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Decentralized Data-Privacy Preserving
Deep-Learning Approaches for Enhancing
Inter-Database Generalization
in Automatic Sleep Staging

Adriana Anido-Alonso

Abstract—Automatic sleep staging has been an active
field of development. Despite multiple efforts, the area re-
mains a focus of research interest. Indeed, while promising
results have reported in past literature, uptake of automatic
sleep scoring in the clinical setting remains low. One of
the current issues regards the difficulty to generalization
performance results beyond the local testing scenario, i.e.
across data from different clinics. Issues derived from data-
privacy restrictions, that generally apply in the medical
domain, pose additional difficulties in the successful devel-
opment of these methods. We propose the use of several
decentralized deep-learning approaches, namely ensemble
models and federated learning, for robust inter-database
performance generalization and data-privacy preservation
in automatic sleep staging scenario. Specifically, we ex-
plore four ensemble combination strategies (max-voting,
output averaging, size-proportional weighting, and Nelder-
Mead) and present a new federated learning algorithm, so-
called sub-sampled federated stochastic gradient descent
(ssFedSGD). To evaluate generalization capabilities of such
approaches, experimental procedures are carried out us-
ing a leaving-one-database-out direci-transfer scenario on
six independent and heterogeneous public sleep staging
databases. The resulting performance is compared with re-
spect to two baseline approaches involving single-database
and centralized multiple-database derived models. Our re-
sults show that proposed decentralized learning methods
outperform baseline local approaches, and provide simi-
lar generalization results to centralized database-combined
approaches. We conclude that these methods are more
preferable choices, as they come with additional advan-
tages concerning improved scalability, flexible design, and
data-privacy preservation.
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I. INTRODUCTION

N SLEEP Medicine, the polysomnographic (PSG) recording

of the physiological activity of a patient throughout the night
represents the standard tool for the diagnosis of numerous sleep
disorders. Sleep macrostructure characterization, a.k.a. sleep
staging, constitutes one of the most important tasks involved
in the clinical review of the PSG. According to the standard
protocol, the process involves the analysis of various recorded
electroencephalographic (EEG), electrooculographic (EOG),
and electromyographic (EMG) derivations, labeling the corre-
sponding signal activity according to a set of pre-established
visual scoring rules. This process, which takes place on a 30 s
epoch-by-epoch basis, leads to construction of the so-called
hypnogram, i.e. the resulting alternating epoch sequence of five
possible sleep stages (W, N1, N2, N3, and R) throughout the
night [1].

Visual analysis of vast amounts of data contained in the PSG,
however, is complex, which also makes scoring prone to errors
and subjective interpretations. Clinician’s time, in addition, is
expensive and scant. As a consequence, PSG analysis is one of
the most time-consuming and costly tasks in the daily routine of a
sleep center. Introducing automatic scoring to support clinicians
in the sleep staging task, therefore, is interesting. It should
contribute to reduce associated analysis times, enhancing pro-
duction, and reducing the overall associated costs. Furthermore,
expert-supervised automatic scoring has been shown to be able
to improve inter-rater agreement, reducing variability and im-
proving diagnostic quality [2], [3], [4], [5]. For this reason, many
attempts have been made to automatize this process [6], [7],
[8], [9], [10], [11], [12]. However, despite promising evaluation
results reported in many of these works, uptake of automatic
sleep scoring in the clinical setting remains low [13], [14], [15].

Accurate validation of automatic sleep scoring approaches
has been traditionally biased due to limitations related to the
associated benchmark datasets. Data would be scarce and lack
enough heterogeneity, and evaluation would usually involve sin-
gle source datasets relying on widespread train-test partitioning,
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or local k-fold cross-validation. This approach leads to opti-
mistic broad generalization estimation. Effectively, under the
former setting, training and testing data are still gathered from
the same local distribution. However, when the same algorithm
is evaluated on completely external databases (e.g. from another
sleep center) scoring performance drops significantly [16], [17],
[18], [19], [20]. A number of reasons can be mentioned that
contribute to this “database variability problem” in the case of
sleep medicine [18]. These include differences among source
patient populations, recording and/or acquisition methods, or
the aforementioned divergences among clinical experts [3], [5],
[21], [22], [23], [24]. More generally, challenges regarding the
associated domain-shift are well-known in the scope of machine-
learning, leading to related work in the sub-field of “domain
adaption” [25]. Some recent approximations to automatic sleep
staging are indeed focusing on developing ideas in the context
of transfer-learning, i.e. reusing previous parametrization, or
parts of a model, trained on a source dataset, to be fine-tuned
using external independent datasets on a target domain [26],
[271, [28], [291, [301, [31], [32], [33]. Nevertheless, all of the
referenced approaches use more or less data from intermediate
datasets to perform the transfer step. Therefore, the actual gener-
alization capacity of these models on completely unseen target
domains remains uncertain. That we know of, only one study
has considered evaluation of an automatic sleep staging model,
developed using transfer-learning, on an unbiased direct-transfer
scenario [34].

An alternative approach to improve domain adaptation is to
train the model by arranging a large centralized database using
data from different heterogeneous cohorts [35], [36]. This strat-
egy, however, has its own disadvantages, concerning complex
logistics and high demand of resources related to centralization
and learning from all these data. The resulting model, in addition,
becomes inflexible as new data become available through time.
That is, if a new dataset becomes available, any previously de-
rived centralized model would need to be retrained, either com-
pletely from scratch, or by relying on transfer-learning methods.
Regardless, re-learning can be expensive and, eventually, it is ex-
posed to catastrophic forgetting risk [37]. Furthermore, privacy
and ethical problems quickly arise when dealing with potentially
sensitive information, as it is the case in the clinical domain. This
may prevent data exchange between different centers.

In contrast with these methods, decentralized learning strate-
gies represent an interesting alternative to be used in the con-
text of restrictive data-sharing scenarios. One such possibility
is to train machine-learning models locally within each data
source location, and then integrate the resulting models using
an ensemble. Such shows advantages regarding flexibility and
scalability of the design, for which the resulting ensemble can be
easily expanded by adding new local models when new training
data or datasets become available without the need of re-training
from scratch. Furthermore, because each model integrating the
ensemble has been locally developed in the context of its data
source, there is no need of sharing and/or centralizing data from
different centers. Only the resulting local model parameters (i.e.
weights) would need to be shared for their integration in the
final ensemble. Therefore, potential issues due to patient privacy

protection regulations are minimized. This approach has been
explored on a recent work by the authors, with preliminary
results also suggesting that more robust inter-database gener-
alization can be achieved in comparison to individual models
derived from single source datasets [38]. These preliminary re-
sults are reviewed and expanded in this work. More specifically,
in past experimentation, direct comparison to centralized-based
approaches was missing. Moreover, ensemble combination was
only considered by assuming a majority voting strategy.

Alternatively, recent progress in the area of federated learn-
ing is opening interesting new paths of development. More
specifically, the federated approach is based on the idea of
collaboratively training a learning model across multiple par-
ticipating nodes, holding decentralized local samples, without
the necessity of exchanging their data [39]. Instead, individ-
ual client nodes from different geographic locations would
exchange local model parameters or aggregated non-sensitive
information, therefore preventing sensitive raw data from being
directly shared. An interesting property of federated learning,
that contrasts with other distributed learning approaches, is that
it does not assume client data to be mutually independent and
identically distributed (IID) across the participating nodes. This
is a relevant assumption in the clinical setting, where the rep-
resentative patient-phenotype would presumably diverge across
different medical centers. Federated learning has been barely
examined in the context of sleep medicine. That we know of,
only one recent work has considered this approach, nevertheless
in which the corresponding client data were simulated by parti-
tioning one single dataset [40]. As stated before, this approach
involves considerable relaxation of the non-IID assumption,
neither does it allow proper evaluation of actual generalization
capabilities of the proposed solution.

In the light of the above observations, in this work we investi-
gate the use of different decentralized deep-learning approaches
based on the two previously described scenarios, ensemble and
federated learning, and explore their utility in the context of auto-
matic sleep staging. The main objective is to develop predictive
models with robust inter-database generalization capabilities
while, at the same time, overcoming limitations due to exchange
and centralization of sensitive information. As novel contribu-
tion, we expand preliminary work on ensemble learning [38],
[41]. First, by including direct comparison to centralized-based
approaches. Second, by exploring four different ensemble com-
bination strategies, namely max-voting, output averaging, size-
proportional, and Nelder-Mead model weighting approaches. In
addition, we explore the use of federated learning and present a
new variant of the more general federated stochastic gradient de-
scent (FedSGD) approach [42], namely Sub-sampled Federated
SGD (ssFedSGD). Inter-database generalization performance
from each of these methods is examined on a leaving-one-
database-out direct-transfer scenario using six independent and
heterogeneous sleep staging databases collected from public
online repositories. For setting up a baseline for comparative
analysis, the obtained results are also compared against tradi-
tional approaches consisting on training individual models i) on
each of the local datasets, and ii) on the centralized dataset that
results from gathering together data from the individual cohorts.
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Based on the results of our experimentation, we analyze and
discuss the advantages and disadvantages of each of the explored
approaches.

Il. MATERIALS AND METHODS

In this section we describe the two proposed decentralized
learning approaches, ensemble and federated learning, including
the specific explored variants on each case. In addition, we detail
the general deep neural network architecture and the different
sleep staging databases used during experimentation.

A. Ensemble Approach

Ensemble comprises the aggregation of several pre-trained
local model outputs to produce a final prediction. Intending to
expand results from [38], in this work we explore four different
output assembly techniques in order to compare their effective-
ness with respect to local and centralized approaches (in addition
to federated approach, to be described in the next section). More
specifically, the following ensemble combination approaches are
considered:

® Max-voting: each local model integrating the ensemble
selects its output class according to the corresponding
highest softmax activation at its output layer. The final en-
semble prediction corresponds with the most represented
class, that is, the most frequently voted among the models
composing the ensemble.

® Qutput averaging: in contrast with max-voting, this
method averages each of the corresponding output softmax
activations of the models participating in the ensemble,
prior to individual class assignment. The final resulting
prediction corresponds with class associated to the highest
averaged value.

® Size-proportional weighting: under this approach differ-
ent weights ¢; are assigned to each of the models M (7)
integrating the ensemble, proportionally with respect to
the corresponding amount of data contained in their local
datasets (n;). Let us denote N = )" n; the total amount of
virtual data, then c¢; = %#. The respective output softmax
activations are then balanced by multiplying their value
with the corresponding coefficient c;. The output with the
highest score is selected as final predicted class.

® Nelder-Mead: this method uses a weighted combination
of the output softmax activations from each of the models’
integrating the ensemble, similar to the previous method.
Here, in contrast, the Nelder-Mead optimization algo-
rithm [43] is used to find the best possible weights combi-
nation following an iterative process. The loss function of
the corresponding ensemble combination evaluated on an
ancillary (validation) dataset is used as reference for this

purpose.

B. Federated Learning

Federated learning is a machine-learning technique which in-
volves collaborative learning while preserving data-privacy [39].

It applies the General Data Protection Regulation’s (GDPR)
data minimization principle [44], for which the information
transmitted is intended to be the minimal necessary for guiding
the targeted data learning process. In particular, it is assumed
that the exchanged information is always less than the raw
source data, and it does not contain any personal nor potentially
sensitive information. From a general perspective, federated
learning comprises a global model, so-called “server”, which is
successively improved by aggregating parametric information
from multiple decentralized local nodes, so-called “clients”. Let
us consider the general optimization problem to be represented
as:

: 1
min, f(w) = — ;f(—cg,ya,M(w)),
where £(z;, y;; M (w)) denotes the prediction loss on the sample
(z:,y;) of a global model M, that depends on the set of parame-
ters w. If we assume that n data points are distributed across K
decentralized datasets, let us denote Py, as the set of data indexes
within the client k, where & = 1...K, then we can reformulate
the problem in a federated setting as:

: 1o

min, f(w) where f(w) =~ kzzjl ijk (s, yi; M (w)).
Notice, with the above general formulation, we are implicitly
assuming that data can be non-IID, and imbalanced across the
partitioning P. Effectively, several issues might be attended
when considering the optimization of this function collabora-
tively. First, because the non-IID assumption, clients’ particular
distribution may not be representative of the entire population.
Further, as stated, there can be uneven data availability result-
ing in unbalanced datasets. In addition, the server might be
massively distributed, meaning that the number of participant
clients might exceed the amount of corresponding local data.
And last but not least, clients-server communication might be
limited due to temporal unavailability or slow connectivity [42].
Under this setting, the general federated learning workflow,
which is shown in Fig. 1, involves three basic steps repeating
along an iterative process: i) distribution of the current server
state (w;) to the clients, ii) computation of the local update
for each client (6 ), and iii) client parameter aggregation and
server model state update (w;41). In general, O ; = g(Pr; w;),
a certain function over the corresponding set of local data points
and the current server model parameters. Similarly, the exact
aggregation formula needs to be defined leading to different im-
plementation variants of the federated learning algorithm [42],
[45], [46], [47]. Importantly, and regardless of the exact for-
mulation, during the local update step, each client computes its
0x,; independently, using information from its local data source,
but without exchanging raw data with any other client nor the
server. After each cycle, the process starts over with the server
distributing the new updated global state to the participating
clients. The procedure stops when a predefined number of learn-
ing rounds is reached, or certain specific stopping condition is
met.
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Fig. 1. General Federated learning process. The workflow is divided
in t rounds of computation. The current server state (w;) is distributed
to the K clients where the learning process is performed using their
corresponding local datasets (zj). Clients’ updated local parameters
(6} +) are then communicated back to the server, where aggregation and
global model state update (w:+1) takes place. The process continues
until the predefined number of rounds (t) has been reached.

C. Sub-Sampled Federated Stochastic Gradient
Descent (ssFedSGD)

Stochastic gradient descent is the most popular optimization
algorithm in (deep) machine-learning [48]. In the federated
environment, this optimizer leads to the so-called Federated
SGD (FedSGD) algorithm, which applies a single batch gradient
descent calculation per round of communication [42].

More specifically, during the learning process in FedSGD,
each client computes 6y ; = VFy(w;), where:

Z Ui, yi; M (wy)),

aE P

Fi(w) =

with ny = | Py|. That is, 6 ; represents the average gradient on
the local dataset k given the current sever model state w;. In fact:

K K
mn mn
flw) =) —Fe(w) 1 Vi(w) =) —VE(w).
k=1 k=1
The central server thus simply aggregates all the local V F, (wy)
for which, assuming a fixed learning rate (1), the server state
update formula becomes:

Wiy Wi — T?Z —Gk -
k=1

Notice, under this approach, the averaged local gradients are
balanced taking into account the respective amount of data used
at each client.

However, one problem with aforementioned FedSGD base-
line approach concerns the very large amount of rounds needed
for training accurate server models. The associated computation

times, in fact, might become unpractical depending on the spe-
cific type of application, the amount, or the complexity of data
contained on each client [42]. For this reason, many FedSGD
variations are emerging aiming to speed up the learning process,
and cope with instability due to dissimilar local updates, or the
presence of non-1ID data [46], [49], [50], [51], [52].

While the matter remains as an open area of research, in this
work we propose a new variant, namely Sub-sampled Federated
SGD (ssFedSGD) using the above described FedSGD frame-
work as baseline. The main contribution of this method is the use
of an arbitrary fixed-length (n,) sub-sample Sy ;, by uniformly
randomly sampling each client dataset k at the beginning of
each federated training round ¢. Notice, ng = |Sk |, Yk, t, where
k=1...Kandt = 1...mazx_rounds.

Hence, under ssFedSGD, each client locally computes ¢ , =
V F}(w;), where: ,

, 1
Fi(we) = —

8

Z Ui, yis M(wy)),

1€Sy TPy
and the global server state update formula becomes:
X 0,

Wiyl < Wy — ??Zn fo’;n = Wiy & Wr— "?Z
k=1

Notice that, because of using uniform random sub-sampling,
the resulting S}, ; still hold the same data distribution as the orig-
inal P;’s. By selecting the appropriate n, we thus hypothesize
that effective learning can be still achieved at a fraction of the cost
per round, therefore, speeding up the overall learning process in
practice. Moreover, by using a fixed-length sub-sample we en-
sure equal client contribution to the global learning at each step,
irrespective of the total amount of local data. Notice, in contrast,
that in the original FedSGD setting more relative importance is
given to the update resulting from the client with the largest
dataset. Furthermore, we would avoid possible collateral effects
due to disparity of local computation steps among the client
node, in particular, if assuming the use of a common batch size.

D. Deep-Learning Model Architecture

We use a convolutional (CNN) long short-term memory
(LSTM) deep-learning model architecture based on the general
schema proposed in past work [38]. The model was completely
re-implemented in Python (version 3.9.7, Tensorflow 2.7.0)
with some additional modifications regarding elimination of an
artifact removal preprocessing step, and a batch normalization
layer in the operation block, which were included in the original
design. The latter was motivated by new experimental results
in this work showing convergence problems in the federated
scenario. This effect will be further analyzed in the discussion
section. An overview of the resulting architecture can be seen
in Fig. 2. We refer to past work for detailed discussion on the
remaining general architectural design [38].

E. Databases

For testing our methods a heterogeneous dataset comprising
six independent sleep staging databases (DREAMS, Dublin,
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Fig. 2. Preprocessing steps and general CNN-LSTM architecture. The
process is divided in three blocks: preprocessing step, convolutional
step (CNN block) and time-series dependencies (LSTM block).
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Fig. 3. Amount of sleep stages files used by database.

SHHS, Telemetry, ISRUC and HMC) was used. For the sake of
repeatability, all data were collected from public online repos-
itories, digitally encoded using the open EDF(+) format [53].
Fig. 3 summarizes the different number of samples across the
six collected databases and their corresponding class distribu-
tions, which illustrates the presence of size and class imbalance.
Detailed description of each of the databases can be found in
past work [38].

lll. EXPERIMENTAL DESIGN

The experimental design involves the scheduling of four
learning strategies following different local, centralized, and
decentralized methods described in the previous section. The
purpose is to compare the resulting inter-database generalization
performance on the targeted sleep staging prediction task. All
experiments use as reference the set of databases mentioned in
Section II-E, and the deep neural network architecture referred
to in Section II-D. We write TR(z), VAL(x), and TS(xz), to refer

to the respective training, validation, and testing split partitions
resulting from database x. The complete set of data in the
corresponding database is denoted as FULL(x). Likewise, we
denote M(z) to refer to the model derived from (training) data
from dataset =, which can be a single source, or a combination
of several databases, depending on the specific experiment as
described next. Detailed diagrams of the experiments are shown
in Fig. 4.

A. Experiment 1: Local Models

Six different deep-learning models are built. Each M(x) model
is trained using data from one single database, i.e. TR(), using
VAL(z) as the corresponding validation set for implementing
early stopping. Local generalization performance of the result-
ing model is evaluated on TS(x), while the actual (database-
agnostic) external generalization is assessed on all remaining
FULL(2), © # z (Fig. 4(a)).

B. Experiment 2: Centralized Database-Combined
Models

We built six database-combined models, C,, by pooling data
from five out of the six available databases, following a leaving-
one-database-out strategy. In other words, let d be the leaved-out
database, the corresponding C, model is trained using the com-
bined dataset {TR(k), kK = 1...6, k #* d}. Likewise, the same
procedure is followed for arranging the corresponding VAL(z)
and TS(z) datasets to implement early stopping and perform
local evaluation, respectively. Notice, under this approach, all
data but the leaved-out database are locally available. It therefore
represents the baseline for the classical centralized learning
approach towards which distributed ensemble and federated
learning strategies can be compared. Inter-database generaliza-
tion performance is here evaluated on the leaved-out FULL(d)
dataset (Fig. 4(b)).

C. Experiment 3: Ensemble Models

Six ensemble models, E;, are created by combining five
out of the six local models resulting from Experiment 1, thus
using a leaving-one-model-out strategy. Let d be the leaved-out
model, then E; = {M(k), k = 1...6, k # d}. In contrast with
Experiment 2 involving combined models, this approach is
implemented sharing local model’s parameters, not local data.
External performance for each resulting ensemble is again eval-
uated on its corresponding leaved out FULL(d) dataset, of which
data were not used for derivation of any of the M(k) included
in the ensemble. For this purpose the four output assembly
strategies described in Section II-A, namely max-voting, output
averaging, size-proportional weighting, and Nelder-Mead, are
tested and compared (Fig. 4(c)).

D. Experiment 4: Federated Models

We build six different servers, F;, using the described feder-
ated learning approach. As in Experiments 2 and 3, each F, takes
as reference five out of the six gathered databases, leaving one
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Fig. 4. Diagram of the experimental design. Figures are divided in two panels depending on the performance evaluation location: local (dashed-
blue panel) and external (blue-colored panel). (a) Experiment 1: Local models. Local models M (z) are built using T R(z) and V A L(x) datasets split
from database source z. Local T'S(z) is used for local generalization evaluation. The remaining databases, other than z are used for evaluation
of external generalization performance. (b) Experiment 2: Centralized database-combined models. TR and VAL datasets are combined using a
leave-one-database-out strategy into a central larger and single dataset. Resulting combined-datasets are then used to train the model C'x while
the discarded database d is used to perform external evaluation. (c) Experiment 3: Ensemble models. Local models )M (x) are assembled using a
leave-one-database-out strategy. On each case the excluded database d is used to evaluate generalization capability. Output activations of each
model integrating the ensemble, which correspond to the five sleep stages, are combined for calculation of the final ensemble classification. We
explore four approaches namely max-voting, output averaging, size-proportional weighting and Nelder-Mead weight optimization. (d) Experiment 4:
federated models. As well as in the other experiments, each federated model is built using a leave-one-database-out strategy. Databases included
in federated model, are used as an independent clients where ssFedSGD is used to perform local gradient calculations and server model integration

during t rounds. Resulting federated models are tested on the corresponding leaved-out d databases.

out for the purpose of evaluating the corresponding external gen-
eralization performance. In order to simulate the federated envi-
ronment, each of the five used databases is distributed and treated
separately as one independent client. Hence, each client k, k # d
corresponds to one database and uses its own TR(k) dataset to
perform the local update step. The proposed ssFedSGD learning
algorithm, described in Section II-C, is then used training and
deriving the corresponding global model. Early stopping is here
implemented using as reference the aggregated performance of
the corresponding clients’ local validation partitions. For this
purpose, each client k locally evaluates its performance on
the corresponding VAL(k) dataset using the last communicated
server’s state. The result is then sent back to the server which,
in the general FedSGD scenario, averages the individual client’s

validation performances proportionally to the respective number
of local data samples nj. Notice that in the context of ss-
FedSGD equal weighting resultsas ny = | Sk ¢|,Vk = 1.K,t =
1..maz_rounds. Early training stopping then takes place once
the number of rounds configured in the patience setting have
been surpassed without further improvement over the so-far best
validation performance obtained. Finally, as in previous cases,
inter-database generalization performance is evaluated on the
leaved-out FULL(d) dataset (Fig. 4(d)). Additionally, a set of ab-
lation experiments involving different parameter configurations
are conducted in order to analyze their effects on ssFedSGD per-
formance. More specifically, the experiments focused on eval-
uating the influence of different learning rates and sub-sample
sizes.
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Fig.5. Ablation experiments of the proposed federated algorithm (ssFedSGD) using several parameter settings in F5 configuration. Results regard
loss values during training and accuracy, precision, recall, macro-F1 score and Cohen Kappa metrics when attempting to predict the corresponding
external dataset (HMC). (a) Convergence analysis using several sub-sample sizes (500, 1000, 2000 and 4000) and a fixed learning rate (0.001).
(b) Convergence analysis of different learning rates (0.0001, 0.001 and 0.01) and a fixed sub-sample (2000).

E. Configuration Settings

For all the above described experiments, the same epoch-wise
database partitioning configuration scheme was used. For each
local database 20% of their data were set aside as testing
dataset, while the remaining 80% were further split following a
80-20 proportion into training and validation data respectively.
Results of all experiments were evaluated on the respective
datasets using Cohen’s Kappa (k) as the main reference for
performance assessment [54]. The multi class and imbalanced
nature of the sleep staging scenario makes the use of Kappa a
more adequate criterion in this context than other widespread
metrics in machine learning, such as accuracy, as the former
corrects by agreement due by chance. Remarkably, Kappa is
the standard measure of agreement reported across literature
regarding human and computer-based inter-rater scoring agree-
ment in the context of sleep studies [3], [5], [21], [22], [23], [24].
Regardless, in order to provide a more complete picture, final
experimental summary results will be quantified, in addition,
using supplementary widespread evaluation metrics including
accuracy, macro-F1 score, precision, and recall. For the learning
step, stochastic gradient descent was used with constant learning
rate (Ir = 0.001) and momentum (p = 0.9). The categorical
cross-entropy was selected as the loss function to be minimized.
A batch size of 100 was used, and the maximum number of
iterations was set high enough so that learning would stop
based on the corresponding validation performance, namely
early stopping criterion. In this regard a patience of 5 was
used for all but Experiment 4 regarding federated learning,
were patience parameter of 100 was used. The latter larger
patience was required to compensate for the sub-sampling step
in ssFedSGD, effectively making it necessary to perform more
federated rounds to process a comparable amount of samples
as in one regular training epoch in the case of Experiments 1

TABLE |
LocaL MoDELS' SELF PERFORMANCE (COHEN'S KAPPA)
CNN-LSTM
Model TR VAL TS
M(Dublin) 093 084 083
M(HMC) 086 079 078
M(Telemetry) 093 0.83 083
M(DREAMS) 088 081 082
M(SHHS) 090 082 081
M(ISRUC) 0.88 080 079

Performance of local models M(z) during the
training process. TR = Train VAL = Validation;
TS = Test partition.

to 3. More specifically, for ssFedSGD a random sub-sample size
ng = 2000 was used for each participating client.

Concerning the Nelder-Mead ensemble combination strategy
described in Section III-C, proportional weights were used for
initializing the ensemble combination of the participating mod-
els at iteration 0. That is, the initial conditions match the output
of the additionally tested output averaging strategy. A maximum
of 10 optimization iterations rounds were then allowed. At
each iteration, the loss function evaluated on the corresponding
combined validation dataset was taken as reference to guide the
underlying search process.

All experiments were conducted on an Intel Xeon CPU E5-
2620 v3 @ 2.40 GHz x 8, equipped with 2 NVIDIA RTXA
6000-48 C GPUs. Source code for reproducibility of our ex-
periments and methods will become available online at Github
https://github.com/adrania/Decentralized-deep-learning. git.

IV. RESULTS

Results of the experiments described above are detailed in
Tables I, II, III, IV, and V and Fig. 5. Tables I and II refer to
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TABLE Il
LocaL MoDELS' EXTERNAL PERFORMANCE (COHEN'S KAPPA)
CNN-LSTM
Model FULL(Dublin) FULL(HMC) FULL(Telemetry) FULL(DREAMS) FULL(SHHS) FULL(ISRUC) Model average
M(Dublin) - 0.50 0.57 0.47 0.50 0.46 0.50
M(HMC) 0.55 - 0.65 0.48 0.62 0.60 0.58
M(Telemetry) 0.40 0.41 - 0.43 0.40 0.36 0.40
M(DREAMS) 0.44 0.40 0.38 - 0.47 0.52 0.44
M(SHHS) 0.46 0.53 0.14 0.60 - 0.63 0.47
M(ISRUC) 0.56 0.52 0.48 0.70 0.58 - 0.57
Database average 0.48 0.47 0.44 0.54 0.51 0.51
Performance of local models on predicting FULL(4) external databases, FULL = Full dataset.
TABLE IlI TABLE V
DaraBase-CoMBINED MODELS' PERFORMANCE (COHEN'S KAPPA) FEDERATED MODELS' PERFORMANGE (COHEN'S KAPPA)
CNN-LSTM CNN-LSTM
Model TR VAL TS  Test database FULL Model TR VAL TS Test database  FULL
C1 089 079 079 | ISRUC 0.67 Fl 078 076 0.76 | ISRUC 0.66
Cc2 089 078 078 | SHHS 0.64 F2 077 075 075 | SHHS 0.67
c3 088 079 079 | DREAMS 0.71 F3 074 073 073 | DREAMS 0.70
C4 085 078 078 | Telemetry 0.67 F4 074 074 0.73 | Telemetry 0.64
G5 0.87 080 079 | HMC 0.61 F5 075 074 074 | HMC 0.59
C6 086 079 0.78 | Dublin 0.63 Fé6 074 073 0.73 | Dublin 0.64
Average 0.66 Average 0.65
C'; references the model combination which involves TR, VAL and TS data F., references the federated - which includes as clients all the

from all databases but the external “Test database” indicated in the fourth
column. TR = Training; VAL = Validation; TS = self test partition; FULL =
Full dataset from the discarded database.

TABLE IV
EnseMBLE MoDELS' PERFORMANGE (COHEN'S KAPPA)

CNN-LSTM
Max-voting  Average  Size-proportional  Nelder
Model  Test database FULL FULL FULL FULL
El ISRUC 0.59 0.60 0.65 0.61
E2 SHHS 0.63 0.65 0.66 0.66
E3 DREAMS 0.66 0.67 0.65 0.67
E4 Telemetry 0.54 0.60 0.64 0.60
ES HMC 0.56 0.59 0.60 0.59
E6 Dublin 0.57 0.61 0.63 0.62
Average 0.59 0.62 0.64 0.63
E, ref the ion which includes all local models M(z) but the

one trained with the “Test database” indicated in the second column. FULL = Full dataset.
All results regard external database evaluations.

results of Experiment 1, showing performances of local models
on their respective datasets (including training, validation and
test partitions) and on the external FULL databases, respectively,
the latter meant to assess their generalization capabilities on
the direct-transfer scenario. Comparing Tables I and II, it can
be seen that when local test partitions are evaluated, perfor-
mance ranges between x = 0.79 to 0.83. Notice that reasonable
generalization is achieved with respect to their corresponding
training and validation partitions. However, when an external
data source is used, generalization performance decreases to
ranges between £ = 0.14 to 0.70 (x = 0.40 to 0.58, on average,
per model). The best scenario corresponds to M(ISRUC) in
FULL(DREAMS) with & = 0.70, the worst corresponding to
M(SHHS) predicting FULL(Telemetry). Overall, M(HMC) is
the best generalizing model (averaged k, kqpg = 0.38, across
all leaved-out external databases), followed by M(ISRUC) with
Kqug = 0.57. In contrast, the worst generalization capability

databases but the one indicated in "Test database” colomn. TR = Training;
VAL = validation; TS = Testing set; FULL = Full data referred to the database
in "Test database” column.

corresponds to M(Telemetry), with k4,4 = 0.40. Database-wise,
DREAMS seems to be the easiest database to be predicted (kqug
= 0.54) while Telemetry results the most difficult one (kgpg =
0.44).

Table I1I details results of Experiment 2, regarding centralized
database-combined models. Similarly to local models, the cor-
responding train, validation and test performances are reported
on the first columns. For each combined model (C3), inter-
database generalization is assessed on the corresponding leaved-
out FULL(z) as described in I1I. This database is identified in the
fifth column of Table III. A similar performance downgrading
effect can be observed as in the case of local models, whereby
performance on the local TS dataset shows higher and more
stable results (x = 0.78 to 0.79) than in the corresponding
external databases (x = 0.61 to 0.71). Performance drop in this
case is more contained, as expected, due to the higher amount
and heterogeneity of training data used. The best scenario is ob-
tained by (C3) which uses DREAMS as the predicting database
(r =0.71), in line with results observed for Experiment 1, while
the worst generalization is observed for (Cs), predicting HMC
(k= 0.61).

Ensemble models’ results are described in Table I'V. General-
ization performances obtained for each of the corresponding
external FULL datasets and the different tested combination
strategies can be compared. Overall, the best results are achieved
using the size-proportional weighting strategy (kq,y = 0.64),
followed by Nelder-Mead (k444 = 0.63), output averaging (Kquvg
= 0.62) and lastly, max-voting (kqug = 0.59). Size-proportional
weighting approach also shows the most stable results ranging
k& = 0.60 to 0.65 across databases.
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TABLE VI
SUMMARY OF AVERAGE GENERALIZATION PERFORMANCE (COHEN'S KAPPA)
CNN-LSTM

Test database  Local Combined Max-voting  Averaging  Size-proportional  Nelder  Federated

ISRUC 0.51 0.67 0.59 0.60 0.65 0.61 0.67

SHHS 0.51 0.64 0.63 0.65 0.66 0.66 0.67

DREAMS 0.54 0.71 0.66 0.67 0.65 0.67 0.70

Telemetry 0.44 0.67 0.54 0.60 0.64 0.60 0.64

HMC 047 0.61 0.56 0.59 0.60 0.59 0.59

Dublin 048 0.63 0.57 0.61 0.63 0.62 0.64

Average 0.49 0.66 0.59 0.62 0.64 0.63 0.65

Performance results in regard to federated models are detailed Precision
in Table V. As in Experiments 2 and 3, each federated model
F, is built using a leave-one-database-out strategy, while in this ’ _
case, the remaining databases used for developing the model are R
distributed and treated as independent local clients. In order to [ /
assay the resulting local database performance, the final server | |
state is independently evaluated, on each client, using their |
corresponding local train, validation, and test partitions. These | | Accuracy
metrics are finally averaged resulting in TR, VAL and TS values |
shown in the the corresponding columns of Table V. General- | | — Local
L= .
ization performance evaluated on the corresponding leaved-out g?l:r;?.lltn:\dferaging
FULL(?) database is indicated in the last column. From the Table ~ F1_score —— Max - voting
it can be observed that the range of obtained metric values varies Size proportional
with k = 0.59 to 0.70. In comparison with local testing set, . E:;if;:::ad
.. . . - K

a similar downgrading trend can be observed when predicting Cohen Kappa
external data. The effect is similar to the one observed in Fig. 6. Overview of the generalization performance metrics (accu-

Table III with regard to centralized database-combined models,
with perhaps slight less local over-fitting in this case. On an
individual basis, the best generalization was obtained by Fj
(r = 0.70), corresponding to the prediction of the DREAMS
database. Likewise, the worst scenario was represented by Fj
when attempting to predict HMC data (x = 0.59). Additionally,
intending to analyze the effects of different parameter setting
in ssFedSGD convergence and generalization, we conducted
several ablation experiments regarding different sub-sampling
sizes and learning rates. We evaluate four sub-sampling scenar-
ios (500, 1000, 2000 and 4000) and three different learning rates
(0.0001, 0.001 and 0.01) using F5 configuration as baseline. The
results of these experiments are shown in Fig. 5. As it can be
seen in Fig. 5(a)) no convergence variations are observed when
using different sub-sample sizes, neither on the corresponding
generalization results as similar performances are obtained when
these models are presented to the external database (k = 0.56—
0.59). Notice that model ss1000 is the one that converges earliest
(round ~ 3800), however, it has presented the worst results
when predicting HMC data (x = 0.56). Regarding learning
rate effects, the results can be seen in Fig. 5(b)). Differences in
speed convergence appeared, as expected, with normal behavior
since the higher learning rate, the earlier the convergence and
vice versa. Notice that variations in convergence speed among
different settings, specifically the number of learning rounds
or iterations, occur naturally when applying a consistent early
stopping criterion (with a patience of 100) for all federated
learning experiments. Despite loss differences are displayed, it
has no significant variations in generalization performance (x =
0.51-0.59).

racy, precision, recall, macro-F1 score and Cohen Kappa) by explored
strategy. Displayed resulis regard the averaged performances of each
approach when predicting full external datasets.

Finally, for easy comparison of the different tested meth-
ods, Table VI and Fig. 6 show a summary of the averaged
generalization performances obtained on each case. VI regards
Cohen Kappa results and Fig. 6 details the complete performance
picture involving accuracy, precision, recall, macro-F1 score and
Kappa metrics. As it can be seen, the federated model practically
matches the classical database centralization approach with
respective & = 0.65 and 0.66. This result is followed by the
size-proportional ensemble combination strategy with x = 0.64,
and Nelder-Mead with x = 0.63. All decentralized ensemble and
federated approaches obtain considerable better generalization
results than those of models derived from local databases.

V. DISCUSSION

In this work we have explored several machine-learning
strategies applied to the medical domain of sleep staging. More
specifically, special focus was targeted toward assessment of
generalization robustness in the context of a multi-database
prediction scenario, and the preservation of local data-privacy.

We have proposed different decentralized learning ap-
proaches, namely ensembles and federated learning, whereby
global model development can take place taking advantage of
heterogeneous data distributed across independent decentralized
nodes. Remarkably, these approaches avoid direct sharing of
local raw data contained on each node, therefore allowing
different medical centers (in this case) to contribute without
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unnecessary exposure of potentially sensitive or restricted infor-
mation. We explored different configurations of such learning
approaches, using a deep-learning neural network architecture
as reference, and studied their generalization capabilities on the
prediction of several independent and heterogeneous sleep stag-
ing databases. Traditional approaches that derive local models
from individual databases, or from centralizing data from mul-
tiple cohorts, were submitted to the same experimental bench-
marking for baseline comparison of the resulting inter-database
generalization performances.

Our experimentation has evidenced that performance of local
models is influenced by the specifics of the source dataset,
leading to poor inter-database generalization performance. In
particular, while comparable performance between local val-
idation and test partitions were observed, considerable per-
formance drop was experienced when local models were tar-
geted the prediction of data from external sources (see Tables I
and II). Similar performance downgrading effects were reported
in recent literature regarding the same automatic sleep staging
scenario [16], [17], [18], [19], [20]. Our current results confirm
this trend. The effect is directly related to the aforementioned
database variability due to differences in patient’s conditions and
physiology, signal acquisition methods, or intra- and inter-expert
scoring interpretations [18]. Thereunder, local models are biased
to the specific training source domain, providing unreliable
results when being evaluated external data, leading to the need
of retraining the model from scratch. Transfer-learning has been
recently explored as a means to mitigate the amount of required
retraining by focusing on fine-tuning only certain parts of the
model, or the use minimal subsets of targeted domain data [26],
[27], [28], [29], [30], [31], [32]., [33]. However, certain amounts
of target data and model re-parameterization are still needed.
Alternatively, one might opt to centralize data from different
cohorts to develop more robust prediction models [35], [36]. Our
experimentation does also confirm this result. Overall, models
derived from combined datasets have achieved the best general-
ization performance (x = 0.66, see Table VI). This is expected
as it is well-known that an enlarged and more casuistic-rich
dataset will contribute to reduce database dependency. However,
as introduced before, this approach has several disadvantages.
First, all data need to be centralized in a single dataset which
might be technically difficult and cost-expensive. Second, data
sharing might be problematic if involving sensitive information,
as in the medical domain. Third, this strategy is inflexible and
does not escalate well if new data becomes available through
time, therefore still requiring to re-adapt the model or re-train
completely from scratch.

In contrast, decentralized methods proposed in this work
provide a promising alternative to cope with the aforementioned
problems. In this regard, our experimental data have shown that
better generalization can be achieved in comparison with local
models. Moreover, similar performance can be obtained as with
respect to the centralized database-combination approach (see
Table VI).

Model ensemble has been introduced as a suitable option
in terms of scalability and dynamism. It address catastrophic
forgetting as the resulting global model can be easily enlarged by
just adding new local models derived from newly available data
sources. Integrity of previously integrated models, therefore,

remains intact. Moreover, ensemble naturally addresses data-
privacy problems, as it is the model, and not data, what is shared
to build the ensemble. Likewise, less memory and computa-
tional resources are needed for the implementation of individual
local training in contrast with combined database models. One
caveat here regards the Nelder-Mead approximation, which is
not fully database-independent. This is because Nelder-Mead
algorithm uses the combined VAL datasets of models integrating
the ensemble to guide the weights optimization search. In this
regard, it resembles more as a sort of transfer-learning approach,
where partial data (i.e. validation dataset) is used for guiding the
weights combination fine-tuning. Similar to transfer-learning,
flexibility and data-privacy are therefore compromised in this
case. In contrast, target domain data (leaved-out dataset) remains
completely independent. Regardless, notice that the other three
ensemble combination strategies analyzed in this study are not
subject to such limitations. Moreover, size-proportional weight-
ing shows the best performance results overall.

A further step in decentralized strategies research involves
the study of federated learning. As mentioned above, federated
scenario hosts collaborative and distributed training without
sharing of local sensitive information. Applicability of this
technique within the field of sleep medicine has been barely
investigated. The only study that we know of [55] simulated
a federated environment by partitioning one database (Sleep-
EDF [56]) among different nodes. This approach hence vio-
lates the non-IID assumption, nor does it allow assessment of
inter-database generalization capabilities of the resulting model.
To extend knowledge in this area, we have experimented on a
federated scenario involving six independent and heterogeneous
sleep staging databases. In addition, we have proposed a new
federated learning algorithm, namely ssFedSGD, as a variant of
the baseline FedSGD approach. Our fist attempt, was in fact to
directly apply FedSGD in the context of our problem. However,
we experienced one of the main reported limitations regarding
this method, that is, the very large amount of required rounds to
achieve effective training convergence [42]. More specifically,
with our described setting and available hardware resources,
experimental times by using this method became intractable with
estimations above the six-months of uninterrupted computation.
We also experimented with alternative approaches aimed to
solve aforementioned FedSGD problems, in particular Feder-
ated Averaging (FedAvg) [42]. Our experiments with FedAvg,
however, were also unsuccessful. In particular, we were unable
to achieve stable convergence trend during the federated training.
We could speculate with the possibility that the unbalanced na-
ture and non-IID properties of our experimental cohort came into
detriment of applicability of this algorithm. More specifically,
we hypothesize that because the aggregation step in FedAvg
involves local model weights (instead of gradients) together
with the fact that disparate amount local learning updates occur
on the same learning round (due to the differences in size for
each database) leads to quick misalignment of the local models
in the parameter space. Literature, in fact, has reported on
certain limitations of this approach depending on the specific
node data distribution [49], [50], [52], [57]. In this scenario, we
have proposed ssFedSGD, whereby using a fixed-length client
sub-sample on each round, we enforce equal client contribution
to the global learning, regardless of the specific amount of local
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data contained on each node. By using this approach we were
able to speed up computation time per round with respect to
baseline FedSGD by a factor of 17.5 x, enabling tractability of
the problem with the same setting and computational resources.
Moreover, our ablation experiments have demonstrated that
varying the sub-sample size and learning rate has no signifi-
cant effects on the generalization performance, therefore, these
parameters can be conveniently fine-tuned according to clients’
requirements. At the same time, we avoided aforementioned
problematic related to FedAvg. Our experimental data confirms
the intuition, as we show that similar inter-database generaliza-
tion performance can be achieved as with respect to baseline
database centralized approach.

One final remark with regard to the federated learning scenario
concerns the usage of batch normalization layers in the archi-
tecture of the underlying deep neural network learning model.
The original version of our design, in fact, included the use of
this layer following the output of the average pooling operation
in each of the three operational blocks at the CNN block [38].
In the context of non-federated experiments (local, combined,
and ensemble models) the use of this layer was able speed up the
training process by reducing the number of learning epochs nec-
essary to achieve model convergence. Deep-learning literature
has extensively discussed the general benefits of the input layer
normalization provided by this method [58]. While experimental
results including batch normalization are omitted due to length
restrictions, it is worth mentioning that no improvement on
the local or external generalization performance among these
methods was observed. However, in the federated scenario, we
experienced convergence problems when including this layer in
our deep-learning pipeline. It is possible that the non-1ID proper-
ties of our data, involving different databases, cause weights and
bias of batch normalization layer to be affected by local offset,
which might penalize client parameter aggregation at the server.
Similar problems have also been reported in the literature [46],
[47], [49], [59], however the exact implications still remain
uncertain, and debate around inclusion of batch normalization
on federated learning is considered an open area of research. In
light of the experimental data, for our final design described in
Section II-D, we finally excluded the use of this layer.

Further investigation is needed for better understanding of
some of the reported effects. One interesting line of future
work will be to explore additional federated learning algorithms
recently proposed in literature to address some of the described
convergence problems [49], [50], [59], [60]. Future development
should also incorporate additional realistic assumptions to the
experimental setting such as time-varying and unobservable
content in designing the distributed learning approach. One
possible limitation our current work concerns the assumption of
a rather static environment where clients (i.e. hospital centers)
are assumed to be remain stable through time. While this might
be a valid assumption in the context of in-hospital PSG, it might
compromise applicability in the context of a more dynamical
setting related to mobile and edge-devices (e.g. sleep apps
or wearables). More in general, in the context of the rapid
progress that takes place in the area, future work should also
reassess optimality of the baseline deep learning model used as
reference in this work. Likewise, we would also like to extend
the proposed methods and experimentation to other applied

domains beyond sleep staging to check generalization of our
results.

VI. CONCLUSION

With our current setting, we conclude that the use of decen-
tralized learning methods outperform local methods in terms
of inter-database generalization, and provide similar results to
centralized learning, however with additional advantages con-
cerning scalability, flexibility, and data-privacy protection. En-
semble learning with size-proportional weighting, in particular,
shows a good compromise between generalization performance
and simplicity of the method. The reported federated approach
shows slightly improved performance, and similar advantages
regarding privacy preservation, however it usually involves more
cumbersome communication infrastructure and training conver-
gence. Further work and experiments have to be performed in
order to confirm generalization of these results.
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