
Neurocomputing 548 (2023) 126422
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Feature selection for domain adaptation using complexity measures and
swarm intelligence
https://doi.org/10.1016/j.neucom.2023.126422
0925-2312/� 2023 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: guillermo.castillo@udc.es (G. Castillo-García), laura.moran-

f@udc.es (L. Morán-Fernández), veronica.bolon@udc.es (V. Bolón-Canedo).
G. Castillo-García ⇑, L. Morán-Fernández, V. Bolón-Canedo
CITIC, Universidade da Coruña, A Coruña, Spain

a r t i c l e i n f o
Article history:
Received 14 February 2023
Revised 23 May 2023
Accepted 4 June 2023
Available online 8 June 2023
Communicated by Zidong Wang

Keywords:
Transfer learning
Domain adaptation
Feature selection
Data complexity
Particle swarm optimization
Sticky binary particle swarm optimization
a b s t r a c t

Particle Swarm Optimization is an optimization algorithm that mimics the behaviour of a flock of birds,
setting multiple particles that explore the search space guided by a fitness function in order to find the
best possible solution. We apply the Sticky Binary Particle Swarm Optimization algorithm to perform fea-
ture selection for domain adaptation, a specific type of transfer learning in which the source and the tar-
get domain have a common feature space, a common task, but different distributions. When applying
Particle Swarm Optimization, classification error is usually employed in the fitness function to evaluate
the goodness of subsets of features. In this paper, we aim to compare this approach with using complexity
metrics instead, under the assumption that reducing the complexity of the problem will lead to results
that are independent from the classifier used for testing while being less computationally demanding.
Therefore, we carried out experiments to compare the performance of both approaches in terms of clas-
sification accuracy, speed and number of features selected. We found out that our proposal, although in
some cases incurs in a slight degradation of classification performance, it is indeed faster and selects few-
er features, making it a feasible trade-off.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Feature selection [1] is a machine learning technique used to re-
duce the dimensionality of a dataset. Its goal is to select only the
relevant features for a predictive model, leaving the ones that are
redundant or do not provide useful information out, which has sev-
eral benefits. One such benefit is improved interpretability, which
is particularly useful when the model’s decisions need to be ex-
plained to human users. Additionally, feature selection can lead
to better model performance and generalization by removing noise
from the data and reducing the number of features, which decreas-
es the risk of overfitting the training data. Finally, feature selection
can also result in faster training and prediction times due to the de-
creased dimensionality of the data.

There are several approaches that can be taken to perform fea-
ture selection. One option is the use of filter methods, which rely
on statistical measures of the features to identify the most relevant
ones. These methods are independent of the machine learning al-
gorithm and can be applied to any model. Alternatively, wrapper
methods can be used, which involve training the model with differ-
ent combinations of features and selecting the combination that
yields the best classification performance. While more computa-
tionally expensive than filter methods, wrapper methods take into
account the interaction between features and the model, potential-
ly leading to higher performance. Embedded methods, which are
built into the machine learning algorithm, can also be used for fea-
ture selection by identifying the most relevant features through a
combination of model training and feature selection. Hybrid meth-
ods, which combine the strengths of different approaches, are an-
other option for feature selection, such as using a filter method to
pre-select features and a wrapper method to fine-tune the
selection.

There are many successful cases of feature selection in machine
learning. For example, in natural language processing tasks, such as
text classification, feature selection can be used to identify the
most important words or phrases in a document that are most rel-
evant to the classification task [2]. In computer vision tasks, feature
selection can be used to identify the most important pixels or im-
age features that are most relevant to the task at hand [3]. In gen-
eral, feature selection can be applied to a wide range of machine
learning tasks.

Transfer learning, on its side, is a technique that aims to use ac-
quired knowledge from an existing source domain to improve
learning performance in a different, yet similar target domain. In
our case, we deal with problems where there is a common feature
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space in both the source and target datasets. The task is common,
but the source and target domains have different distributions.
This specific case of transfer learning is known as domain
adaptation.

The focus of this study is to use feature selection for domain
adaptation, with the objective of identifying a common subset of
features that optimizes classification performance in both the
source and target datasets. Different approaches have been pro-
posed to deal with this problem, among which is the use of Particle
Swarm Optimization (PSO) [4], a swarm intelligence based algo-
rithm that mimics the behaviour of a flock of birds, where multiple
particles move around the search space trying to find a good solu-
tion, guided by a fitness function. In particular, there have been in
the literature some attempts to use PSO approaches for domain
adaptation [5,6], although these works used the classification accu-
racy to evaluate the goodness of the subsets of features, which is a
very time-consuming approach.

In this paper we perform a comparison between using complex-
ity metrics in the fitness function and using classifiers. The reason
behind using data complexity metrics [7] is based on the assump-
tion that a good choice of features should lower the complexity of
the data, thus producing results that are independent of the classi-
fier used in a subsequent phase, as well as reducing the computa-
tional time required.

The remainder of the paper is organized as follows: In Section 2,
we provide a background on transfer learning and the Particle
Swarm Optimization algorithm. In Section 3, we describe our pro-
posed solution, including the classifiers and data complexity met-
rics used. In Section 4, we present the experimental design and
datasets used. In Section 5, we present and discuss the results ob-
tained. In Section 6, we present two case studies. Finally, in Sec-
tion 7, we provide our conclusions and suggest directions for
future work.
2. Background

2.1. Transfer learning

Transfer learning is a machine learning technique where a mod-
el trained on one task is re-purposed for a different (but related)
task or domain. This allows us to reach high performance in our
predictive models while lightening the computational cost of train-
ing them.

To give a formal definition of the transfer learning task, we must
start by giving the definitions for domain and task [8]:

� A domain D consists of two components: a feature space X and
a marginal probability distribution PðXÞ, where
X ¼ fx1; . . . ; xng 2 X. This translates into X being all the features
in our dataset and X a sample in that dataset, being xi the value
of feature i for such sample. Generally, when two domains are
different, they can have different feature spaces or different
marginal probability distributions.
We can understand the marginal probability distribution PðXÞ
as the composition of the data, i.e. the number of samples be-
longing to each possible value of each feature. Therefore, we
can formalize a domain like this: D ¼ fX; PðXÞg.

� A task T has two components, a label space c (all the possible
labels for the samples) and an objective predictive function
f ð�Þ. Therefore, we can formalize a task as T ¼ fc; f ð�Þg.
The predictive function f ð�Þ consists of tuples fxi; yig, where
xi 2 X and yi 2 c. This function is used to predict the label f ðxÞ
of a new instance x. The predictive function would be perfect
if it classified every sample correctly, and the intention is to
learn a function that is as close as possible to being perfect.
2

Knowing this, we can give the definition for transfer learning: given
a source domain Ds and a learning task for the source domain Ts, a
target domain Dt and a learning task for the target domain Tt , trans-
fer learning aims to help improve the learning of target predictive
function f tð�Þ in Dt using the knowledge in Ds and Ts, where
Ds – Dt , or Ts – Tt .

The specific case of transfer learning we are exploring in this
study is called domain adaptation. In domain adaptation problems,
both source and target tasks are the same, but the domains, while
having a common feature space, have differing marginal probabil-
ity distributions.

2.2. Feature selection for transfer learning

The process of feature selection for predictive models consists
in extracting a subset of features which are relevant for the given
task, removing features which are redundant or do not provide
meaningful information, aiming to make the problem simpler
and improve performance by reducing noise in the data.

As we previously commented, domain adaptation is a specific
kind of transfer learning problem in which the feature space is
common both in the source and target data. There is a common
task, but the source and target domains have different distribution-
s. Feature selection can be applied to domain adaptation problems
to extract a subset of features which minimizes the difference be-
tween the two distributions, thus helping to achieve good perfor-
mance for the given task in both the source and target domain.

Different approaches and algorithms have been proposed to
deal with the problem of feature selection for transfer learning,
among which we can find Particle Swarm Optimization.

2.3. PSO: Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm
that was first introduced by Kennedy and Eberhart in 1995 [4]. It is
a population-based optimization algorithm inspired by the be-
haviour of swarms in nature, such as bird flocks or fish schools,
which sets a swarm of particles that explore the search space in
parallel. Each particle is a solution candidate, and consists of a po-
sition and velocity. There is also a function used to compute the
value for each particle, called fitness function. Each particle records
its best value obtained, while the best value reached by any parti-
cle is shared among all of them, in order to guide the particle to po-
sitions that improve their best value yet.

2.3.1. Sticky Binary Particle Swarm optimization (SBPSO)
PSO was originally proposed to solve continuous problems, but

it has been adapted to also work with binary problems. This case is
called Binary Particle Swarm Optimization, BPSO. This is the type
of problem we face in this paper, as our search space consists of
the available features, with two possible states, in our case
whether a feature is selected or not.

In BPSO [9], the velocity of a particle is used to determine how
likely it is for an element of the position (a feature, in our case) to
toggle its value. The problemwith BPSO is that it uses the same for-
mula as PSO, which was designed for continuous search spaces,
and therefore it does not work well.

Given these problems, Nguyen et al. [9] proposed a new version
of the algorithm, coming up with a new and different concept of
momentum. In a binary search space, the movement of the parti-
cles consists in toggling their elements, their bits. As it is not a con-
tinuous space, particles are not able to ‘‘keep moving” in a
direction. Therefore, momentum is defined as the tendency to stay
in the current position, property which they call stickiness. Be-
cause of that, this version of the algorithm is called Sticky Binary
Particle Swarm Optimization (SBPSO).
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In SBPSO, the concept of velocity is redefined using a vector of
probabilities with as many elements as bits exist in our search
space, where each of them represents the probability for the corre-
sponding bit to toggle its value.

As mentioned before, instead (or as a new form) of momentum,
we have stickiness, stk, which will be a value between 0 and 1 for
each bit. The higher its value, the more likely it is for the bit to keep
its value. Each time a bit flips its value, stk becomes 1 and starts de-
caying linearly to 0. Therefore, after a flip happens, it is less likely
for that change to be reverted, translating into having some time to
‘‘look around in nearby positions”.

We also havemaxLife, the maximum number of iterations that a
bit can go through without changing its value, and currentLifed is
the number of iterations that have passed since the value of the
bit d last changed. With these two variables, stkd is computed as
follows:

stkd ¼ 1� currentLifed
maxLife

ð1Þ

Then, the probability of a bit toggling its value, pd is computed like
this:

pd ¼ is � ð1� stkdÞ þ ip � jpbestd � xdj þ ig � jgbest � xdj; ð2Þ
where pbestd is the best value reached by particle d, and gbest is the
best value obtained globally, by any particle, and xd is the position
of the particle, that is, a vector with the value of each bit. We also
have is; ip and ig , which are weights for each component. The values
that we use and that are usually given to these are, respectively,
0.1154, 0.4423 and 0.4423, as indicated in the original paper [9].

Based on the new flipping probability vector computed, the new
position of a particle is calculated as follows:

xtþ1
d ¼ 1� xtd; if randomðÞ 6 pd

xtd; otherwise

(
ð3Þ

This way, as we mentioned earlier, we replace the velocity and mo-
mentum properties of continuous PSO with this concept of sticki-
ness, which can be summed up as the tendency of moving around
the search space, allowing particles to move around close positions
avoiding big random jumps.

2.4. Data complexity measures

As mentioned in Section 2.3, the fitness function is used in the
PSO algorithm to evaluate the goodness of each solution candidate,
that is, to compute the value of the position of each particle. In this
work, we explore the possibility of using complexity measures in
the fitness function.

Complexity metrics in the field of machine learning can be used
to asses the difficulty of a classification problem, trying to capture
data particularities and identifying correlations with classification
performance [10].

Basu and Ho [11] attributed the complexity of a classification
problem to three main factors: the ambiguity of the classes, the
sparsity and dimensionality of the data, and the complexity of
the boundary separating the classes. They further gave three cate-
gories into which complexity measures could be divided [12]:

� Measures of overlap in feature values from different classes.
These measures assess the effectiveness of individual feature di-
mensions or a combination of multiple dimensions in separat-
ing classes by examining the range and spread of values
within each class and the overlap among different classes.
Some measures of overlap that belong to this category are
Maximum fisher’s discriminant ratio (F1), Length of overlapping
3

region (F2) and Maximum individual feature efficiency (F3),
which are the three complexity measures used in this study,
and provide the advantage of not relying on any classifier and
being thus independent of the classifier used in a subsequent
testing phase.

� Measures of separability of classes. These measures evaluate
how well two classes can be separated by analyzing the class
boundary and combining the contributions of individual feature
dimensions into a single score, typically a distance metric.
Examples of measures that fall into this category are Nonlinear-
ity of linear classifier by LP (label powerset) [13] and the Aver-
age number of points per dimension.

� Measures of geometry, topology, and density of manifolds.
These measures provide indirect characterizations of class sep-
arability by assuming that a class is composed of one or multi-
ple manifolds that form the probability distribution of the class.
The shape, position, and interconnectedness of these manifolds
give an indication of how well the classes are separated, but
they do not directly measure separability. Complexity measures
in this category include the Fraction of points on class boundary
and the Error rate of 1NN classifier, among others.

3. Proposed solution

We used Sticky Binary Particle Swarm Optimization to perform
feature selection for domain adaptation. Taking an existing ap-
proach —using classification accuracy in the fitness function— as
a starting point, we propose using complexity measures instead
and performed a comparison between both approaches. Our moti-
vation is based on the hypothesis that using complexity metrics
will reduce the complexity of both source and target datasets, lead-
ing to competitive results which are simpler, faster and indepen-
dent from the classifier used in a subsequent test phase.

With this aim, we took the solution proposed by Nguyen et al.
[5] as a starting point, implemented and modified it to use data
complexity metrics.
3.1. Original fitness function

Nguyen et al. [5] proposed the following fitness function:

Fitness ¼ sw � srcErr þ tw � tarErr þ stw � diffST ð4Þ
where sw; tw and stw are weights, srcErr and tarErr are classification
errors on source and target data, and diffST measures how different
the marginal distributions of each data partition are. Let us see
more in-depth how each one of these components are
implemented.

� Discriminability on the source domain (srcErr): it is measured
by the classification error rate in order to get a high discrimina-
tive ability in the source domain. It is calculated by applying 3-
fold validation on the source dataset, using one of the folds for
test, and the other two for training, and using a classifier (orig-
inally k-Nearest Neighbors).

� Discriminability on the target domain (tarErr): it is computed
as the error rate on the labeled instances of the target data, us-
ing source data as training set, making use of the same classifier
as in the previous component. This is based on the assumption
that if the selected features have a good discriminative ability
on the source domain, they should also have a high discrim-
inability on the target domain.

� Difference between marginal distributions (diffST): finally,
diffST tries to minimize the difference between the marginal
distributions. For that Maximum Mean Discrepancy is used,
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with Gaussian Radial Basis function as kernel function, as it is
able to detect more types of dependence than linear or polyno-
mial kernels.

3.2. Variants of the fitness functions proposed

For testing our hypothesis, we kept the last component, diffST,
and tested six different variations of srcErr and tarErr, three using
different complexity metrics and three using different classifiers.

For the options that utilize complexity metrics, we replaced sr-
cErr and tarErr with the values obtained by applying the corre-
sponding complexity metric to the source and target datasets.
The three complexity metrics used in this study are Maximum
Fisher’s Discriminant Ratio (F1), Length of Overlapping Region
(F2) and Maximum individual feature efficiency (F3). The values
of F1 and F3 range from 0 to 1, whereas F2 gives values between
0 and the number of features in the dataset. Each of these metrics
are computed as follows:

� Maximum Fisher’s Discriminant Ratio (F1): it measures the
overlap between the values of the features in different classes,
and it is based on the assumption that if at least one feature
is able to discriminate the classes, the dataset can be considered
simpler. It is computed as follows [7]:
F1 ¼ 1
1þmaxmi¼1rf i

; ð5Þ

where rf i is the discriminant ratio for each feature f i. Originally,
the value of the maximum discriminant ratio is taken, but we
use the inverse in order to get values between 0 and 1, having
lower values indicate less complexity.
To calculate this metric, we used the multi-class formulation of
rf i given by Orriols-Puig et al. [14]:

rf i ¼

Xnc
j¼1

Xnc
k¼1;k–j

pcj
pck

ðlf i
cj � lf i

ckÞ
2

Xnc
j¼1

pcj
ðrf i

cj Þ
2

; ð6Þ

where pcj
is the proportion of examples in class cj;lf i

cj is the mean

of feature f i across examples of class cj, and rf i
cj is the standard

deviation of those values.
� Length of Overlapping Region (F2): this metric is a modifica-
tion of the volume of overlapping region, which calculates the
overlap of the distributions of the feature values within the
classes, that is determined by finding, for each feature f i, its
maximum and minimum values in the classes, and the range
of the overlapping interval is then calculated, normalized by
the range of the values in both classes. Finally, the obtained val-
ues are multiplied.
In our case, instead of multiplying, we use the sum, which
makes it the length instead of the volume. Using the product
makes the value returned decrease greatly as dimensionality in-
creases, resulting in a broad range of possible values that are
close to zero, making the fitness function very difficult to bal-
ance.
Therefore, F2 can be defined as [7]:
F2 ¼
Xm
i

overlapðf iÞ
rangeðf iÞ

¼
Xm
i

maxf0;minmaxðf iÞ�maxminðf iÞg
maxmaxðf iÞ�minminðf iÞ

ð7Þ

where:
4

minmaxðf iÞ ¼ minðmaxðf c1i Þ;maxðf c2i ÞÞ;
maxminðf iÞ ¼ maxðminðf c1i Þ;minðf c2i ÞÞ;
maxmaxðf iÞ ¼ maxðmaxðf c1i Þ;maxðf c2i ÞÞ;
minminðf iÞ ¼ minðminðf c1i Þ;minðf c2i ÞÞ;

ð8Þ

where max(f cji ) and min(f cji ) are the maximum and minimum
values of each feature in class cj 2 f1;2g, respectively.

� Maximum individual feature efficiency (F3): F3 estimates the
individual efficiency of each feature in separating the classes,
and return the maximum value found among the m features.
For each feature, the overlap of the values in the samples that
belong to different classes is checked. The more overlap there
is, the more ambiguous the classes are in this region, and the
problem is therefore more complex. The problem can be consid-
ered simpler if there is at least one feature that shows low am-
biguity between the classes.
We use the complement of this measure so that lower values
equal less complexity. F3 is computed as [7]:
F3 ¼ min
m

i¼1

noðf iÞ
n

ð9Þ

where noðf iÞ gives the number of examples that are in the over-
lapping region for feature f i. This is computed by the following
equation:

noðf iÞ ¼
Xn
j¼1

Iðxji > maxminðf iÞ ^ xji < minmaxðf iÞÞ ð10Þ

where I is a function that returns 1 if the argument is true, and 0
otherwise, while maxminðf iÞ and minmaxðf iÞ are the same ones
defined for F2.

In the case of the variants of the fitness function using classifiers,
we kept the same process described in Section 3.1 for srcErr and tar-
Err. We used k-Nearest-Neighbors (kNN), as was originally pro-
posed in the work of Nguyen et al. [5], and added two classifiers,
Support Vector Machine (SVM) and Naive-Bayes (NB):

� k-Nearest Neighbors (kNN) [15]: it is a non-parametric, lazy
learning algorithm. It does not make any assumptions about
the underlying data distribution. It stores all available instances
and classifies new data points based on a similarity measure
(usually Euclidean distance). When a new data point is encoun-
tered, the kNN algorithm looks at the k number of instances that
are nearest to it, and classifies the new data point based on the
majority class among those neighbors. In our case, we set pa-
rameter k to 1, so a new data point will be assigned the class
that the closest instance belongs to.

� Support Vector Machine (SVM) [16]: it is a supervised learning
algorithm that can be used for both classification and regression
tasks. It works by finding a hyperplane in a high-dimensional
feature space that maximally separates the data points of differ-
ent classes. A good separation is achieved by the hyperplane
that has the largest distance to the nearest training-data point
of any class. In case of non-linearly separable data, the algo-
rithm can be used with a kernel trick to transform the input
data into a higher-dimensional space in which the classes be-
come separable. In this study, the kernel function that is used
is RBF (Radial Basis Function).

� Naive-Bayes (NB) [17]: it is a probabilistic classifier based on
the Bayes’ theorem, which states that the probability of an
event (in this case, a data point belonging to a class) can be cal-
culated by considering the prior probability of the event and the
likelihood of the event given certain conditions (in this case, the
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feature values of the data point). The Naive-Bayes classifier as-
sumes that the features are independent, which allows for an
efficient calculation of the likelihood. The classifier then calcu-
lates the probability of each class for the given data point and
assigns the data point to the class with the highest probability.

3.3. Overall algorithm

Fig. 1 shows the general structure of the proposed methodology.
First, we have Srctrain and Tartrain which are the source and target

data for training. Both of them are used in the feature selection
process, using SBPSO, which is marked in blue. This gives a com-
mon feature space for both source and target data, which is applied
to the test data (Src0test and Tar0test). A classifier is trained using
Src0test , and then Tar0test is used for testing on the trained classifier,
producing the corresponding classification performance.

4. Experiment design

We compared the performance of the SBPSO algorithm using
the variants of the fitness function previously presented on four
different datasets: Gas Sensor, Handwritten Digits, Prostate and
TripAdvisor.

4.1. Datasets

The first dataset is Gas Sensor Drift [18], which consists of
13,910 instances with 127 features, and has six kind of gases,
which are the classes to predict. The dataset is split in 10 batches.
We used the first as source dataset, and the remaining ones as tar-
get datasets, which results in nine domain adaptation cases. Drift
refers to the gradual and continuous deviation of a sensor’s output
from its expected or calibrated value over time. Therefore, as the
different batches of this dataset are gathered over a period of
36 months, the distribution between them varies, making it a suit-
able problem for domain adaptation.

Two datasets are used for the Handwritten Digits problem:
MNIST [19] and USPS [20]. Both of them consist of samples with
256 features (the pixels of 16x16 images) and 10 different classes,
one for each digit. They have different distributions as they are col-
lected from different sources: the USPS dataset is collected from
scanned envelops of the US Postal Service, while the MNIST dataset
comes from American Census Bureau employees and American
high school students. 800 samples of the MNIST dataset were used
and 720 of the USPS dataset. In this case, we use one of the datasets
as source and the other one as target, which gives us two domain
adaptation cases.

Third, we have the Prostate dataset [21], which is a microarray
consisting of 134 samples with 12,600 features and two classes.
The dataset comes in two splits: one contains 101 samples, which
is used as source data, and the other contains 33 samples, used as
target data. In this dataset, the source and target distributions dif-
Fig. 1. Diagram of feature selection for

5

fer significantly, as they were taken fom different experiments, and
the target dataset has almost 10-fold difference in overall microar-
ray intensity from the training data, making it challenging for ma-
chine learning models to reach a high performance.

The last dataset we used is the TripAdvisor [22] dataset, which
contains restaurant reviews from different cities, with 209 features
and two possible classes. We removed the user and restaurant IDs
from the data, as we try to predict if a restaurant will be liked
based only on its characteristics and price range. For this we use
the datasets corresponding to Madrid and Barcelona cities, thus
providing two domain adaptation cases. These datasets originally
contain 561,588 and 404,947 respectively, but because of compu-
tational time restrictions, we used a random subsample of 1000 in-
stances for each city.

In real-world problems, it is quite common that collecting la-
beled data is expensive and/or time consuming. It is in this scenar-
io in which transfer learning is really useful, as it enables to use the
acquired knowledge about the problem from the source (labeled)
domain, to be transferred to the target (partially-labeled or unla-
beled) domain. Therefore, we split the data, using 70% for training
and the rest for testing, which in the case of the target data,
although having the corresponding labels for getting the test accu-
racy, would act as unlabeled data.
4.2. Experiment settings

We divided the experimental phase in two steps. First, we car-
ried out a comparison of the time per iteration required when us-
ing each fitness function. For that, we used only the first two
components of the function (assigning 0.5 to each of its corre-
sponding weights, sw and tw), as the third one is common for
the six options, and we ran the algorithm for 50 iterations in each
case.

Then we compared the performance in each of the problems.
For that, each fitness function was fine tuned for each dataset in
order to get the best possible combination of weights, which are
shown in Table 1 and Table 2.

Each experiment was repeated 15 times with 15 different seeds,
and each one ran up to 3000 iterations, stopping if it did not im-
prove for 300 straight iterations. We also set a minimum percent-
age of features to select, 15%, in order to counter the tendency to
select as few features as possible that can appear when using com-
plexity metrics in some specific cases (the case study in Section 6.1
explores how modifying that parameter can affect performance in
those cases).
5. Experimental results

This section presents the results obtained by testing the two
types of penalty in the fitness function in the four problems men-
tioned above.
domain adaptation using SBPSO.



Table 1
Weights used for each experiment using complexity metrics in the format (sw, tw,
stw).

Dataset F1 F2 F3

Gas Sensor (0.1, 0.3, 0.6) (0.4, 0.2, 0.4) (0.2, 0.4, 0.4)
MNIST - USPS (0.1, 0.3, 0.6) (0.2, 0.4, 0.4) (0.2, 0.2, 0.6)
USPS - MNIST (0.6, 0.2, 0.2) (0.5, 0.1, 0.4) (0.2, 0.6, 0.2)

Prostate (0.1, 0.3, 0.6) (0.2, 0.2, 0.4) (0.1, 0.3, 0.6)
Barcelona - Madrid (0.2, 0.6, 0.2) (0.001, 0.004, 0.95) (0.1, 0.3, 0.6)
Madrid - Barcelona (0.3, 0.3, 0.4) (0.075, 0.025, 0.9) (0.6, 0.2, 0.2)

Table 2
Weights used for each experiment using classifiers in the format (sw, tw, stw).

Dataset kNN SVM NB

Gas Sensor (0.1, 0.5, 0.4) (0.3, 0.3, 0.4) (0.1, 0.6, 0.3)
MNIST - USPS (0.3, 0.7, 0.0) (0.2, 0.4, 0.4) (0.2, 0.4, 0.4)
USPS - MNIST (0.2, 0.6, 0.2) (0.2, 0.4, 0.4) (0.3, 0.3, 0.4)

Prostate (0.6, 0.2, 0.2) (0.3, 0.3, 0.4) (0.3, 0.3, 0.4)
Barcelona - Madrid (0.3, 0.1, 0.6) (0.3, 0.3, 0.4) (0.1, 0.3, 0.6)
Madrid - Barcelona (0.4, 0.2, 0.4) (0.33, 0.33, 0.33) (0.1, 0.3, 0.6)
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5.1. Time comparison

First, we carried out a comparison of the time per iteration re-
quiredwhen using each fitness function, as described in Section 4.2,
and the results are shown in Table 3.

The values shown are the mean obtained. As expected, the fit-
ness functions using complexity metrics are notably faster than
the ones using classifiers. It stands out that, as the number of fea-
tures in the dataset grows, SVM and Naive Bayes become slower.
Using the Naive Bayes fitness function with the Prostate dataset,
the time required was too high to be a good choice for the PSO al-
gorithm. Because of that and the time limitation it supposes, the
Naive Bayes fitness function was not used with the Prostate Data-
set in the following experiments. As stated in Section 4.1, we used
only 1000 samples from each dataset of the TripAdvisor problem,
because it became extremely time consuming when using more
samples. Using one third of the data, the average time per iteration
was around 4 s for the complexity metrics, but it took 47s with NB,
108s with kNN and 768s with SVM.

After the time per iteration tests, we proceeded to perform a
performance comparison, with the settings presented in Sec-
tion 4.2. For each dataset, we show a table displaying the mean re-
sults obtained with each fitness function. We also performed a
Friedman statistical test to assess the significance of differences
between the performance of the different options, followed by a
Nemenyi test. The results of these tests are presented in critical-
difference (CD) diagrams, where the best performing options are
on the left, and those with non-significant differences are connect-
ed by a straight line.

5.2. Performance on Gas Sensor

The results for the first problem, Gas Sensor, are shown in
Table 4. It shows the mean results of batches. The complete results
for each individual batch are provided in Table A.
Table 3
Mean time (in seconds) per iteration for each dataset and fitness function. Lowest results

Dataset F1 F2

Gas Sensor 0.165 0.171
Handwritten Digits 0.182 0.184

Prostate 0.311 0.316
TripAdvisor 0.182 0.180
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As we can see, the general trend is that the best results are ob-
tained using the same classifier both in the fitness function and the
test phase. This shows us that, as expected, these results are de-
pendent on the classifier. This dependency is not present using
complexity metrics in the fitness function. Fig. 2 shows the CD di-
agrams for the results obtained when testing in each of the classi-
fiers, and it also reflects this dependency, as the option that uses
the same classifier both in the fitness function and on the test
phase performs the best in each case, and shows significant differ-
ence with the second best performing option.

The variants of the fitness function that use classifiers generally
get better results, although the option using F2 gets close in some
cases, and shows no critical difference when testing with SVM, and
even performs slightly better than SVM and kNN when testing on
NB, according to the statistical test. Concerning the number of fea-
tures selected, complexity metrics select fewer than classifiers in
all experiments.

5.3. Performance on Handwritten Digits

For the Handwritten Digits problem, Table 5 shows the results
when using USPS as source data and MNIST as target data. In this
case, the tendency is similar to the previous dataset, with classi-
fiers generally getting higher accuracy than complexity metrics,
but the latter selecting fewer features. We can see two exceptions:
on the one hand, the fitness function that uses kNN performs worse
than the other classifiers, even when using kNN in the subsequent
test phase. On the other hand, F1 selects a surprisingly high num-
ber of features, while F2 and F3 do select less than classifiers, as
expected.

Regarding the complexity metrics, F3 is the one that performs
better. We can see on Fig. 3 that, with every classifier, F3 always
shows no critical difference with respect to at least two of the
classifiers.

Table 6 shows the other case of Handwritten Digits: using
MNIST as source data and USPS as target. The accuracies obtained
are higher than in the previous case, but the tendency remains the
same, keeping the high number of selected features when using F1.

If we look at the statistical tests in Fig. 4, we find that F3 is also
competitive in this case, and when testing on kNN, F1 shows no
critical difference with the options that use classifiers.

In both cases of the Handwritten Digits problem, F1 and F3
reach higher performance than F2. We have seen that F3 is com-
petitive in terms of performance, and it has the advantage of se-
lecting a smaller number of variables, making it a potential
alternative to traditional classifiers in the penalty function.

5.4. Performance on Prostate

Table 7 shows the results using the Prostate dataset, and Fig. 5
shows the CD graph of the statistical tests.

This case breaks with the tendency seen in the previous prob-
lems, as it shows very similar results with all the variants of the fit-
ness function, both in terms of performance and number of
features selected. This is a result of this domain adaptation prob-
lem being a particularly difficult one. The source and target data-
sets were extracted from different experiments, and therefore
are marked in bold.

F3 kNN SVM NB

0.164 1.117 1.558 0.529
0.195 1.098 2.068 1.255
0.345 1.267 2.053 19.618
0.180 1.317 0.973 0.539



Table 4
Summary of the resulting accuracy (Acc.) with the Gas Sensor dataset. The best result for each classifier is marked in bold.

Fitness kNN Acc. SVM Acc. NB Acc. %Features

F1 0.487 0.401 0.262 15.777
F2 0.505 0.463 0.323 15.748
F3 0.479 0.432 0.321 16.663
kNN 0.689 0.516 0.301 21.143
SVM 0.602 0.551 0.308 20.475
NB 0.583 0.505 0.377 25.793

Fig. 2. CD diagram of the results with the Gas Sensor dataset, testing on each classifier.

Table 5
Resulting accuracy (Acc.) with USPS as source data and MNIST as target data. The best result for each classifier is marked in bold.

Fitness kNN Acc. SVM Acc. NB Acc. %Features

F1 0.257 0.241 0.247 68.945
F2 0.222 0.259 0.215 15.625
F3 0.299 0.300 0.326 27.995
kNN 0.383 0.402 0.351 45.833
SVM 0.418 0.497 0.343 45.052
NB 0.408 0.456 0.419 43.815

Fig. 3. CD diagram of the results using USPS as source and MNIST as target, testing on each classifier.
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Table 6
Resulting accuracy (Acc.) with MNIST as source data and USPS as target data. The best result for each classifier is marked in bold.

Fitness kNN Acc. SVM Acc. NB Acc. %Features

F1 0.547 0.348 0.455 67.513
F2 0.289 0.242 0.262 15.820
F3 0.533 0.367 0.490 32.682
kNN 0.600 0.433 0.528 51.758
SVM 0.574 0.520 0.527 48.438
NB 0.584 0.456 0.537 51.107

Fig. 4. CD diagram of the results using MNIST as source and USPS as target, testing on each classifier.

Table 7
Resulting accuracy (Acc.) with the Prostate dataset. The best result for each classifier is marked in bold.

Fitness kNN Acc. SVM Acc. NB Acc. %Features

F1 0.600 0.300 0.350 53.48
F2 0.600 0.300 0.350 44.56
F3 0.700 0.300 0.350 53.30
kNN 0.717 0.300 0.367 50.91
SVM 0.583 0.300 0.350 53.26

Fig. 5. CD diagram of the results with the Prostate dataset, testing on each classifier.
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Table 8
Resulting accuracy (Acc.) testing on SVM with linear kernel with the Prostate dataset.
The best result is marked in bold.

Fitness SVM (linear kernel) Acc. %Features

F1 0.493 53.44
F2 0.500 44.61
F3 0.453 53.07
kNN 0.487 50.79
SVM 0.493 53.17
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their class distributions differ greatly: 49%-51% in the source data-
set, 26%-74% in the target dataset. This can lead to some classifiers
assigning all the samples to one of the classes [23], as it is the case
with SVM in our experiments.

Further experimentation to address this specific case proved
that using a linear kernel instead of RBF is more appropriate for
this dataset, making predictions for different classes instead of pre-
dicting all samples as the same class, and therefore obtaining a
higher accuracy. These results are showed in Table 8.

As we can see, F2 is the fitness function option that performs
best, both in terms of accuracy and number of features selected.
Therefore, we can conclude that, for this dataset, even with its high
level of difficulty, complexity metrics are as competitive as
classifiers.
5.5. Performance on TripAdvisor

Finally, Table 9 shows the results obtained using the Barcelona
dataset as source and the Madrid dataset as target, and the CD di-
agrams of the statistical tests are shown in Fig. 6.
Table 9
Resulting accuracy (Acc.) with the TripAdvisor dataset, using Barcelona as source and Mad

Fitness kNN Acc. SVM Ac

F1 0.987 0.988
F2 0.870 0.891
F3 0.988 0.989
kNN 0.991 0.990
SVM 0.989 0.991
NB 0.989 0.990

Fig. 6. CD diagram of the results using Barcelona as sou
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We can clearly see that, in terms of accuracy, F1 and F3 are as
competitive, if not better, than the options that use classifiers. As
we can see in the statistical tests, F3 is the best option when testing
both in the SVM and NB classifiers. With respect to the number of
features selected, we see the same tendency as in the Handwritten
Digits problem: F1 selects a high number of features, but F2 and F3
select fewer than the classifiers.

The results obtained in the other case, having Madrid as source
data and Barcelona as target, are shown in Table 10, and its statis-
tical tests are shown in Fig. 7.

The results are similar to the previous case, being F2 the only
option that shows a significant difference with other variants to
calculate the penalty function, whereas F1 and F3 are as competi-
tive as classifiers, and the number of features selected also follows
the same trend.

Further analyzing the problem, we find that the dataset is not
balanced, with a 86.44% of the labels being 1, while the rest are
0. This supposes a challenge to overcome when learning a model,
as there is a risk that it ends up predicting every sample as belong-
ing to the majority label. This is the case with the F2 option, and
the reason of it not performing as well as the rest. It also happens
in almost every case in the test phase when using NB. As future
work, we plan to apply sampling methods in order to solve the im-
balance of the data.

6. Case studies

We carried out two case studies to explore two specific aspects
of our experiments: seeing how the minimum percentage of fea-
tures to select affects performance, and the effects of splitting
the data differently.
rid as target. The best result for each classifier is marked in bold.

c. NB Acc. %Features

0.868 65.27
0.887 46.00
0.976 33.13
0.879 67.07
0.887 67.53
0.878 52.20

rce and Madrid as target, testing on each classifier.



Table 10
Resulting accuracy (Acc.) with the TripAdvisor dataset, using Madrid as source and Barcelona as target. The best result for each classifier is marked in bold.

Fitness kNN Acc. SVM Acc. NB Acc. %Features

F1 0.991 0.993 0.878 64.20
F2 0.815 0.909 0.887 46.93
F3 0.992 0.992 0.985 34.07
kNN 0.996 0.994 0.875 64.33
SVM 0.991 0.993 0.880 63.13
NB 0.990 0.992 0.884 57.27

Fig. 7. CD diagram of the results using Madrid as source and Barcelona as target, testing on each classifier.

Fig. 8. Mean accuracy with each fitness function when testing on kNN, SVM and NB, using a minimum of 10%, 15%, 25% and 35% of features. Each graph has a different range
of values in the vertical axis.
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Fig. 9. Diagram of feature selection for domain adaptation using SBPSO, splitting the target data as labeled-unlabeled.

Table 11
Weights used with complexity metrics for each experiment in the format (sw, tw,
stw).

Dataset F1 F2 F3

MNIST - USPS (0.6, 0.2, 0.2) (0.5, 0.1, 0.4) (0.2, 0.6, 0.2)
USPS - MNIST (0.1, 0.3, 0.6) (0.2, 0.4, 0.4) (0.2, 0.2, 0.6)

Table 12
Weights used with classifiers for each experiment in the format (sw, tw, stw).

Dataset kNN SVM NB

MNIST - USPS (0.2, 0.6, 0.2) (0.2, 0.4, 0.4) (0.3, 0.3, 0.4)
USPS - MNIST (0.3, 0.7, 0.0) (0.2, 0.4, 0.4) (0.2, 0.4, 0.4)
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6.1. Effect of varying the minimum percentage of features to select

As a tendency to select as few features as possible can arise
when using complexity metrics, we performed a case study vary-
ing the minimum percentage of features to select to check how it
can affect performance. We did an experiment setting the mini-
mum percentage of features to select to 10%, 25% and 35% (apart
from the previously tested 15%), and tested on the Gas Sensor data-
set, as this was the problem where this tendency appeared when
using complexity metrics. We used batches 2, 3, 4, 5, 6, 8 and 9
due to time limitation, but those six batches can give us represen-
tative results. The weights of each case of the fitness function are
the ones showed in Section 4.2.

To compare the results of each option, Fig. 8 shows bar dia-
grams with the mean accuracy when classifying with kNN, SVM
and NB.

When utilizing the fitness functions that use classifiers, there is
no clear conclusion to be extracted, as expected, as classifiers do
not show the tendency to select as few features as possible. On
the contrary, it does happen with complexity metrics. We can
see that, when classifying with kNN and SVM, F2 and F3 improve
as we set a higher minimum percentage of features to select, while
F1 gets similar results in all cases. When classifying with NB, it
seems that setting the percentage of features to 15% or 25%
achieves better results than 10% or 35%.
Table 13
Resulting accuracy (Acc.) splitting the data as labeled - unlabeled, with USPS as source da

Fitness kNN Acc. SVM Ac

F1 0.302 0.236
F2 0.172 0.189
F3 0.358 0.296
kNN 0.456 0.403
SVM 0.456 0.550
NB 0.450 0.476
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From the results obtained, there is no general rule on what min-
imum percentage of features to select. It can indeed improve per-
formance depending on the fitness function and classifier used for
testing. We can therefore conclude that, depending on the prob-
lem, if this tendency to select as few features as possible arises, a
trade-off can be made between number of selected features and
performance in order to get slightly better results.

6.2. Splitting the data as labeled-unlabeled

In our previous experiments, as explained in Section 4.1, we
make training and testing splits in both source and target datasets.
In real world problems, we can encounter the situation of having a
labeled set of data, that would be our source data, and target data
that is entirely or partially unlabeled due to it being expensive to
label. This approach can be found in other works [5] [24]. This case
study tries to represent this situation, in which would like to take
advantage of the already labeled dataset of a similar domain.

This means that, in the experiments carried out, our source data
is completely labeled, and is used both in the training and test
phases, while for the target data we split it as if one third of the
data was labeled, and the rest was unlabeled. In the training phase,
we used the labeled target data, and then, on the test phase, we
predicted the labels of the unlabeled target data (it acts as ‘‘unla-
beled”, even though we have their real labels and are therefore able
to get the real accuracy). The general structure of this method is
shown in Fig. 9:

In contrast to the approach detailed in Section 5, this method
utilizes the complete source dataset, Src, for both performing fea-
ture selection and for training the classifier used for predicting
new samples in the test phase, using only the selected features
in this case (Src0). Additionally, we used a reduced subset of the tar-
get data; it is divided into a labeled subset (TarL) used for feature
selection and an unlabeled subset used with the selected features
(Tar0U) for testing.

For these experiments, we used the Handwritten Digits prob-
lem, set the minimum percentage of features to select to 15%,
and used the weights shown in Table 11 and Table 12.

Table 13 shows the results using USPS as source data andMNIST
as target, and Fig. 10 shows CD graph of their statistical tests.
Table 14 and Fig. 11 show the corresponding ones for the experi-
ments using MNIST as source data and USPS as target.
ta and MNIST as target data. The best result for each classifier is marked in bold.

c. NB Acc. %Features

0.205 67.60
0.162 17.81
0.289 33.20
0.368 45.47
0.423 45.10
0.478 44.09



Fig. 10. CD diagram of the results splitting the data as labeled-unlabeled, using USPS as source and MNIST as target, testing on each classifier.

Table 14
Resulting accuracy (Acc.) splitting the data as labeled - unlabeled, with MNIST as source data and USPS as target data. The best result for each classifier is marked in bold.

Fitness kNN Acc. SVM Acc. NB Acc. %Features

F1 0.614 0.450 0.481 68.39
F2 0.332 0.279 0.299 16.48
F3 0.566 0.451 0.475 31.74
kNN 0.646 0.506 0.545 51.61
SVM 0.647 0.649 0.585 48.28
NB 0.635 0.545 0.586 52.19

Fig. 11. CD diagram of the results splitting the data as labeled-unlabeled, using MNIST as source and USPS as target, testing on each classifier.
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Comparing the results to those presented in Section 5.3, we can
see that the accuracy achieved by the options using classifiers in
the fitness function generally shows a little improvement. This
does not happen in every case using complexity metrics. For exam-
ple, using USPS as source data, F2 achieves lower performance, but
improves when using MNIST as source. It also depends on the case
12
with F1 and F3; it shows no generalized improvement or
worsening.

If we compare the CD diagrams of both cases, when using USPS
as source data the only improvement shown by complexity metrics
is that, when testing on kNN, F3 shows critical difference only with
one of the classifiers, while in Section 5.3 there is significant differ-
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ence with two. The opposite happens when using MNIST as source
data, where in every case there are more cases of significant differ-
ence between classifiers and complexity metrics, specially when
testing on kNN. In terms of number of features selected, the results
are practically the same.

From this case study, we can conclude that, although in real
world problems we may not be able to decide how to split the data,
as they will be given to us in a specific way, when compared to
how we have done it in the rest of the paper, this way of splitting
data can lead to an improvement in performance specially when
using classifiers, while this improvement is not generalized when
using complexity metrics. Therefore, when the data is splitted this
way, it may be more advisable to use classifiers rather than com-
plexity measures.
7. Conclusions

Transfer learning is a recent trend in machine learning and a
prolific field of research. In this paper we focused on domain adap-
tation, with the goal of obtaining a common representation of
meaningful features both for the source and target data. In partic-
ular, we proposed the use of PSO to find the relevant features. We
performed a comparison between two approaches, an already ex-
isting one, using classification performance in the fitness function
to evaluate the subsets of features, and a novel one, using data
complexity metrics for this task, under the hypothesis that a subset
of data with the correct features results in a less complex dataset.

After carrying out experiments over four problems suitable for
transfer learning evaluation, we demonstrated that the use of com-
plexity measures in the fitness function led to a reduction in the
computational time and number of features selected. Depending
on the problem, complexity metrics also achieve competitive per-
formance, making the trade-off between performance and speed
feasible in some cases. Moreover, an added advantage of the use
of complexity measures is that it is classifier-independent, not con-
Table A.15
Resulting accuracy (Acc.) with each batch of the Gas Sensor dataset. The best result for ea

Dataset Fitness kNN Acc.

Batch 2 F1 0.526
Batch 2 F2 0.642
Batch 2 F3 0.672
Batch 2 kNN 0.849
Batch 2 SVM 0.833
Batch 2 NB 0.823
Batch 3 F1 0.607
Batch 3 F2 0.674
Batch 3 F3 0.616
Batch 3 kNN 0.789
Batch 3 SVM 0.724
Batch 3 NB 0.733
Batch 4 F1 0.411
Batch 4 F2 0.515
Batch 4 F3 0.390
Batch 4 kNN 0.688
Batch 4 SVM 0.565
Batch 4 NB 0.568
Batch 5 F1 0.656
Batch 5 F2 0.656
Batch 5 F3 0.610
Batch 5 kNN 0.748
Batch 5 SVM 0.719
Batch 5 NB 0.671
Batch 6 F1 0.665
Batch 6 F2 0.580
Batch 6 F3 0.611
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ditioning the choice of a given classifier in a posterior classification
stage.

Further research would be recommended in order to explore
and compare different approaches. We suggest experimenting
with different datasets, exploring new fitness functions, combining
different metrics or classifiers, or trying other feature utility met-
rics, such as correlation or mutual information.
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Appendix A. Complete Gas Sensor results

Table A.15 shows the average results for each individual batch
of the Gas Sensor dataset, which are summarized in Table 4.
ch batch and classifier is marked in bold.

SVM Acc. NB Acc. %Features

0.339 0.238 15.75
0.585 0.261 15.75
0.520 0.227 17.32
0.540 0.193 18.67
0.671 0.249 18.45
0.610 0.391 22.61
0.464 0.250 15.75
0.596 0.468 15.75
0.555 0.387 18.45
0.564 0.192 21.93
0.638 0.392 19.91
0.638 0.468 28.80
0.399 0.360 15.75
0.494 0.414 15.75
0.312 0.426 15.97
0.628 0.500 22.16
0.640 0.399 20.25
0.595 0.527 24.97
0.695 0.586 15.75
0.663 0.530 15.75
0.644 0.564 16.54
0.738 0.450 16.42
0.741 0.523 16.42
0.731 0.535 22.72
0.399 0.154 15.75
0.416 0.231 15.75
0.464 0.261 16.20

(continued on next page)



Table A.15 (continued)

Dataset Fitness kNN Acc. SVM Acc. NB Acc. %Features

Batch 6 kNN 0.783 0.431 0.257 22.38
Batch 6 SVM 0.678 0.584 0.287 20.13
Batch 6 NB 0.640 0.451 0.336 28.57
Batch 7 F1 0.343 0.247 0.166 15.75
Batch 7 F2 0.434 0.308 0.258 15.75
Batch 7 F3 0.411 0.333 0.211 16.93
Batch 7 kNN 0.587 0.329 0.188 20.73
Batch 7 SVM 0.516 0.343 0.190 18.90
Batch 7 NB 0.440 0.305 0.279 25.07
Batch 8 F1 0.290 0.314 0.106 15.75
Batch 8 F2 0.290 0.432 0.303 15.75
Batch 8 F3 0.392 0.458 0.337 16.54
Batch 8 kNN 0.623 0.604 0.386 21.65
Batch 8 SVM 0.508 0.572 0.290 19.03
Batch 8 NB 0.415 0.515 0.286 26.12
Batch 9 F1 0.552 0.518 0.305 16.01
Batch 9 F2 0.447 0.430 0.258 15.75
Batch 9 F3 0.287 0.336 0.303 16.01
Batch 9 kNN 0.652 0.574 0.320 20.08
Batch 9 SVM 0.486 0.526 0.255 24.80
Batch 9 NB 0.532 0.461 0.331 28.87
Batch 10 F1 0.334 0.238 0.189 15.75
Batch 10 F2 0.303 0.246 0.181 15.75
Batch 10 F3 0.323 0.266 0.169 16.01
Batch 10 kNN 0.479 0.233 0.223 26.25
Batch 10 SVM 0.388 0.248 0.184 26.38
Batch 10 NB 0.426 0.239 0.243 24.41
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