
Tejedor et al. EURASIP Journal on Audio, Speech, andMusic
Processing  (2018) 2018:2 
https://doi.org/10.1186/s13636-018-0125-9

RESEARCH Open Access

ALBAYZIN Query-by-example Spoken
Term Detection 2016 evaluation
Javier Tejedor1*, Doroteo T. Toledano2, Paula Lopez-Otero3, Laura Docio-Fernandez4,
Jorge Proença5, Fernando Perdigão5, Fernando García-Granada6, Emilio Sanchis6, Anna Pompili7

and Alberto Abad7

Abstract

Query-by-example Spoken Term Detection (QbE STD) aims to retrieve data from a speech repository given an acoustic
(spoken) query containing the term of interest as the input. This paper presents the systems submitted to the
ALBAYZIN QbE STD 2016 Evaluation held as a part of the ALBAYZIN 2016 Evaluation Campaign at the IberSPEECH
2016 conference. Special attention was given to the evaluation design so that a thorough post-analysis of the main
results could be carried out. Two different Spanish speech databases, which cover different acoustic and language
domains, were used in the evaluation: the MAVIR database, which consists of a set of talks from workshops, and the
EPIC database, which consists of a set of European Parliament sessions in Spanish. We present the evaluation design,
both databases, the evaluation metric, the systems submitted to the evaluation, the results, and a thorough analysis
and discussion. Four different research groups participated in the evaluation, and a total of eight template
matching-based systems were submitted. We compare the systems submitted to the evaluation and make an
in-depth analysis based on some properties of the spoken queries, such as query length, single-word/multi-word
queries, and in-language/out-of-language queries.

Keywords: Query-by-example Spoken Term Detection, International evaluation, Spanish, Search on spontaneous
speech

1 Introduction
The huge amount of heterogeneous speech data stored
in audio and audiovisual repositories makes it neces-
sary to develop efficient methods for speech information
retrieval. There are different speech information retrieval
tasks, including spoken document retrieval (SDR), key-
word spotting (KWS), spoken term detection (STD), and
query-by-example spoken term detection (QbE STD).
Spoken term detection aims at finding individual words

or sequences of words within audio archives. It is based on
a text-based input, commonly the word/phone transcrip-
tion of the search term. For this reason, STD is also called
text-based STD. Query-by-example spoken term detec-
tion is similar, but is based on an acoustic (spoken) input.
In QbE STD, we consider the scenario in which the user
has found a segment of speech which contains terms of
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interest within a speech data repository, and their purpose
is to find similar speech segments within that repository.
The speech segment found is the query, and the system
outputs other similar segments from the repository, which
we will henceforth refer to as utterances. Alternatively, the
query can be uttered by the user. This is a highly valuable
task for blind people or devices that do not have a text-
based input, and consequently, the query must be given in
other format such as speech.
The STD systems are typically composed of three dif-

ferent stages: (1) the audio is decoded into word/subword
lattices using an automatic speech recognition (ASR) sub-
system trained for the target language (which makes the
STD system language-dependent), (2) a term detection
subsystem searches the terms within those word/subword
lattices to hypothesize detections, and (3) confidence
measures are computed to rank detections. The STD sys-
tems are normally language-dependent and require large
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amounts of resources in the form of transcribed corpora
to be built.
QbE STD has been mainly addressed from three dif-

ferent approaches: methods based on the word/subword
transcription of the query, methods based on template
matching of features, and hybrid approaches. These
approaches are described below.

1.1 Methods based on the word/subword transcription of
the query

These methods make use of the text-based STD technol-
ogy. In order to do this, they need to transcribe the query
into word/subword units. The errors produced in this
transcription can lead to significant performance degra-
dation. [1, 2] employ a Viterbi-based search on Hidden
Markov Models (HMMs). [3–6] employ dynamic time
warping (DTW) or variants of DTW, e.g., non-segmental
dynamic time warping (NS-DTW) from phone recogni-
tion. [7–10] employ word and syllable speech recognizers.
Hou et al. [11] employs a phone-based speech recog-
nizer and a weight finite-state transducer (WFST)-based
search. Vavrek et al. [12] uses multilingual phone-based
speech recognition, from supervised and unsupervised
acoustic models and sequential dynamic time warping for
search.

1.2 Methods based on template matching of features
These methods extract a set of features from the query
and the speech repository, and a search of these fea-
tures produces the query detections. Regarding the fea-
tures used for query/utterance representation, [5, 13–15]
employ Gaussian posteriorgrams; [16] proposes an
i-vector-based approach for feature extraction; [17] uses
phone log-likelihood ratio-based features; [18] employs
posteriorgrams derived from various unsupervised tok-
enizers, supervised tokenizers, and semi-supervised tok-
enizers; [19] employs posteriorgrams derived from a
Gaussianmixturemodel (GMM) tokenizer, phoneme recog-
nition, and acoustic segment modelling; [11, 15, 20–26]
use phoneme posteriorgrams; [11, 27–29] employ bot-
tleneck features; [30] employs posteriorgrams from
non-parametric Bayesian models; [31] employs artic-
ulatory class-based posteriorgrams; [32] proposes an
intrinsic spectral analysis; and [33] is based on the
unsupervised segment-based bag of an acoustic words
framework.
All these studies employ the standard DTW algorithm

for query search, except for [13], which employs the
NS-DTW algorithm, [15, 24, 25, 28, 30], which employ
the subsequence DTW (S-DTW) algorithm, [14], which
presents a variant of the S-DTW algorithm, and [26],
which employs the segmental DTW algorithm.
These methods were found to outperform subword

transcription-based techniques in QbE STD [34]. This

approach can be employed effectively to build language-
independent STD systems, since prior knowledge of the
language involved in the speech data is not necessary.

1.3 Hybrid approach
A powerful way of enhancing performance relies on build-
ing hybrid (fused) systems that combine the two individ-
ual methods. [35–37] propose a logistic regression-based
fusion of acoustic keyword spotting and DTW-based
systems using language-dependent phoneme recogniz-
ers. [38–41] use a logistic regression-based fusion on
DTW- and phone-based systems. Oishi et al. [42] uses a
DTW-based search at the HMM state-level from sylla-
bles obtained from a word-based speech recognizer and a
deep neural network (DNN) posteriorgram-based rescor-
ing, and [43] adds a logistic regression-based approach for
detection rescoring. Obara et al. [44] employs a syllable-
based speech recognizer and dynamic programming at
the triphone-state level to output detections and DNN
posteriorgram-based rescoring.

1.4 Motivation and organization of this paper
The increasing interest from within the speech research
community in speech information retrieval has allowed
the successful organization of several international eval-
uations related to SDR [45, 46], STD [47, 48], and QbE
STD [49, 50]. In 2012 and 2014, the first two QbE STD
evaluations in Spanish were held in the context of the
ALBAYZIN 2012 and 2014 evaluation campaigns. These
campaigns are internationally open sets of evaluations
supported by the Spanish Network of Speech Technolo-
gies (RTTH)1 and the ISCA Special Interest Group on
Iberian Languages (SIG-IL)2, which have been held every
2 years since 2006. These evaluation campaigns provide an
objective mechanism for the comparison of different sys-
tems and the promotion of research into different speech
technologies such as audio segmentation [51], speaker
diarization [52], language recognition [53], spoken term
detection [54], query-by-example spoken term detection
[55, 56], and speech synthesis [57].
The Spanish language is widespread throughout the

world, and significant research has been conducted into
it for ASR [58–60], KWS [61, 62], and STD [62–64].
This, combined with the success of the ALBAYZIN QbE
STD evaluations held in 2012 and 2014, have encouraged
us to organize a new QbE STD evaluation for the 2016
ALBAYZIN evaluation campaign which aims to evalu-
ate the progress in this technology in Spanish. Compared
with the previous evaluations, the third ALBAYZIN QbE
STD evaluation incorporated stricter rules regarding the
evaluation queries, e.g., in-vocabulary (INV) vs. out-of-
vocabulary (OOV) queries, and employs two different
databases to cover different acoustic conditions and topics
to provide a more comprehensive evaluation. In addition,
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all the queries and the database employed in the QbE STD
evaluation held in 2014 are kept, thus enabling a compar-
ison between the systems submitted to both evaluations
on the common set of queries.
The remainder of the paper is organized as follows: The

following section presents a description of the QbE STD
evaluation. Section 3 presents the different systems sub-
mitted to the evaluation. The results and discussion are
then presented, and the paper is concluded in the final
section.

2 ALBAYZIN QbE STD 2016 evaluation
2.1 Evaluation description
The ALBAYZIN QbE STD 2016 evaluation involves
searching for audio content within audio content using
an audio content query. The input to the system is an
acoustic example per query; therefore, prior knowledge
of the correct word/subword transcription correspond-
ing to each query is not available. The target participants
are the research groups or companies working on speech
indexing, speech retrieval, and speech recognition.
The evaluation consists of searching a development

query list within development speech data, and search-
ing two different test query lists within two different sets
of test speech data (MAVIR and EPIC databases, which
will be explained later). The evaluation result ranking is
based on the system performance when searching the
query terms within the test speech data corresponding
to the MAVIR database. Any kind of data, except for
the MAVIR test data and the EPIC data, can be used by
the participants for system training and development. The
systems could be fine-tuned for each of the two databases
individually. To facilitate the system construction, the par-
ticipants were provided withMAVIR data, which can only
be used as defined by the training, development, and test
subsets.
This evaluation defines two different sets of queries for

each database: the in-vocabulary query set and the out-of-
vocabulary query set. The OOV query set was defined to
simulate the out-of-vocabulary words of a Large Vocabu-
lary Continuous Speech Recognition (LVCSR) system. If
the participants employed an LVCSR system for process-
ing the audio, these OOV queries must be removed from
the system dictionary. Therefore, other methods must be
used for searching the OOV queries. Conversely, the INV
queries can appear in the dictionary of the LVCSR system.
The evaluation participants could submit a primary sys-

tem and up to two contrastive systems. No manual inter-
vention was allowed to generate the final output file, and
hence, all the systems had to be fully automatic. Listening
to the test data, or any other human interaction with the
test data, was forbidden before all the evaluation results
had been sent to the participants. The standard XML-
based format corresponding to the National Institute of

Standards and Technology (NIST) STD evaluation tool
[65] was used to build the system output file.
The participants were given approximately 3 months to

construct the system. The training and development data
were released by the end of June 2016. The test data were
released at the beginning of September 2016. The final
system submission was due by mid-October 2016. The
evaluation results were discussed at the IberSPEECH 2016
conference at the end of November 2016.

2.2 Evaluation metric
In QbE STD, a hypothesized occurrence is called a detec-
tion; if the detection corresponds to an actual occurrence,
it is called a hit; otherwise it is a false alarm. If an actual
occurrence is not detected, this is called amiss. The actual
term-weighted value (ATWV) proposed by NIST [65] was
used as the main metric for the evaluation. This metric
integrates the hit rate and the false alarm rate of each
query into a single metric and is then averaged over all the
queries:

ATWV = 1
|�|

∑

K∈�

(
NK
hit

NK
true

− β
NK
FA

T − NK
true

)
, (1)

where � denotes the set of queries and |�| is the number
of queries in this set. NK

hit and NK
FA represent the numbers

of hits and false alarms of query K, respectively, and NK
true

is the number of actual occurrences of K in the audio. T
denotes the audio length in seconds, and β is a weight fac-
tor set at 999.9, as in the ATWV proposed by NIST [66].
This weight factor causes an emphasis to be placed on
recall compared to the precision in the ratio 10:1.
The ATWV represents the term-weighted value (TWV)

for the threshold set by the system (usually tuned on
development data). An additional metric, called maxi-
mum term-weighted value (MTWV) [65], can also be
used to evaluate the performance of a QbE STD system.
The MTWV is the ATWV the system would obtain with
the optimum threshold. TheMTWV results are presented
to evaluate threshold selection.
In addition to the ATWV and the MTWV, NIST also

proposed a detection error trade-off (DET) curve [67]
to evaluate the system performance at various miss/FA
ratios. Although the DET curves were not used for the
evaluation, they are also presented in this paper for a
comparison of the systems.
The NIST STD evaluation tool [68] was employed to

compute the MTWV, the ATWV, and the DET curves.

2.3 Database
Two different databases that comprise different acoustic
conditions and domains were employed for the evaluation.
For comparison, the same MAVIR database employed in
the ALBAYZIN QbE STD evaluation held in 2014 was



Tejedor et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2018) 2018:2 Page 4 of 25

used. The second database was the EPIC database dis-
tributed by ELRA3. For the MAVIR database, three sep-
arate datasets, i.e., training, development, and test, were
given to the participants. For the EPIC database, only the
test data were provided. The MAVIR and EPIC data could
only be used for the intended purpose of the correspond-
ing subset (training, development, and test). The use of
two different domains was permitted to compare the sys-
tem performance across the two different domains and
enabled the examination of the performance degradation
of the systems depending on the nature of the speech
data, the acoustic conditions, the training/development
and testing mismatch, and the over-fitting issues.
The MAVIR database consists of a set of Spanish talks

taken from the MAVIR workshops4 held in 2006, 2007,
and 2008 that contain speakers from Spain and Latin
America.
TheMAVIR Spanish data consist of spontaneous speech

files, each containing different speakers, amounting to
approximately 7 h of speech. These data were further
divided for the purpose of this evaluation into training,
development, and test sets. The data were also manually
annotated in an orthographic form, but the timestamps
were only set for the phrase boundaries. To prepare the
data for the evaluation, the organizers manually added
the timestamps for the approximately 1600 occurrences of
the spoken terms used in the development and test eval-
uation sets. The training data were made available to the
participants and included the orthographic transcription
and the timestamps for the phrase boundaries5.
The MAVIR speech data were originally recorded in

several audio formats, e.g., pulse code modulation (PCM)
mono and stereo, MP3, 22.05 KHz, and 48 KHz. The data

were converted to PCM, 16 KHz, single channel, 16 bits
per sample using the SoX tool6. Except for one, all the
recordings were made with the same equipment, a Digi-
tal TASCAM DAT model DA-P1. Different microphones
were used for the different recordings. In most cases, they
were tabletop or floor standing microphones, but in one
case, a lavalier microphone was used. The distance from
the mouth of the speaker to the microphone varied and
was not particularly controlled but in most cases was less
than 50 cm. The recordings contain spontaneous speech
from the MAVIR workshops in a real setting. The record-
ings were made in large conference rooms with capacity
of over a hundred people, and a large number of people
were in the conference room. This poses additional chal-
lenges including background noise, in particular ‘babble
noise’ and reverberation. The realistic settings and the dif-
ferent nature of the spontaneous speech in this database
made it appealing and challenging enough for the evalua-
tion. Table 1 includes some database features such as the
division in training, development, test data of the speech
files, the number of word occurrences, the file duration,
and the p.563 Mean Opinion Score (MOS) [69] which
gives and indication of the quality of each speech file. The
p.563 standard estimates the quality of the human voice
without a reference signal, for which no reference signal
is necessary. The MOS values are in the range of 1–5, 1
representing the worst quality and 5 the best [69].
The EPIC database comprises speeches from the Euro-

pean Parliament recorded in 2004 in English, Spanish,
and Italian, together with their corresponding simultane-
ous translations into other languages. Only the original
Spanish speeches, which consist of more than 1.5 h of
clean speech, were used for the evaluation as a test set.

Table 1 Summary of MAVIR database

File ID Data No. of word occ. Dur. (min) No. of spk. p.563 ave. MOS

Mavir-02 train 13432 74.51 7 (7 ma.) 2.69

Mavir-03 dev 6681 38.18 2 (1 ma. 1 fe.) 2.83

Mavir-06 train 4332 29.15 3 (2 ma. 1 fe.) 2.89

Mavir-07 dev 3831 21.78 2 (2 ma.) 3.26

Mavir-08 train 3356 18.90 1 (1 ma.) 3.13

Mavir-09 train 11179 70.05 1 (1 ma.) 2.39

Mavir-12 train 11168 67.66 1 (1 ma.) 2.32

Mavir-04 test 9310 57.36 4 (3 ma. 1 fe.) 2.85

Mavir-11 test 3130 20.33 1 (1 ma.) 2.46

Mavir-13 test 7837 43.61 1 (1 ma.) 2.48

ALL train 43467 260.27 13 (12 ma. 1 fe.) 2.60

ALL dev 10512 59.96 4 (3 ma. 1 fe.) 2.96

ALL test 20277 121.3 6 (5 ma. 1 fe.) 2.67

‘MOS’ stands for Mean Opinion Score, as estimated using the ITU-T p.563 standard, train training, dev development, occ. occurrences, dur. duration, spk. speakers,ma.male, fe.
female, ave. average
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To evaluate the systems submitted to the evaluation, the
organizersmanually added the timestamps for the approx-
imately 1100 occurrences of the spoken terms used in the
test set.
The original speeches in the EPIC database were

recorded as video files stored in a .mpeg1 format. There-
fore, the original Spanish speeches were extracted from
the corresponding Spanish video files, and converted to
PCM, 16 KHz, single channel, 16 bits per sample, using
the ffmpeg tool7. Table 2 includes the Spanish EPIC
database with the same database features presented in
Table 1.

2.3.1 Query list selection
All the queries selected for the development and test sets
aimed to build a realistic scenario for QbE STD, by includ-
ing high-occurrence queries, low-occurrence queries, in-
language (INL) queries, out-of-language (OOL) queries,
single-word and multi-word queries, in-vocabulary and
out-of-vocabulary queries, and queries of different
lengths. A query may not have any occurrence or may
appear once or more in the speech data. Table 3 includes
some features of the development and test query lists

such as the number of INL and OOL queries, the number
of single-word and multi-word queries, and the number
of INV and OOV queries, together with the number of
occurrences of each set in the corresponding speech data.
It must be noted that a multi-word query was considered
OOV in cases where any of the words that formed the
term of the query were OOV. The test EPIC query list
only contained easy terms, i.e., no OOL and multi-word
queries were included, because this corpus was aimed at
evaluating the systems submitted to the evaluation in a
different domain.

2.4 Comparison with other QbE STD evaluations
The evaluations that are most similar to the ALBAYZIN
QbE STD are theMediaEval 2011 [70], 2012 [71], and 2013
[49] Spoken Web Search evaluations. In 2014, the Query
by Example Search on Speech task (QUESST) held at
MediaEval differed from the previous evaluations in that
it was a Spoken Document Retrieval task, i.e., no query
timestamps had to be output by the systems, and only
the audio files that contained the query must be retrieved
[46]. In 2015, the QUESST was similar to that of 2014,
but the systems had to provide a score per query and

Table 2 Summary of EPIC database

File ID No. of word occ. Dur. (min) No. of spk. p.563 ave. MOS

10-02-04-m-058-org-es 280 2.47 1 fe. 3.71

10-02-04-m-074-org-es 3189 25.2 1 ma. 2.79

11-02-04-m-017-org-es 532 3.47 1 fe. 3.70

11-02-04-m-022-org-es 896 5.08 1 ma. 2.76

11-02-04-m-032-org-es 726 3.37 1 ma. 3.12

11-02-04-m-035-org-es 535 3.12 1 ma. 3.44

11-02-04-m-041-org-es 92 0.78 1 ma. 3.00

11-02-04-m-054-org-es 199 1.70 1 ma. 3.12

12-02-04-m-010-org-es 344 2.38 1 ma. 3.18

12-02-04-m-028-org-es 78 0.45 1 ma. 1.66

12-02-04-m-038-org-es 285 2.17 1 ma. 3.31

25-02-04-p-024-org-es 1205 8.50 1 fe. 3.92

25-02-04-p-027-org-es 353 2.23 1 ma. 3.67

25-02-04-p-030-org-es 523 3.18 1 fe. 3.79

25-02-04-p-034-org-es 353 2.23 1 fe. 3.78

25-02-04-p-037-org-es 492 2.93 1 fe. 3.67

25-02-04-p-043-org-es 1705 12.27 1 ma. 3.32

25-02-04-p-047-org-es 922 5.82 1 ma. 3.39

25-02-04-p-072-org-es 278 1.90 1 fe. 4.27

25-02-04-p-081-org-es 1270 8.07 1 ma. 3.20

25-02-04-p-096-org-es 211 1.27 1 ma. 3.41

ALL 14468 98.58 21 (14 ma. 7 fe.) 3.20

‘MOS’ stands for Mean Opinion Score, as estimated using the ITU-T p.563 standard, train training, dev development, occ. occurrences, dur. duration, spk. for speakers,ma.male,
fe. female, ave. for average
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Table 3 Statistics of the development and the test query lists for
the MAVIR and the EPIC databases

Query list dev test-MAVIR test-EPIC

#INL queries (occ.) 96 (386) 99 (1163) 95 (1152)

#OOL queries (occ.) 6 (39) 7 (29) 0 (0)

#SINGLE queries (occ.) 93 (407) 100 (1180) 95 (1152)

#MULTI queries (occ.) 9 (18) 6 (12) 0 (0)

#INV queries (occ.) 83 (296) 94 (979) 78 (917)

#OOV queries (occ.) 19 (129) 12 (213) 17 (235)

The length of the development queries varies between 5 and 21 phonemes. The
length of the MAVIR test queries varies between 5 and 16 phonemes. The length of
the EPIC test queries varies between 5 and 15 phonemes. dev development, INL
in-language queries, OOL out-of-language queries, SINGLE single-word queries,
MULTImulti-word queries, INV in-vocabulary queries, OOV out-of-vocabulary
queries, occ. occurrences

utterance [72]. 2016 was the last year that the search-on-
speech task was included in MediaEval, by means of the
zero-cost speech recognition task. This consisted of build-
ing LVCSR systems from low resources [73]. The task in
the MediaEval 2011, 2012, and 2013 Spoken Web Search
and the ALBAYZIN evaluations was the same, i.e., search-
ing speech content from speech queries, but they differed
in several aspects. This makes it difficult to compare the
results obtained in the ALBAYZIN QbE STD evaluation
to the previous MediaEval evaluations.
The most important difference is the nature of the

audio content used for the evaluations. In the Medi-
aEval evaluations, the speech was typically telephone
speech, either conversational or read and elicited speech,
or speech recorded with in-room microphones. In
the ALBAYZIN evaluations, the audio consisted of
microphone recordings of real talks in workshops that
took place in large conference rooms in the presence of

an audience. The microphones, the conference rooms,
and the recording conditions changed from one record-
ing to another. The microphones were not close-talking
microphones but were mainly tabletop or floor standing
microphones.
In addition, the MediaEval evaluations dealt with

Indian- and African-derived languages, as well as Alba-
nian, Basque, Czech, non-native English, Romanian, and
Slovak languages, while the ALBAYZIN evaluations deal
only with Spanish.
In addition to the MediaEval evaluations, a new

round of QbE STD evaluations was organized with the
NTCIR-11 [74] and NTCIR-12 [75] conferences. The
data used in these evaluations contained spontaneous
speech in Japanese provided by the National Institute for
Japanese language and spontaneous speech which was
recorded during seven editions of the Spoken Document
Processing Workshop. As additional information, these
evaluations provided participants with the results of a
voice activity detection system on the input speech data,
the manual transcription of the speech data, and the
output of an LVCSR system. Although the ALBAYZIN
QbE STD evaluation could be considered to be simi-
lar in terms of speech nature to the NTCIR QbE STD
evaluations, i.e., the speech was recorded in real work-
shops, the ALBAYZIN evaluations make use of other
languages and define disjointed development and test
query lists to measure the generalization capability of the
systems.
Table 4 summarizes the main characteristics of

the MediaEval QbE STD evaluations, the NTCIR-11
and NTCIR-12 QbE STD evaluations, the previous
ALBAYZIN QbE STD evaluations, and the ALBAYZIN
QbE STD 2016 evaluation.

Table 4 Comparison of the different QbE STD evaluations: Albanian (ALB), Basque (BAS), Czech (CZE), non-native English (NN-ENG),
Isixhosa (ISIX), Isizulu (ISIZ), Romanian (ROM), Sepedi (SEP), Setswana (SET), and Slovak (SLO)

Evaluation Language/s Type of speech No. of queries dev./test Primary metrics

MediaEval 2011 English, Hindi, Gujarati,
and Telugu

Tel. 64/36 ATWV

MediaEval 2012 2011 + isiNdebele,
Siswati, Tshivenda, and
Xitsonga

Tel. 164/136 ATWV

MediaEval 2013 ALB, BAS, CZE, NN-ENG,
ISIX, ISIZ, ROM, SEP, and
SET

Tel. and mic. > 600/> 600 ATWV

MediaEval 2014 ALB, BAS, CZE,NN-ENG,
ROM, and SLO

Tel. and mic. 560/555 Cnxe

NTCIR-11 2014 Japanese Mic. workshop 63/203 F-measure

NTCIR-12 2016 Japanese Mic. workshop 120/1620 F-measure, ATWV, MAP

ALBAYZIN 2012 Spanish Mic. workshop 60/60 ATWV

ALBAYZIN 2014 Spanish Mic. workshop 94/99 ATWV

ALBAYZIN 2016 Spanish Mic. workshop + parliament 102/106 + 95 ATWV

Tel. telephone,mic.microphone, dev. development, ATWV actual term weighted value, Cnxe normalized cross entropy cost,MAPmean average precision
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3 Systems
Eight different systems were submitted to the ALBAYZIN
QbE STD 2016 evaluation from four different research
groups (see Table 5). Some were submitted in time for the
evaluation, and some were submitted as post-evaluation
systems and so were not included in the competition. All
were based on a feature representation of the queries and
the utterances and a DTW-based search to hypothesize
detections. In addition, a text-based STD system was also
presented to compare performance when using written
and acoustic (spoken) queries.

3.1 A-GTM-UVigo-Three feature+DTW-based fusion QbE
STD system (A-GTM-UVigo-3-fea+DTW fusion)

The architecture of this system is shown in Fig. 1; it
consists of a fusion of three different DTW-based QbE
STD systems that employ different approaches for feature
extraction.

3.1.1 Feature extraction
Given a query Q with n frames (and equivalently, an utter-
ance U with m frames), three speech representations that
result in a set Q = {q1, . . . , qn} of n vectors of dimension
D (and equivalently, a set of U = {u1, . . . , um} ofm vectors
of dimension D) are based on:

• Phoneme posteriorgram + phoneme unit selection:
This speech representation relies on phoneme
posteriorgrams [34]. Given a query/utterance and a
phoneme recognizer with P phonetic units, the
posterior probability of each phonetic unit is
computed for each frame, leading to a set of vectors
of dimension P that represent the probability of each
phonetic unit at every frame. To construct a wide-
coverage language-independent QbE STD system,
the Czech, English, Hungarian, and Russian phoneme
recognizers developed by the Brno University of
Technology (BUT) [76] are used to obtain the
phoneme posteriorgrams; in these decoders, each
phonetic unit has three different states and a
posterior probability is an output for each of them, so
they are combined to obtain one posterior probability
for each unit [17]. After obtaining the posteriors,

Gaussian softening is applied to obtain Gaussian-
distributed probabilities [77]. Then, the phoneme
unit selection strategy described in [25] is applied.

• Acoustic features + feature selection: Aiming to
obtain as much information as possible from the
speech signals, a large set of features, summarized in
Table 6, are used to represent the queries and
utterances; these features, obtained using the
OpenSMILE feature extraction toolkit [78], are
extracted every 10 ms using a 25-ms window, except
for the F0, probability of voicing, jitter, shimmer, and
harmonics-to-noise ratio (HNR), where a 60 ms
window is used due to its best performance in
preliminary work. Finally, the feature selection
technique described in [79] is applied to obtain the
most discriminative features.

• Gaussian posteriorgrams: The Gaussian
posteriorgrams [80] are used to represent the queries
and the utterances. Given a GMM with G Gaussians,
the posterior probability of each Gaussian is
computed for each time frame, leading to a set
of vectors of dimension G that represent the
probability of each Gaussian at every time instant. In
this system, 19 Mel-frequency Cepstral Coefficients
(MFCCs) are extracted from the acoustic signals,
accompanied by their energy, delta, and double delta
coefficients due to their best performance in previous
work. The feature extraction and the Gaussian
posteriorgram computation are carried out using the
Kaldi toolkit [81].

3.1.2 Search
The search stage uses the S-DTW algorithm [82], which
is a variant of the standard DTW. For the S-DTW, a cost
matrix M ∈ �n×m must first be defined, in which the
rows and the columns correspond to the query and the
utterance frames, respectively:

Mi,j =
⎧
⎨

⎩

c
(
qi, uj

)
if i = 0

c
(
qi, uj

) + Mi−1,0 if i > 0, j = 0
c
(
qi, uj

) + M∗(i, j) else,
(2)

Table 5 Participants in the ALBAYZIN QbE STD 2016 evaluation along with the submitted systems

Team ID Research institution Systems

GTM-UVigo AtlantTIC Research Center Universidad de Vigo, Spain A-GTM-UVigo-3-fea+DTW fusion (in-time)

L2F L2F Spoken Language Systems Lab, INESC-ID University
of Lisbon, Portugal

B-L2F-4-pllr fea+DTW fusion (post-evaluation)
C-L2F-4-likel fea+DTW fusion (post-evaluation)

ELiRF-UPV Natural Language Engineering and Pattern Recognition
Universitat Politécnica de Valéncia, Spain

D-ELiRF-UPV-Post+DTW (in-time)
E-ELiRF-UPV-Post+DTWNorm (in-time)

SPL-IT-UC Instituto de Telecomunicações University of Coimbra,
Portugal

F-SPL-IT-UC-4-phnrec+DTW fusion (in-time)
G-SPL-IT-UC-3-phnrec+DTW fusion (in-time)
H-SPL-IT-UC-2-LIphnrec+DTW fusion (in-time)
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Fig. 1 A-GTM-UVigo-Three feature+DTW-based fusion QbE STD system architecture

where c(qi, uj) is a function that defines the cost between
the query vector qi and the utterance vector uj and

M∗(i, j) = min
(
Mi−1,j,Mi−1,j−1,Mi,j−1

)
, (3)

which implies that only horizontal, vertical, and diagonal
path movements are allowed.
Pearson’s correlation coefficient r [83] is used as a cost

function by mapping it into the interval [0,1] applying the
following transformation:

c
(
qi, uj

) = 1 − r
(
qi, uj

)

2
. (4)

Once the matrix M is computed, the end of the best
warping path between Q and U is obtained as follows:

b∗ = argminb∈1,...,mM(n, b). (5)

The starting point of the path ending at b∗, namely a∗,
is computed by backtracking, hence obtaining the best
warping path P(Q,U) = {p1, . . . , pk , . . . , pK}, where pk =
(ik , jk), (i.e., the kth element of the path is formed by qik
and ujk , and K is the length of the warping path).
A query Q may appear several times in an utterance

U, especially if U is a long recording. Therefore, not only
must the best warping path be detected, but also others
that are less likely. One approach to overcome this issue
consists of detecting a given number of candidate matches
nc: Every time a warping path that ends at frame b∗ is
detected, M (n, b∗) is set to ∞ to ignore this element in
the future.
A confidence score must be assigned to every detection

of a query Q in an utterance U. Firstly, the cumulative cost
of the warping path Mn,b∗ is length-normalized [35], and
then, z-norm is applied so that all the confidence scores of
all the queries have the same distribution [37].

3.1.3 Fusion
Discriminative calibration and fusion are applied to com-
bine the detections of the different systems obtained
from the different feature extraction approaches [38]. The

global minimum score produced by the systems for all
the queries is used to hypothesize the missing confidence
scores due to its good performance in previous work.
The calibration and the fusion parameters are then esti-
mated by logistic regression on the development data to
obtain improved discriminative and well-calibrated likeli-
hood ratios [84]. The calibration and the fusion training
are performed using the Bosaris toolkit [85].
The fusion is carried out on the detections output by

the S-DTW search from the phoneme posteriorgram +
phoneme unit selection approach on the English phoneme
decoder, the acoustic features + feature selection approach
from a set of 90 relevant features, and the Gaussian pos-
teriorgram approach with 128 Gaussians. This configura-
tion proved to be the best on the development data.

3.2 B-L2F-Four phone log-likelihood ratio
feature+DTW-based fusion QbE STD system
(B-L2F-4-pllr fea+DTW fusion)

Four different QbE STD systems that employ DTW-based
query detection and several phoneme recognizers are
fused. The system architecture is shown in Fig. 2.

3.2.1 Speech segmentation
The set of utterances is pre-processed using the audio
segmentation module presented in [86]. This performs
speech/non-speech classification and speaker segmen-
tation, as well as other tasks. The speech/non-speech
segmentation is implemented using a multi-layer percep-
tron (MLP) based on perceptual linear prediction (PLP)
features, followed by a finite state machine. This finite
state machine smooths the input probabilities given by
the MLP using a median filter over a small window. The
smoothed signal is then thresholded and analysed using
a time window (tmin). The finite state machine consists
of four possible states classified as probable non-speech,
non-speech, probable speech, and speech. If the input audio
signal has a probability of speech above a given threshold,
the finite state machine is placed into the probable speech
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Table 6 Acoustic features used in the A-GTM-UVigo-Three
feature+DTW-based fusion system

Description No. of
features

Sum of auditory spectra 1

Zero-crossing rate 1

Sum of RASTA style filtering auditory spectra 1

Frame intensity 1

Frame loudness 1

Root mean square energy and log-energy 2

Energy in frequency bands 250–650 Hz and 1000–4000 Hz 2

Spectral rolloff points at 25%, 50%, 75%, 90% 4

Spectral flux 1

Spectral entropy 1

Spectral variance 1

Spectral skewness 1

Spectral kurtosis 1

Psychoacoustical sharpness 1

Spectral harmonicity 1

Spectral flatness 1

MFCCs 16

MFCC filterbank 26

Line spectral pairs 8

Cepstral PLP coefficients 9

RASTA PLP coefficients 9

Fundamental frequency (F0) 1

Probability of voicing 1

Jitter 2

Shimmer 1

Log harmonics-to-noise ratio (logHNR) 1

LPC formant frequencies and bandwidths 6

Formant frame intensity 1

First derivative 102

Total 204

RASTA log-RelAtive SpecTrAl,MFCC Mel-frequency cepstral coefficient, PLP
perceptual linear prediction, LPC linear prediction coding

state. If, after a given time interval (tmin), the average
speech probability is above a given confidence value, the
machine changes to the speech state. Otherwise, it goes to
the non-speech state. The finite-state machine generates
segment boundaries for the non-speech segments larger
than the resolution of the median window. Additionally,
the non-speech segments larger than tmin are discarded.
The value of tmin and the threshold are chosen to maxi-
mize the non-speech detection in the work presented in
[86] which aims to avoid the system processing the short
silence segments included in large speech segments. With

the speech segmentationmodule, a partition of each utter-
ance into smaller segments is obtained. Only the resulting
speech segments are given to the query search. This strat-
egy offers two computational advantages: (1) Because the
same query may occur multiple times in an utterance, a
DTW-based search should proceed sequentially or iter-
atively over the whole utterance, storing the candidates
found during the search, and initiating a new process with
the remaining audio until a certain stopping criterion is
met. By splitting the utterance into smaller segments, the
search can be parallelized, allowing for different searches
of the same query at the same time. (2) Because the
segments classified as non-speech are discarded, the per-
formance of the DTW algorithm benefits from an overall
reduction in the search space. On the other hand, this
strategy conveys at least two drawbacks thatmay affect the
query detection: (1) The errors of the audio segmentation
module can result in missing speech segments that may
eventually prove to contain query terms that are lost. (2)
It is assumed that only a single match per query can occur
in a sub-segment, which may also introduce misses in the
search.

3.2.2 Feature extraction
Two different approaches are employed for feature extrac-
tion which aim to obtain complementary information
from the speech signals. The first employs the AUDIMUS
phoneme recognizers for speech representation, and the
second is based on the phoneme recognizers developed by
the BUT [76].
The AUDIMUS phoneme recognizers are based on

hybrid connectionist methods [87]. Four phoneme recog-
nizers that exploit four different sets of acoustic models
were used. These are trained in European Portuguese,
Brazilian Portuguese, Spanish, and the American English
languages. The acoustic models are based on MLPs that
are part of the L2F in-house hybrid connectionist ASR
system called AUDIMUS [88, 89]. AUDIMUS combines
four MLP outputs trained with various sets of features,
as shown in Table 7. The language-dependent MLPs are
trained using different amounts of annotated data. Each
MLP is characterized by the input frame context size,
i.e., 13 for PLP, PLP with log-RelAtive SpecTrAl (PLP-
RASTA) and European Telecommunications Standards
Institute (ETSI) features, and 28 for Modulation Spectro-
Gram (MSG) features, the number of units of the two
hidden layers (500), and the size of the output layer.
Only monophone units are modelled, which results in 41-
dimensional posterior vectors for English, 39-dimensional
posterior vectors for Portuguese, 40-dimensional poste-
rior vectors for Brazilian, and 30-dimensional posterior
vectors for American English. These configurations are
used due to their good performance in previous work.
Finally, the frames for which the non-speech posterior



Tejedor et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2018) 2018:2 Page 10 of 25

Fig. 2 B-L2F-Four phone log-likelihood ratio feature+DTW-based fusion QbE STD system architecture

probability is the highest are considered to be silence and
discarded.
The phoneme recognizers for the Czech, Hungarian,

and Russian languages developed by BUT [76] are also
employed. These output phone-state level posterior prob-
abilities andmultiple non-speech units, which are reduced
to single-state phone posterior probabilities, and a unique
silence output unit. This results in 43-dimensional fea-
ture vectors for Czech, 59-dimensional feature vectors
for Hungarian, and 50-dimensional feature vectors for
Russian. The frames where the non-speech posterior
probability is the highest are also discarded.
Finally, both the AUDIMUS and the BUT posterior fea-

ture vectors are converted to phone log-likelihood ratios
(PLLR) as described in [90]. This representation proved to
be very effective in spoken language recognition [91] and
other similar tasks [92].

3.2.3 Search
Given two sequences of feature vectors corresponding to
a query Q and an utterance U, the logarithm of the cosine
distance is computed between each pair of vectors (Q[i],
U[j]) to build a cost matrix as follows:

Table 7 Features used in the AUDIMUS decoders

Feature No. of features

PLP 13 static + first derivative

PLP-RASTA 13 static + first derivative

MLG 28 static

Advanced front-end from ETSI 13 static + first and second derivatives

PLP perceptual linear prediction, PLP-RASTA PLP log-RelAtive SpecTrAl, MSG
modulation SpectroGram, ETSI European Telecommunications Standards Institute

d(Q[i] ,U[j] ) = −log
Q[i] ·U[j]

|Q[i] | · |U[j] | . (6)

The cost matrix is then normalized with respect to the
utterance, such that the matrix values range from 0 to 1
[93]. The normalization is conducted as follows:

dnorm(Q[i] ,U[j] ) = d
(
Q[i] ,U[j]

) − dmin(i)
dmax(i) − dmin(i)

, (7)

where dmin(i) = min
j=1,...,n

d
(
Q[i] ,U[j]

)
and dmax(i) =

max
j=1,...,n

d(Q[i] ,U).

In this way, a perfect match would produce a quasi-
diagonal sequence of zeros. The DTW search looks for
the best alignment of the query and a partition of the nor-
malized cost matrix corresponding to a speech segment.
The algorithm uses three additional matrices to store the
accumulated distance of the optimal partial warping path
found (AD), the length of the path (L), and the path itself.
The best alignment of a query in an utterance is defined

as the one that minimizes the average distance in a warp-
ing path of the normalized cost matrix. A warping path
may start at any given frame of U, i.e., k1, then traverses
a region of U, which is optimally aligned to Q, and ends
at frame k2. The average distance in this warping path is
computed as follows:

davg(Q,U) = AD[i, j] /L[i, j] .

The confidence score for each detection is computed as
1 − davg(Q,U), thus ranging from 0 to 1, where 1 rep-
resents a perfect match. The start time and the duration
of each detection are obtained by retrieving the time off-
sets corresponding to the frames k1 and k2 in the filtered
utterance. The detection results are filtered out to reduce
the number of detections per query to a fixed amount of
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hypothesis. Different values, ranging from 50 to 500, are
experimented with to empirically determine the thresh-
old, with the value of 100 detections per hour with the best
performance observed on the development data.

3.2.4 Fusion
The output detections from the Brazilian Portuguese,
Spanish, and European Portuguese AUDIMUS phoneme
recognizers, and the Czech BUT phoneme recognizer
[76], are fused with the strategy presented in the three
feature+DTW-based fusion QbE STD system. This con-
figuration gave the best performance on the development
data.

3.3 C-L2F-Four likelihood feature+DTW-based fusion QbE
STD system (C-L2F-4-likel fea+DTW fusion)

This system is the same as the B-L2F-Four phone log-
likelihood ratio feature+DTW-based fusion QbE STD
system with the following modifications:

• The English phoneme recognizer developed by BUT
[76] is added to the feature extraction module.

• The fusion is carried out on the detections provided
by the Brazilian Portuguese, Spanish, and English
AUDIMUS phoneme recognizers and the English
phoneme recognizer from BUT.

• The feature extractor from the AUDIMUS and the
BUT phoneme recognizers [76] outputs log
likelihoods instead of PLLR features.

• The threshold in the search is set to 300 detections
per hour. This value was tuned on the development
data with the new configuration.

3.4 D-ELiRF-UPV-Posteriorgram+DTW-based QbE STD
system (D-ELiRF-UPV-Post+DTW)

This system, whose architecture is shown in Fig. 3, is
based on DTW search on phoneme posteriorgrams.
For feature extraction, the phoneme recognizers devel-

oped at BUT for Czech, English, Hungarian, and Russian
languages [76] are employed to obtain a posteriorgram-
based representation of the queries and the utterances.
The English language is employed in the final system sub-
mitted because this gave the best performance on the
development data.
For a search, the system employs the S-DTW algo-

rithm explained above. However, instead of using the
usual transition set with horizontal, vertical, and diagonal

path movements, the horizontal and vertical transitions
are modified so that the paths found must have a length
between half and twice the length of the query, as shown
in Fig. 4. These path movement modifications aim to aug-
ment the query detection rate. To do so,M∗(i, j) in the cost
matrix is modified as follows:

M∗(i, j) = min
(
Mi−x,j−y

)
, (8)

where x and y represent the allowed transitions.
Different cost functions such as the Kullback-Leibler

divergence, the cosine distance, and the inner prod-
uct were explored, but the cosine distance was finally
employed because it provided the best performance on
the development data. The confidence score assigned to
each detection is based on the distance computed by the
S-DTW algorithm.

3.5 E-ELiRF-UPV-Posteriorgram+DTW-based normalized
QbE STD system (E-ELiRF-UPV-Post+DTWNorm)

This system is the same as the D-ELiRF-UPV-Pos-
teriorgram+DTW-based QbE STD system with a single
modification in the S-DTW algorithm. This modification
relies on the fact that the S-DTW search considers the
length of the paths, and hence, the cost matrix is modified
as follows:

Mi,j = c
(
qi, uj

) + M
(
i − x′, j − y′) , (9)

so that:
(
x′, y′) = argmin(x,y)

M(i − x, j − y) + c(qi, uj)
L(i − x, j − y) + 1

, (10)

where L(i − x, j − y) is the length of the best path end-
ing in (i, j). With this modification, the fact that two paths
have similar distance values but differ in the length of their
alignments is considered.

3.6 F-SPL-IT-UC-Four phoneme recognizer+DTW-based
fusion QbE STD system (F-SPL-IT-UC-4-phnrec+DTW
fusion)

This system, whose architecture is presented in Fig. 5,
consists of fusion of four DTW-based search systems from
different phoneme recognizers.

3.6.1 Feature extraction
State-level phone posterior probabilities are employed as
features for the query and the utterance representation.

Fig. 3 D-ELiRF-UPV-Posteriorgram+DTW-based QbE STD system architecture
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Fig. 4 Transitions allowed in the S-DTW search of the
D-ELiRF-UPV-Posteriorgram+DTW-based QbE STD system

These are computed using the phoneme recognizer devel-
oped by BUT [76]. Three different phoneme recognizers
are trained in Spanish, English, and European Portuguese.
Although the queries mainly contain speech, a voice activ-
ity detector is employed. To do so, the frames for which
the average of the posterior probability of silence and
noise is higher than 0.5 were removed before applying the
query search.
The Spanish recognizer was trained using the training

data provided by the organizers. Because the file

mavir02.wav presents a low-frequency noise, high-
pass filtering with a cut-off frequency of 150 Hz,
followed by spectral subtraction, is applied to this
file before further processing. A phoneme dictionary
is built using g2p-seq2seq 8 and a Spanish dictionary
from CMU9. The phoneme alignment of the speech
data is carried out with the Kaldi speech recognition
toolkit [81].
As in previous studies [22, 94], the English recognizer

was trained using the training subsets of TIMIT and
Resource Management databases.
The European Portuguese recognizer was trained using

annotated broadcast news data and a dataset of command
words and sentences, as carried out in previous studies
[22, 94].

3.6.2 Search
The DTW algorithm is used for query detection from
the state-level phone posterior probabilities that repre-
sent each query and utterance frame. The logarithm of the
cosine distance, as in the B-L2F-Four phone log-likelihood
ratio feature+DTW-based fusion QbE STD system, is
employed as a distance metric between a query and an
utterance frame to build a cost matrix.
The DTW search considers paths that start at the first

frame of the query and at any frame of the utterance
and move in unitary weighted jumps diagonally, vertically,
or horizontally from the lowest accumulated distance.
The DTW search result corresponds to the accumu-
lated distances (Dacc) at the last frame of the query, for
every frame of the utterance. The information regarding

Fig. 5 F-SPL-IT-UC-Four phoneme recognizer+DTW-based fusion QbE STD system architecture
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the start frame of the path, the ending frame of the
path, and the number of diagonal, horizontal, and vertical
movements is stored. The DTW search is carried out
for Spanish, English, and European Portuguese languages
individually. An additional DTW search based on averag-
ing all the cost matrices given by the three languages is
conducted, as in [18].
Finally, the accumulated distances are normalized

according to the following equation:

Dnorm = Dacc

ND + 1
2 (NV + NH)

, (11)

where Dacc is the accumulated distance, and ND, NV , and
NH are the numbers of diagonal, vertical, and horizon-
tal path movements, respectively. A confidence score is
assigned to each detection by changing the sign of Dnorm,
i.e., score = −Dnorm.
To select the candidate hits on the final normalized path

distances, the system employs two limits for peak picking.
The first is a hard limit of a maximum number of peaks,
which implies an average of 1 peak per 20 s of audio. The
second is a threshold where only the peaks above the 90%
quantile of values above the mean plus standard devia-
tion are selected. This guarantees that a small number of
peaks is always chosen. Additionally, the peaks must be
separated by a distance which is at least equal to the query
length. The duration of the candidate hits in the utterance
is also limited to between 0.5 and 1.9 times the size of the
query. These figures were optimized on the development
data.

3.6.3 Fusion
The next step is to normalize the confidence scores per
query, for which z-norm is applied to each query score
(q-norm). At this stage, there are four outputs from the
four DTW search processes, i.e., the three phoneme rec-
ognizers and the average cost matrix. The fusion scheme
is similar to that presented in [38]. Firstly, all the can-
didate hits are aligned (expanding the start and the end
times), and a default score per sub-system for the can-
didate hits that are not found in all the sub-systems is
assigned. This default score, which is equal to zero due
to the q-norm, is the mean confidence score of that sub-
system since this outperforms all other strategies such as
the minimum score per query. All the candidate hits are
considered, since this performs better than limiting the
detections to those candidate hits found on more than
one sub-system. Finally, the sub-system fusion is carried
out by logistic regression with the Bosaris toolkit [85] to
obtain improved discriminative and well-calibrated likeli-
hood ratios [84]. The logistic regression is trained with the
development data.

3.7 G-SPL-IT-UC-Three phoneme recognizer+DTW-based
fusion QbE STD system (G-SPL-IT-UC-3-phnrec+DTW
fusion)

This system is the same as the F-SPL-IT-UC-Four
phoneme recognizer+DTW-based fusion QbE STD
system except that the detections of the sub-system that
employs the DTW-search on the average cost matrix are
removed in the fusion strategy. This aims to evaluate the
QbE STD system performance based on the individual
languages.

3.8 H-SPL-IT-UC-Two language-independent phoneme
recognizer+DTW-based fusion QbE STD system
(H-SPL-IT-UC-2-LIphnrec+DTW fusion)

This system is the same as the F-SPL-IT-UC-Four
phoneme recognizer+DTW-based fusion QbE STD sys-
tem except that only the detections of the systems which
employ the English and the Portuguese phoneme rec-
ognizers are fused. This aims to evaluate the QbE STD
system performance using a language-independent setup.

3.9 I-Text-based STD system
This system was employed for comparison purposes with
the QbE STD systems submitted to the evaluation. It was
not submitted by any participant, nor did it compete in
the evaluation. Because this system employs the correct
transcription of the queries for the search, the system does
not follow the rules of the evaluation. Therefore, this sys-
tem simulates a scenario in which the queries are perfectly
decoded by an ideal ASR subsystem.
The text-based STD system consists of the combina-

tion of a word-based STD system to detect the INV words
and a phone-based STD system to detect the OOV words.
Therefore, the correct word transcription of each query
is used for the word-based STD system, and the cor-
rect phone transcription of each query is used for the
phone-based STD system. Both systems are described
below.

3.9.1 Word-based STD system
The ASR subsystem is based on the Kaldi open-source
toolkit [81] and employs the DNN-based acoustic models.
Specifically, a DNN-based context-dependent speech rec-
ognizer is trained following the DNN training approach
presented in [95]. Forty-dimensional MFCCs, which are
augmented with three pitch- and voicing-related features
[96] and appended with their delta and double delta coef-
ficients, are firstly extracted for each speech frame. The
DNN has 6 hidden layers with 2048 neurons each. Each
speech frame is spliced across ± 5 frames to produce
1419-dimensional vectors that are the input into the first
layer. The output layer is a soft-max layer representing the
log-posteriors of the context-dependent HMM states. The
Kaldi LVCSR decoder generates word lattices [97] using
these DNN-based acoustic models.
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The data used for acoustic model (AM) training of
this Kaldi-based LVCSR system have been extracted from
the Spanish material in the 2006 TC-STAR automatic
speech recognition evaluation campaign10 and the Gali-
cian broadcast news database Transcrigal [98]. It must
be noted that all the non-speech parts, as well as the
speech parts corresponding to transcriptions with pro-
nunciation errors, incomplete sentences, and short speech
utterances, were discarded. This resulted in approximately
104.5 h of acoustic training material.
The language model (LM) of the LVCSR system is

constructed using a text database of 160 millions of
word occurrences from several sources such as the tran-
scriptions of European and Spanish Parliaments from
the TC-STAR database, subtitles, books, newspapers, on-
line courses, and the transcriptions of the development
data provided by the organizers. Specifically, the LM is
obtained by static interpolation of the trigram-based LMs
which are trained using these different text databases.
The LMs are built with the SRILM toolkit [99], with the
Kneser-Ney discounting strategy. The final interpolated
LM is obtained using the SRILM static n-gram interpo-
lation functionality. The LM vocabulary size is limited to
the most frequent 60,000 words, and for each evaluation
data set, the OOV terms are removed from the LM. This
word-based LVCSR system configuration was chosen due
to its good performance in the STD task [100].
The STD subsystem integrates the Kaldi term detector

[81, 101, 102] which searches for the input terms within
the word lattices obtained in the previous step. These lat-
tices are processed using the lattice indexing technique
described in [103] so that the lattices of all the utterances
in the search collection are converted from the individual
WFSTs to a single generalized factor transducer structure
in which the start-time, the end-time, and the lattice pos-
terior probability of each word token are stored as three-
dimensional costs. This factor transducer is an inverted
index of all the word sequences seen in the lattices. Thus,
given a list of terms, a simple finite-state machine is cre-
ated such that it accepts each term and composes it with
the factor transducer to obtain all the occurrences of the
terms in the search collection. The Kaldi decision-maker
conducts a YES/NO decision, for each detection, based
on the term-specific threshold (TST) approach presented
in [104]. Therefore, a detection is assigned the YES
decision if:

p >
Ntrue

T
β

+ β−1
β

Ntrue
, (12)

where p is the posterior probability of the detection, Ntrue
is the sum of the confidence score of all the detections of
the given term, β is set to 999.9, and T is the length of the
audio in seconds.

3.9.2 Phone-based STD system
TheOOV terms are handled with a phone-based STD sys-
tem strategy. A phoneme sequence is first obtained from
the 1-best word path of the word-based Kaldi LVCSR sys-
tem presented above. Next, a reduction of the phoneme
set is performed to combine the phonemes with high
confusion, which aims to augment the term detection
rate; specifically, the semivowels /j/ and /w/ are repre-
sented as the vowels /i/ and /u/, respectively, and the
palatal n /η/ is represented as /n/. Then, the tre-agrep
tool is employed to compute candidate hits so that the
Levenshtein distance between each recognized phoneme
sequence and the phoneme sequence corresponding to
each term can be computed. An analysis of the proposed
strategy suggests that those candidate hits whose Leven-
shtein distance was equal to 0 were, in general, correct
hits. The candidate hits with Levenshtein distance equal
to 1 were found to be false alarms, although many hits
were also found; since no specific criterion to assign a con-
fidence score is implemented, only those candidate hits
with Levenshtein distance equal to 0 are kept and assigned
the maximum score (1). The OOV term detections found
using this phone-based STD system are directly merged
with the INV detections obtained using the word-based
STD system.

3.10 System comparison
The systems submitted to the evaluation convey both
similar and different properties that make them all inter-
esting from a system comparison perspective. All the
QbE STD systems employed DTW or DTW variants
for the query search, for which the cost function is in
general, the cosine distance. In addition, almost all the
QbE STD systems employed fusion to output the final
list of query detections. Regarding the feature extrac-
tion, the systems are based, in general, on posteriorgram-
derived features for the query/utterance representation.
However, there are specific differences that make each
system distinct: The systems submitted by the ELiRF-
UPV group (D-ELiRF-UPV-Post+DTW and E-ELiRF-
UPV-Post+DTWNorm) differ in the cost matrix used
within the S-DTW search. The systems submitted by the
SPL-IT-UC group (F-SPL-IT-UC-4-phnrec+DTW fusion,
G-SPL-IT-UC-3-phnrec+DTW fusion, and H-SPL-IT-
UC-2-LIphnrec+DTW fusion) differ in the number of
subsystems that are used for the fusion. The systems sub-
mitted by the L2F group (B-L2F-4-pllr fea+DTW fusion
and C-L2F-4-likel fea+DTW fusion) show the most sig-
nificant differences, both in the feature extractor, the
DTW search, and the systems that are fused. Table 8
highlights the main differences and consistencies corre-
sponding to the feature extraction, the cost functions,
the search algorithm, and the fusion of each QbE STD
system.
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Table 8 Summary of the QbE STD systems

System ID Feature extraction Search Cost function Fusion

A-GTM-UVigo-3-fea+DTW fusion Phoneme post.+unit sel. Acoustic feat.+feat.
sel. Gaussian post.

S-DTW Pearson corr. coef. 3 systems

B-L2F-4-pllr fea+DTW fusion PLLR-phoneme-post. DTW-thres1 Cosine distance 4 systems

C-L2F-4-likel fea+DTW fusion LL-phoneme-post. DTW-thres2 Cosine distance 4 systems (*)

D-ELiRF-UPV-Post+DTW Phoneme post. S-DTW Cosine distance –

E-ELiRF-UPV-Post+DTWNorm Phoneme post. S-DTW+Norm. Cosine distance –

F-SPL-IT-UC-4-phnrec+DTW fusion Phoneme post. DTW Cosine distance 4 systems

G-SPL-IT-UC-3-phnrec+DTW fusion Phoneme post. DTW Cosine distance 3 systems

H-SPL-IT-UC-2-LIphnrec+DTW fusion Phoneme post. DTW Cosine distance 2 systems

post. posteriorgram, sel. selection, feat. features, S-DTW subsequence dynamic time warping, corr. coef. correlation coefficient, PLLR phone log-likelihood ratio, DTW dynamic
time warping, thres1 threshold 1, thres2 threshold 2, LL log-likelihood, Norm normalization. (*) These 4 systems are different from those fused in the B-L2F-4-pllr fea+DTW fusion
system

4 Results and discussion
The system results are presented in Table 9 for the devel-
opment data, and Tables 10 and 11 show the performance
for the MAVIR and the EPIC test data, respectively. The
most important findings in the results are presented in
Table 12.

4.1 Development data results
• The best performance for the QbE STD task was

obtained by the C-L2F-4-likel fea+DTW fusion
system. This system explicitly models the target
language, i.e., Spanish, using a specific phoneme
recognizer and is based on the fusion of different
phoneme recognizers, since these improve the system
performance. Paired t tests show that this best
performance was statistically significant when
compared with the B-L2F-4-pllr fea+DTW
(p < 0.02), D-ELiRF-UPV-Post+DTW (p < 0.01),
E-ELiRF-UPV-Post+DTWNorm (p < 0.01), and
H-SPL-IT-UC-2-LIphnrec+DTW fusion (p < 0.01)
systems.

• The worst performance was exhibited by the
D-ELiRF-UPV-Post+DTW and E-ELiRF-UPV-Post+
DTWnorm systems, which did not employ any fusion
strategy.

• The performance obtained by the H-SPL-IT-UC-2-
LIphnrec+DTW fusion system also confirmed
significant performance degradation when the target
language information was not used in the system.
However, the A-GTM-UVigo-3-fea+DTW fusion
system was an exception; although this did not
employ the target language information, it still
obtained a reasonable performance. This effect is
possibly due to the use of a robust feature extractor,
which involves the feature selection and the phoneme
unit selection.

• As expected, the I-Text-based STD system, which
employed the correct transcription of the query as
input and the target language information,
significantly outperformed all the QbE STD systems
(p < 0.01). However, it must be noted that this
I-Text-based STD system did not compete in the
evaluation itself, because it did not follow the rules of
the evaluation.

4.2 Test data results
4.2.1 MAVIR test data

• The system with the best performance for the QbE
STD task does not match the system of the
development data. On these test data, the best

Table 9 System results of the ALBAYZIN QbE STD 2016 evaluation on the development data

System ID MTWV ATWV p(FA) p(Miss) Fusion

A-GTM-UVigo-3-fea+DTW fusion 0.2800 0.2750 0.00002 0.699 YES

B-L2F-4-pllr fea+DTW fusion 0.2422 0.2247 0.00005 0.704 YES

C-L2F-4-likel fea+DTW fusion 0.3190 0.3099 0.00005 0.635 YES

D-ELiRF-UPV-Post+DTW 0.1991 0.1991 0.00000 0.801 NO

E-ELiRF-UPV-Post+DTWNorm 0.2057 0.2057 0.00000 0.794 NO

F-SPL-IT-UC-4-phnrec+DTW fusion 0.2954 0.2954 0.00008 0.621 YES

G-SPL-IT-UC-3-phnrec+DTW fusion 0.3001 0.3001 0.00002 0.683 YES

H-SPL-IT-UC-2-LIphnrec+DTW fusion 0.2009 0.2009 0.00005 0.749 YES

I-Text-based STD 0.6576 0.6559 0.00005 0.288 YES
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Table 10 System results of the ALBAYZIN QbE STD 2016 evaluation on the MAVIR test data

System ID MTWV ATWV p(FA) p(Miss) Fusion

A-GTM-UVigo-3-fea+DTW fusion 0.2739 0.2646 0.00008 0.651 YES

B-L2F-4-pllr fea+DTW fusion 0.2343 0.2287 0.00005 0.715 YES

C-L2F-4-likel fea+DTW fusion 0.2789 0.2542 0.00006 0.657 YES

D-ELiRF-UPV-Post+DTW 0.2003 0.1729 0.00002 0.779 NO

E-ELiRF-UPV-Post+DTWNorm 0.1958 0.1759 0.00003 0.776 NO

F-SPL-IT-UC-4-phnrec+DTW fusion 0.2674 0.2294 0.00005 0.685 YES

G-SPL-IT-UC-3-phnrec+DTW fusion 0.2682 0.2427 0.00005 0.679 YES

H-SPL-IT-UC-2-LIphnrec+DTW fusion 0.2137 0.1913 0.00005 0.736 YES

I-Text-based STD 0.6414 0.6260 0.00006 0.298 YES

performance was for the A-GTM-UVigo-3-fea+
DTW fusion system. We consider this may be due to
some over-adaptation of the selected phoneme
recognizers for the query search and the fusion to the
development data, which caused a worse
generalization on unseen (test) data.

• The best performance of the
A-GTM-UVigo-3-fea+DTW
fusion system could be due to the robust feature
extraction it employs. This system is
language-independent and hence is suitable to build a
language-independent STD system, which is a hot
topic in the search-of-speech. The results obtained
with this system suggest that a fusion strategy
combined with a robust feature extractor, which
integrates a varied set of features in individual search
processes, can alleviate the gap between
language-dependent and language-independent QbE
STD systems in highly difficult domains such as
spontaneous speech. This best performance was
statistically significant for a paired t test compared
with the D-ELiRF-UPV-Post+DTW (p < 0.01),
E-ELiRF-UPV-Post+DTWNorm (p < 0.01) and
H-SPL-IT-UC-2-LIphnrec+DTW fusion (p < 0.01)
systems.

• The remainder of the findings observed in the
development data can also be found in the test data:
The worst systems did not employ the target
language information nor fusion, and the
I-Text-based STD system significantly outperformed
the QbE STD systems (p < 0.01).

4.2.2 EPIC test data
• The best performance for the QbE STD task was for

the language-dependent
G-SPL-IT-UC-3-phnrec+DTW fusion system. We
consider the discrepancy compared with the MAVIR
database relies on the change of the acoustic domain.
The parameter tuning and the ATWV threshold
estimation could dramatically change the system
performance ranking (as in the A-GTM-UVigo-3-
fea+DTW fusion system) when different domain data
are used for training/development and test. The best
performance of the G-SPL-IT-UC-3-phnrec+DTW
fusion system was statistically significant for a paired t
test compared with the A-GTM-UVigo-3-fea+DTW
fusion (p < 0.01), B-L2F-4-pllr fea+DTW (p < 0.01),
D-ELiRF-UPV-Post+DTW (p < 0.01), and
E-ELiRF-UPV-Post+DTWNorm (p < 0.01) systems,
and weakly significant compared with the

Table 11 System results of the ALBAYZIN QbE STD 2016 evaluation on the EPIC test data

System ID MTWV ATWV p(FA) p(Miss) Fusion

A-GTM-UVigo-3-fea+DTW fusion 0.2496 −0.4356 0.00008 0.668 YES

B-L2F-4-pllr fea+DTW fusion 0.2243 0.2181 0.00009 0.690 YES

C-L2F-4-likel fea+DTW fusion 0.2973 0.2628 0.00012 0.587 YES

D-ELiRF-UPV-Post+DTW 0.1530 0.1103 0.00001 0.835 NO

E-ELiRF-UPV-Post+DTWNorm 0.1658 0.1232 0.00003 0.800 NO

F-SPL-IT-UC-4-phnrec+DTW fusion 0.3334 0.2641 0.00007 0.593 YES

G-SPL-IT-UC-3-phnrec+DTW fusion 0.3277 0.3011 0.00006 0.610 YES

H-SPL-IT-UC-2-LIphnrec+DTW fusion 0.2662 0.2500 0.00007 0.664 YES

I-Text-based STD 0.8617 0.8586 0.00004 0.097 YES
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Table 12 Summary of the best QbE STD system results and the I-Text based-STD system of the ALBAYZIN QbE STD 2016 evaluation

Best system ID ATWV Data Correct query transcription Fusion Lang-dep.

C-L2F-4-likel fea+DTW fusion 0.3099 Development data NO YES YES

A-GTM-UVigo-3-fea+DTW fusion 0.2646 MAVIR test data NO YES NO

G-SPL-IT-UC-3-phnrec+DTW fusion 0.3011 EPIC test data NO YES YES

I-Text-based STD 0.6559 Development data YES YES YES

I-Text-based STD 0.6260 MAVIR test data YES YES YES

I-Text-based STD 0.8586 EPIC test data YES YES YES
Lang-dep. language dependency

F-SPL-IT-UC-4-phnrec+DTW fusion and
H-SPL-IT-UC-2-LIphnrec+DTW fusion (p < 0.05)
systems. It must be noted that the significance levels
decrease for the language-independent QbE STD
systems due to the change of the acoustic
domain.

• Although from an ASR perspective, the EPIC
database is easier compared to the MAVIR database,
not all the systems obtained a better performance
than that on the MAVIR data due to the domain
change. The fusion strategy played an important role
in alleviating this issue, since the systems that do not
employ any fusion strategy degrade their
performance to a greater extent with respect to the

MAVIR test data, whereas the systems that are based
on fusion obtain similar or better performance than
that obtained in the MAVIR test data.

• The A-GTM-UVigo-3-fea+DTW fusion system
dramatically decreases the performance due to an
issue in the estimation of the ATWV threshold.

• The results suggest that using the target language is
not that beneficial when the acoustic domain of the
development and the test data changes, since the
performance of the language-independent QbE STD
systems, i.e., H-SPL-IT-UC-2-LIphnrec+DTW
fusion, is better than that of some
language-dependent QbE STD systems, i.e.,
B-L2F-4-pllr fea+DTW fusion.

Fig. 6 DET curves of the QbE STD and the text-based STD systems on the development data
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• The I-Text-based STD system, as in the other
datasets, significantly outperformed the performance
of the QbE STD systems (p < 0.01).

4.3 Development and test data DET curves
The DET curves are presented in Figs. 6, 7, and 8 for the
development data, theMAVIR test data, and the EPIC test
data, respectively. These show a similar pattern to that
observed in the system ranking from the MTWV/ATWV
results.

4.4 System performance analysis based on query length
An analysis of the system performance based on the
length of the queries was carried out. The results are
presented in Tables 13 and 14 for the MAVIR and the
EPIC test data, respectively. For the MAVIR data, it can
be observed that, in general, the long queries obtained
the best performance. This is due to the fact that when
the length of the query increases, there is less confu-
sion between the query terms, because these typically
differ to a great extent and hence a better performance
is obtained. However, it can also be seen that the short
queries outperformed the medium-length queries. This
could be due to the fact that the short queries, which
contain up to 7 phonemes, are not short enough to
make the QbE STD performance worse compared to

the medium-length queries, which contain between 8
and 10 phonemes. For the I-Text-based STD system,
the medium-length queries obtained the best perfor-
mance. These outperformed the short queries, because
as described above, there is less acoustic confusion the
longer the length of the query. In this I-Text-based STD
system, the medium-length queries also performed bet-
ter than the long queries, which may be related to the fact
that the long queries have an OOV rate of 56%,
whereas the medium-length queries have an OOV rate
of 39%.
For the EPIC data, although the best performance also

corresponded to the long queries, a different pattern of
behaviour is observed: In general, the medium-length
queries outperformed the short queries. This discrepancy
with the MAVIR data may rely on the different conditions
of each database such as the different number of queries,
type of speech, and acoustic conditions. For the I-Text-
based STD system, the long-length queries performed
slightly better than the short- andmedium-length queries,
probably due to the lesser acoustic confusion. For this sys-
tem, the medium-length queries performed slightly worse
than the short-length queries. Although this may be sur-
prising, it must be noted that some of the short-length
queries can contain up to 7 phonemes, and so are not
really very short.

Fig. 7 DET curves of the QbE STD and the text-based STD systems on the MAVIR test data



Tejedor et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2018) 2018:2 Page 19 of 25

Fig. 8 DET curves of the QbE STD and the text-based STD systems on the EPIC test data

4.5 System performance analysis based on
single-word/multi-word queries

An analysis of the system performance based on the
single-word and the multi-word queries was carried out,
and the results are presented in Table 15. The results
show a degradation in performance from the multi-word
to the single-word queries. The multi-word queries are
typically longer than the single-word queries, and hence,
better performance could be expected, as shown in the
query length analysis. The only exception is the I-Text-
based STD system, for which the ATWVperformance was

worse for the multi-word queries than for the single-word
queries. However, it should be noted that the MTWV
was much better for the multi-word queries. This indi-
cates a problem in the threshold setting for multi-word
queries.

4.6 System performance analysis based on
in-language/out-of-language queries

An analysis of the system performance based on the in-
language and the out-of-language queries was carried out
and the results are presented in Table 16. These results

Table 13 System results of the ALBAYZIN QbE STD 2016 evaluation on the MAVIR test data based on the query length

System ID Short Medium Long

MTWV ATWV MTWV ATWV MTWV ATWV

A-GTM-UVigo-3-fea+DTW fusion 0.2976 0.2765 0.2353 0.2224 0.3388 0.3256

B-L2F-4-pllr fea+DTW fusion 0.2498 0.2346 0.1958 0.1850 0.3197 0.3009

C-L2F-4-likel fea+DTW fusion 0.2820 0.2529 0.2533 0.2326 0.3499 0.2957

D-ELiRF-UPV-Post+DTW 0.2219 0.2134 0.1889 0.1452 0.2319 0.1672

E-ELiRF-UPV-Post+DTWNorm 0.2219 0.2169 0.1804 0.1464 0.2455 0.1729

F-SPL-IT-UC-4-phnrec+DTW fusion 0.3011 0.2544 0.2291 0.1710 0.3318 0.3020

G-SPL-IT-UC-3-phnrec+DTW fusion 0.3013 0.2480 0.2209 0.1941 0.3332 0.3244

H-SPL-IT-UC-2-LIphnrec+DTW fusion 0.2296 0.2075 0.2078 0.1815 0.2143 0.1865

I-Text-based STD 0.5718 0.5472 0.7044 0.6959 0.6439 0.6077
Short short-length queries (up to 7 phonemes),Mediummedium-length queries (between 8 and 10 phonemes), Long long-length queries (more than 10 phonemes)
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Table 14 System results of the ALBAYZIN QbE STD 2016 evaluation on the EPIC test data based on the query length

System ID Short Medium Long

MTWV ATWV MTWV ATWV MTWV ATWV

A-GTM-UVigo-3-fea+DTW fusion 0.2228 −0.4374 0.2781 −0.3902 0.2312 −0.5509

B-L2F-4-pllr fea+DTW fusion 0.1825 0.1737 0.2355 0.2226 0.2967 0.2800

C-L2F-4-likel fea+DTW fusion 0.2943 0.2743 0.3044 0.2666 0.3265 0.2340

D-ELiRF-UPV-Post+DTW 0.1300 0.0870 0.1680 0.1139 0.1821 0.1399

E-ELiRF-UPV-Post+DTWNorm 0.1408 0.1008 0.1779 0.1268 0.2185 0.1510

F-SPL-IT-UC-4-phnrec+DTW fusion 0.2945 0.2321 0.3421 0.2761 0.4012 0.2862

G-SPL-IT-UC-3-phnrec+DTW fusion 0.2860 0.2561 0.3423 0.3191 0.4082 0.3289

H-SPL-IT-UC-2-LIphnrec+DTW fusion 0.2526 0.2253 0.2638 0.2332 0.3356 0.3352

I-Text-based STD 0.8712 0.8626 0.8501 0.8474 0.8847 0.8814
Short, Medium, and Long denote the same as in Table 13

show a degradation in performance from the out-of-
language to the in-language queries. This is the reverse
of what should be expected in the case of a language-
dependent setup. However, since all the QbE STD sys-
tems rely on the fusion of search systems that employ
different languages, the OOL issue becomes almost irrel-
evant. The OOL queries can obtain a better performance
than the INL queries in a QbE STD system in the case
where the OOL query language is employed to build
the system. In this case, the English language was cho-
sen for the OOL queries, and all the QbE STD systems
(except the B-L2F-4-pllr fea+DTW fusion system) used
English in the feature extraction module. Regarding the
B-L2F-4-pllr fea+DTW fusion system, the fusion strat-
egy still performs better on the OOL queries because four
different languages are fused.
On the other hand, performance degradation is

observed from the INL to the OOL queries in the I-Text-
based STD system. In this case, the system is language-
dependent because only the Spanish language was used
to build the system, and hence a worse performance was

obtained for the OOL queries because they did not match
the target language. However, for the INL queries, where
the pronunciation matches the target language, and for
which enough data are typically used to train both the
AMs and LMs, the system performance improved when
compared to that of the QbE STD systems.

4.7 Comparison with the ALBAYZIN QbE STD 2014
evaluation

In order to measure the progress of the QbE STD technol-
ogy in Spanish, a comparison of the best results obtained
in the common set of queries of the ALBAYZIN QbE STD
evaluations held in 2014 and 2016 was carried out. The
best performance obtained in the 2014 and 2016 evalua-
tions in the common set of queries was ATWV = 0.2881
and ATWV = 0.2541, respectively, which showed some
performance degradation. It must be noted that the sys-
tem submitted to the evaluation held in 2014 fuses the
results of the text-based STD and the template matching-
based approaches, which resulted in a better performance.
On the contrary, the best system presented in the 2016

Table 15 System results of the ALBAYZIN QbE STD 2016 evaluation on the MAVIR test data for the single-word (‘Single’) and the
multi-word (‘Multi’) queries

System ID Single Multi

MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)

A-GTM-UVigo-3-fea+DTW fusion 0.2467 0.2355 0.00008 0.675 0.7500 0.7500 0.00000 0.250

B-L2F-4-pllr fea+DTW fusion 0.2061 0.2001 0.00005 0.743 0.7042 0.7042 0.00005 0.250

C-L2F-4-likel fea+DTW fusion 0.2562 0.2355 0.00006 0.682 0.7500 0.5667 0.00000 0.250

D-ELiRF-UPV-Post+DTW 0.1737 0.1483 0.00002 0.806 0.6667 0.5833 0.00000 0.333

E-ELiRF-UPV-Post+DTWNorm 0.1689 0.1515 0.00003 0.802 0.6667 0.5833 0.00000 0.333

F-SPL-IT-UC-4-phnrec+DTW fusion 0.2356 0.1951 0.00008 0.680 0.8479 0.8021 0.00007 0.083

G-SPL-IT-UC-3-phnrec+DTW fusion 0.2371 0.2050 0.00005 0.709 0.8708 0.8708 0.00005 0.083

H-SPL-IT-UC-2-LIphnrec+DTW fusion 0.1907 0.1682 0.00005 0.760 0.6667 0.5750 0.00000 0.333

I-Text-based STD 0.6498 0.6385 0.00006 0.285 0.9167 0.4167 0.00000 0.083
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Table 16 System results of the ALBAYZIN QbE STD 2016 evaluation on the MAVIR test data for the in-language (INL) and the
out-of-language queries (OOL)

System ID INL OOL

MTWV ATWV p(FA) p(Miss) MTWV ATWV p(FA) p(Miss)

A-GTM-UVigo-3-fea+DTW fusion 0.2627 0.2538 0.00005 0.687 0.5504 0.4168 0.00020 0.253

B-L2F-4-pllr fea+DTW fusion 0.2287 0.2213 0.00005 0.723 0.3714 0.3329 0.00000 0.629

C-L2F-4-likel fea+DTW fusion 0.2662 0.2365 0.00005 0.687 0.5275 0.5043 0.00008 0.394

D-ELiRF-UPV-Post+DTW 0.1935 0.1599 0.00002 0.788 0.3561 0.3561 0.00000 0.644

E-ELiRF-UPV-Post+DTWNorm 0.1872 0.1632 0.00003 0.785 0.3561 0.3561 0.00000 0.644

F-SPL-IT-UC-4-phnrec+DTW fusion 0.2538 0.2091 0.00005 0.696 0.5561 0.5168 0.00016 0.287

G-SPL-IT-UC-3-phnrec+DTW fusion 0.2564 0.2332 0.00005 0.692 0.4972 0.3768 0.00022 0.287

H-SPL-IT-UC-2-LIphnrec+DTW fusion 0.2075 0.1866 0.00005 0.740 0.3433 0.2571 0.00035 0.303

I-Text-based STD 0.6695 0.6576 0.00004 0.286 0.2500 0.1786 0.00000 0.750

evaluation was language-independent and included only
template matching approaches. The data employed for
the training and development varied from one evalua-
tion to another. In the 2016 evaluation, there were less
training data belonging to the MAVIR domain and the
participants could not use the same data for training and
development which could have influenced the system per-
formance gap. Nevertheless, the best result obtained in
the 2016 evaluation is still remarkable, as it was obtained
by a language-independent QbE STD system and did not
employ text-based STD technology.

4.8 Towards a language-independent STD system
The feasibility of language-independent STD systems
can be examined from the systems submitted to the
ALBAYZIN QbE STD 2016 evaluation. By compar-
ing the best language-independent QbE STD system
(A-GTM-UVigo-3-fea+DTW fusion for the MAVIR data
and H-SPL-IT-UC-2-LIphnrec+DTW fusion for the EPIC
data) with the I-Text-based STD system, we can claim that
building a language-independent STD system with a per-
formance similar to that of a language-dependent STD
system remains a challenge. This means that researchers
still need to focus more on the QbE STD technology to
approximate the language-independent to the language-
dependent STD systems.

5 Conclusions
This paper presents the systems submitted to the
ALBAYZIN QbE STD 2016 evaluation together with a
text-based STD system for comparison purposes. Four
different research groups took part in the evaluation, and
eight different systems were submitted in total. All the sys-
tems submitted allowed INV and OOV query detection,
because they were based on template matching tech-
niques. With regard to the most novel and interesting
technical contributions, the feature extraction employed

in the A-GTM-UVigo-3-fea+DTW fusion system is worth
mentioning. It uses three feature extraction methods that
integrate different information sources and two different
feature selection approaches. The B-L2F-4-pllr fea+DTW
fusion system also presents a valuable feature extraction
approach by computing phone log-likelihood ratios from
two different phoneme recognizers. The candidate hit
selection proposed in the F-SPL-IT-UC-4-phnrec+DTW
fusion system is also worth mentioning.
The results showed that system fusion plays an impor-

tant role in the QbE STD systems and that the language-
independence issue can be partially compensated by using
a robust feature extractor. Regarding the domain com-
parison, we showed that for an easy domain such as that
of the EPIC data, with an easy query list, i.e., INV, INL,
and single-word queries, even though the training and the
development data belonged to a different domain, the per-
formance was better ( ATWV = 0.3011) than that for
MAVIR data (ATWV = 0.2646), which presented a more
difficult speech and query list and the same type of train-
ing and development data. The out-of-language query
detection can obtain similar or even better performance
than the in-language query detection when the language
of those OOL queries is used to construct the system or
the system fuses several language-dependent QbE STD
systems. In addition, we also showed that multi-word
query detection is easier than single-word query detection
because the multi-word queries are generally longer than
the single-word queries and that the long-length queries
typically perform better.
A comparison of the results of the language-

independent QbE STD system with those of the
language-dependent text-based STD system presented in
this paper shows that it is clear that there is still ample
room for improvement to approximate the performance
of a language-independent QbE STD system to that
of a language-dependent text-based STD system. This
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encourages the organizers to maintain this evaluation
in the next ALBAYZIN evaluation campaign for which
two different domains (including MAVIR data), and a
cross-search, i.e., searching the development queries in
the test speech data and searching the test queries in
the development speech data, will be considered as a
measure of the generalization capability of the systems to
unseen data.

Endnotes
1 http://www.rthabla.es/
2 http://www.isca-speech.org/iscaweb/index.php/sigs?

layout=edit&id=132
3 http://catalog.elra.info/product_info.php?products_

id=1145 (European Parliament Interpretation Corpus)
4 http://www.mavir.net
5 http://cartago.lllf.uam.es/mavir/index.pl?m=videos
6 http://sox.sourceforge.net/
7 ffmpeg version N-79068-g6b7ce0e (https://ffmpeg.

org/)
8 https://github.com/cmusphinx/g2p-seq2seq
9 https://sourceforge.net/projects/cmusphinx/files/

Acoustic%20and%20Language%20Models/Spanish/
10 http://www.tc-star.org
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