2-adjoint of the
linearization of the scalar curvature function (Remark 1.2).

The tensor Gh gives rise to the vacuum weighted Einstein field equation Gh = 0,
whose solutions have constant scalar curvature (Lemma 1.1). We concentrate on the
isotropic case, i.e. the case in which the gradient of h is lightlike. Geometric conclu-
sions are obtained and it is shown that isotropic solutions of the vacuum weighted
Einstein field equation are: (i) Brinkmann waves with a parallel gradient vector
field in the Ricci-flat case, (ii) Brinkmann waves if the Ricci operator is two-step
nilpotent, and (iii) Kundt spacetimes if the Ricci operator is three-step nilpotent
(see Theorem 1.3). Moreover, isotropic solutions to the vacuum weighted Einstein
field equation are related to Ricci-flat warped products with one-dimensional fiber
(Corollary 3.4 and Remark 5.4).

More conclusive results are given in dimension three, where all non-flat isotropic
solutions to the vacuum weighted Einstein field equation are described in local
coordinates (Theorem 1.4). They are plane waves if the Ricci operator is two-step
nilpotent and Kundt spacetimes with vanishing scalar invariants (VSI) if the Ricci
operator is three-step nilpotent. Among plane waves, Cahen-Wallach symmetric
spacetimes provide geodesically complete solutions (Remark 4.2).

The introduction of the weighted Einstein field equation opens several avenues
for further research. On the one hand, we have observed a loss of rigidity in the
non-Ricci-flat isotropic solutions of the vacuum weighted Einstein field equation
in dimension four (see Theorem 5.1 and Example 5.3). Although, by Theorem
1.3, we know that these non-Ricci-flat vacuum solutions must be either Brinkmann
waves or the more general Kundt spacetimes, their description in local coordinates,
including the form of their density functions, remains an open question.
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In this work, we have considered the weighted Einstein field equation in vacuum,
so a natural extension of this work would consist in the analysis of the field equation
Gh = T for a non-vanishing, physically reasonable (in terms of energy conditions)
stress-energy tensor T , such as that of a perfect fluid.

In both the vacuum and non-vacuum settings, we anticipate that non-isotropic
solutions will exhibit different geometric features from their isotropic counterparts.
Remark 3.3 and Examples 4.4 and 4.5 illustrate different phenomena for solutions
with spacelike gradient of h, in particular the scalar curvature does not necessar-
ily vanish. The exact nature of these differences remains unknown and deserves
further attention. Remarkably, all the non-isotropic examples in this article have
∇h spacelike. For example, among three-dimensional pp-waves there are no exam-
ples with timelike gradient of h (Theorem 4.1), so one may also expect essential
differences between examples with ∇h timelike and spacelike.

References
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[6] M. Brozos-Vázquez, E. Garćıa-Ŕıo, P. Gilkey and X. Valle-Regueiro, A natural linear equation

in affine geometry: the affine quasi-Einstein equation. Proc. Am. Math. Soc. 146 (8) (2018),
3485–3497.
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