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a b s t r a c t 

Many machine learning and data mining tasks are based on distance measures, so a large amount of lit- 

erature addresses this aspect somehow. Due to the broad scope of the topic, this paper aims to provide 

an overview of the use of these measures in the most common machine learning problems, pointing out 

those aspects to consider to choose the most appropriate measure for a particular task. For this purpose, 

the most recent works addressing the subject were reviewed and seven of the most commonly used 

measures were analyzed, investigating in detail their main properties and applications. Different experi- 

ments were carried out to study their relationships and compare their performance. The degradation of 

the results in the presence of noise was also considered, as well as the execution time required by each 

measure. 

© 2023 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Distance and similarity measures describe how far or close two 

bjects are. Since many real-world problems are based on finding 

imilarities between groups of objects or populations, the list of 

nowledge areas that make use of them is very extensive. Some 

xamples are biology, physics, chemistry, geography, ecology, social 

ciences, anthropology, algebra, statistical mathematics, engineer- 

ng, and computer science [1] . In particular, within artificial intel- 

igence, and more specifically in machine learning (ML) and data 

ining, many techniques rely on the use of distance and similar- 

ty measures. In fact, the knowledge areas mentioned above often 

ake use of these techniques to tackle different issues. 

Some examples of significant subareas of ML and their relation- 

hip to distance measures are as follows: (1) in some classifica- 

ion [2] or regression [3] problems, it is necessary to calculate the 

istance between new examples and those available in the train- 
∗ Corresponding author.: 
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ng set, as well as the error in the predictions; (2) clustering al- 

orithms require a similarity measure to group objects according 

o their attributes [4,5] ; (3) in feature selection, the decision crite- 

ion is based on the distance between sets [6,7] ; (4) in quantifica- 

ion problems, similarity measures are used to compare probabil- 

ty distributions and estimate the distribution of each class [8] ; (5) 

n anomaly detection, the distance between the examples is mea- 

ured according to a reference distribution to detect outliers [9,10] ; 

6) in information retrieval, objects similar to a reference object are 

earched [11,12] ; (7) in active learning, distance measurements are 

sed to identify the most representative samples [13] ; and (8) in 

ransfer learning, it is necessary to assess the difference between 

he distributions of the source and target sets [14,15] . 

As already mentioned, distance and similarity measures are in- 

egrated into a large number of machine learning tasks. In these 

cenarios, the choice of a proper distance measure is, in general, 

ore important for success than the choice of the learning algo- 

ithm itself [16] . However, this aspect is not addressed with as 

uch emphasis in the literature, as it depends largely on domain- 

pecific knowledge and is not so easy to generalize. In addition, 

ue to the extensive amount of measures available, the existing 

nowledge is too broad to address it completely. Therefore, it is 

ommon to find research works focused on analyzing a specific 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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amily of measures or those most used in a specific field or prob- 

em. However, it is necessary to highlight that the high theoretical 

ontent of many of them makes them hardly accessible to non- 

xperts. 

Thus, our intention is to provide a clear and intuitive back- 

round on the use of distance measures applied in machine learn- 

ng problems, emphasizing various aspects or properties to be con- 

idered in order to select the most appropriate one according to 

he characteristics of a particular problem or application domain. 

or this purpose, several of the most relevant measures used in 

he field are discussed, providing detailed explanations and ana- 

yzing their main advantages and drawbacks. The rest of this pa- 

er is organized as follows. Section 2 introduces some historical 

ackground related to the concept of distance measures and met- 

ics, and the main general definitions and properties that are in- 

eresting to consider in this context. Section 3 presents a sum- 

ary of the main related works found in the literature in recent 

ears. Section 4 contains the selected measures, with detailed def- 

nitions, properties, and main applications. Section 5 covers all the 

xperimentation carried out, including a study of similarity be- 

ween measures and several performance tests on different ML 

asks, such as classification and clustering. Finally, the main con- 

lusions drawn from the present work are given in Section 6 . 

. Background 

.1. A brief history 

The origins of the concept of a distance function involve two 

idely known mathematical theories: (1) Euclid’s third postu- 

ate in his treatise The Elements , which states that a circle can 

e drawn with any center and any radius; and (2) the widely 

tudied Pythagorean theorem, which states that if we know two 

ides of a right triangle we can solve the third unknown. When 

ené Descartes [17] developed the Cartesian coordinate system in 

637, the theories of both math disciplines, geometry and alge- 

ra, were joined to develop the notion of distance that we use 

owadays. Almost 200 years later, Cayley [18] initiated the study 

f n -dimensional geometry and, shortly after, Cauchy [19] was the 

rst to define the Euclidean distance in n -dimensional space. Eu- 

lidean distance, also called Pythagorean distance, is one of the 

ost widely used and known distance measures, and is derived 

irectly from the two theorems mentioned above. However, it was 

ot until 1906 when Fréchet [20] first introduced the mathematical 

otion of distance metric, and the first formal definition of a met- 

ic space was given by Haussdorf [21] in 1914, whose definitions 

re shown below. 

.2. Main definitions 

A metric on an arbitrary set X is a distance function d : X ×
 → R , such that ∀ x, y, z ∈ X , the following properties are satis-

ed: 

1. Non-negativity. The distance between x and y is always a value 

greater than or equal to zero: d(x, y ) ≥ 0 . 

2. Identity of indiscernibles. The distance between x and y is 

equal to zero if and only if x is equal to y : d(x, y ) = 0 ⇐⇒ x =
y . 

3. Symmetry. The distance between x and y is equal to the dis- 

tance between y and x : d(x, y ) = d(y, x ) . 

4. Triangle inequality: The distance between two objects is the 

shortest distance along any path: d(x, y ) ≤ d(x, z) + d(y, z) . 

Conditions (1) and (2) together produce positive definiteness . 

 measure of distance can be seen as a measure of dissimilar- 

ty, and when the distance is in the range [0 , 1] , the calculation
2 
f its corresponding similarity measure s (x, y ) is [1] : s (x, y ) =
 − d(x, y ) . Many of the most used distance measures are not met-

ics, failing in many cases the properties of (3) symmetry or/and 

4) triangle inequality. Divergences are a superset of distance func- 

ions that only require conditions (1) and (2). The lack of symme- 

ry allows greater flexibility in formulation, which can be interest- 

ng in some problems, such as clustering [22] . Regarding triangle 

nequality, a direct consequence of violating it could lead to a lack 

f optimization or well-definiteness [23] . A metric space is just a 

et equipped with a function d that measures the distance between 

ts elements. 

Distance and similarity measures can be classified into two 

ain groups: those based on geometric properties and those 

ased on probability distributions . This paper focuses on the for- 

er ones, which are intended to be used in the context of Eu- 

lidean spaces, where only the positions of the coordinates of 

oints in the related space are taken into account to calculate dis- 

ances. The Minkowski distance is a generalized metric distance 

ased on this idea, and is formulated as follows: 

 M ( x , y ) = 

( 

n ∑ 

i =1 

| x i − y i | p 
) 1 

p 

, (1) 

here x = { x 1 , ..., x n } and y = { y 1 , ..., y n } are two random vectors

efined over a feature space X . In the case of p = 1 the Manhat-

an distance is obtained, for p = 2 the Euclidean distance, and for 

p = ∞ the Chebyshev distance. If, in addition to considering the 

ositions in space, we want to take into account the distribution of 

he data, there is one specific distance that stands out: the Maha- 

anobis distance. However, despite being a metric because it fulfills 

ll the required properties, it is considered a special case of Breg- 

an divergence. Bregman divergences are a family of divergences 

hat can be defined for both general vectors and probability distri- 

utions. Being φ a differentiable strictly convex function, the Breg- 

an divergence is defined as follows: 

 φ( x , y ) = φ( x ) − φ( y ) − 〈 x − y , ∇φ( y ) 〉 , (2)

here ∇φ( y ) represents the gradient vector of φ evaluated at y 

nd 〈 . 〉 the inner product. Depending on φ, different divergences 

an be obtained, such as squared Euclidean and Mahalanobis dis- 

ances. 

.3. Relevant properties 

Note that any function that fulfills at least the first two prop- 

rties defined in the previous section can be considered a distance 

easure, so the number of functions that can be defined is infinite. 

n fact, there are a huge number of widely known and studied dis- 

ance measures in the literature. Although they all have the same 

oal, their focus, and formulation can be tremendously different. 

herefore, when selecting the distance measure that best solves a 

articular problem, it is also interesting to consider the following 

roperties: 

• Invariance under transformations. A distance function d is in- 

variant under the class of transformations T if d(h (x ) , h (y )) =
d(x, y ) , ∀ h ∈ T . 

• Translation invariance: d(c + x, c + y ) = d(x, y ) , ∀ c ∈ R . 
• Rotation invariance: d(θx, θy ) = d(x, y ) , for any angle θ . 
• Scale invariance: d(cx, cy ) = d(x, y ) , ∀ c ∈ R . 

If we think about real-world problems, it is important that 

a distance or similarity measure presents certain invariance 

within determined transformations. Invariance to rotations and 

translations is convenient in many applications, such as pat- 

tern recognition [24,25] . Scale invariance is a desirable property 

when the absolute scale of the data is unknown or when there 

is a high intra-class scale variation [26] . 
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Table 1 

Summary of the main reviews of distance and similarity measures in the context of machine learning. 

ED: Euclidean distance. MAND: Manhattan distance. CD: cosine distance. MAHD: Mahalanobis distance. 

CORD: correlation distance. CAD: Canberra distance. BCD: Bray-Curtis distance. GEN: general purpose. CLA: 

classification. CLU: clustering. AD: anomaly detection. IR: information retrieval. 

Field ED MAND CD MAHD CORD CAD BCD 

Deza and Deza [1] GEN 
√ √ √ √ 

- 
√ √ 

Cha [29] GEN 
√ √ √ 

- - 
√ √ 

Choi et al. [30] GEN 
√ √ √ 

- - 
√ √ 

Todeschini et al. [31] GEN/CLAS 
√ √ √ √ √ √ √ 

Chomboom et al. [32] CLAS 
√ √ √ √ √ 

- - 

Hu et al. [33] CLAS 
√ √ √ 

- 
√ 

- - 

Alfeilat et al. [34] CLAS 
√ √ √ 

- - 
√ √ 

Parmezan et al. [35] CLAS 
√ √ √ 

- 
√ √ 

- 

Kocher and Savoy [36] CLAS 
√ √ √ 

- - 
√ 

- 

Adjabi et al. [37] CLAS 
√ √ 

- - - - - 

Singh et al. [38] CLUS 
√ √ 

- - - - - 

Huang [39] CLUS 
√ 

- 
√ 

- - - - 

Shirkhorshidi et al. [4] CLUS 
√ √ √ √ 

- - - 

Kumar et al. [40] CLUS 
√ √ √ √ √ √ √ 

Arora et al. [41] CLUS 
√ √ 

- 
√ 

- - - 

Loohach and Garg [5] CLUS 
√ √ 

- - - - - 

Bisandu et al. [42] CLUS - - 
√ 

- - - - 

Chen et al. [43] CLUS - - 
√ 

- - - - 

Korenius et al. [44] CLUS/IR 
√ 

- 
√ 

- - - - 

Subhashini and Kumar [45] CLUS/IR 
√ 

- 
√ 

- - - - 

Bekhet and Ahmed [46] IR 
√ √ √ 

- - - - 

Khosla et al. [12] IR 
√ √ 

- - - - - 

Ayyachamy et al. [47] IR 
√ √ 

- 
√ 

- 
√ √ 

Quian et al. [48] IR 
√ 

- 
√ 

- - - - 

Vadivel et al. [11] IR 
√ √ √ 

- - - - 

Chen et al. [49] AD 
√ 

- - - - - - 

Weller et al. [10] AD 
√ √ √ √ 

- - - 
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• Homogeneity. A distance function d is homogeneous if it has a 

scaling behavior: d(cx, cy ) = c k d(x, y ) , ∀ c, k ∈ R . Note that k = 0

is scale invariance and k = 1 linear homogeneity. 
• Boundedness. A distance function d is called bounded if there 

exists a real number c such that d(x, y ) ≤ c, ∀ c ∈ R . This ques-

tion becomes especially relevant when the magnitude of the 

distance or similarity is important. For example, if there is a 

choice between different actions depending on the degree of 

similarity between objects, it is necessary to set certain thresh- 

olds. If the output takes values in the range (0 , + ∞ ) , determin-

ing how large is large enough becomes challenging, especially 

in the presence of outliers. 

Additionally, when working in high-dimensional spaces, a series 

f problems commonly referred to as the curse of dimensional- 

ty [27] arise. As the number of attributes or dimensions increases, 

o does the number of examples necessary for the model to ad- 

quately generalize, specifically in an exponential way. The ideal 

ituation is to have all possible combinations of attributes in the 

raining set to make correct inferences for future samples, leading 

o data sparsity. Another consequence, especially interesting and 

irectly related to distance functions, is that all the distances be- 

ween pairs of different samples in space end up converging to- 

ards the same value as the dimensionality increases [28] . There- 

ore, the distance obtained in these situations is not able to capture 

he differences between both sets and becomes useless. Some so- 

utions proposed in the literature to address this problem focus on 

educing the dimensionality of the data in a previous step, through 

eature selection or feature extraction. 

. Related work 

Due to the extensive use of distance and similarity measures, 

umerous comparisons and analyses focused on them can be 

ound in the literature, some of which are summarized in Table 1 . 

he selection of papers to be included in this review follows the 

rocedure described below. 
3 
First, the relevant papers published in the last 10 years and fo- 

used on the comparative analysis of distance measures within the 

rea of machine learning were considered. Next, the most relevant 

nes were selected according to two factors: (1) papers published 

n journals or conferences with a high impact factor and requir- 

ng peer reviews, and (2) papers with a significant number of ci- 

ations (greater than 100). In addition, we included some works 

hat, although they were published more than 10 years ago, meet 

he aforementioned factors and their contribution is of particu- 

ar interest to the topic under discussion. Many of these works 

nalyze several properties of the measures and the relationships 

etween them. For example, Deza and Deza [1] offer a very ex- 

ensive collection of measures in several fields of application and 

ifferent im plementations of the most popular distance measures. 

ha [29] also presented a broad collection of distance and simi- 

arity measures between probability density functions, grouped ac- 

ording to their syntactic similarities. Choi et al. [30] investigate 

he correlations of 76 distance measures using a hierarchical clus- 

ering technique. 

Focused on classification problems, there are many research 

orks dedicated to evaluating the performance of distance mea- 

ures, especially with the k -nearest neighbor algorithm (kNN). 

homboon et al. [32] studied the use of 11 distance measures, 

n which Euclidean, Manhattan, cosine, and Mahalanobis distances 

howed the best performance. The work of Hu et al. [33] is specif- 

cally focused on the medical area. For this purpose, they an- 

lyzed the behavior of distance measures in different medical 

atasets containing categorical, numerical, and mixed data. Among 

he measures analyzed, we can find the Euclidean, Manhattan, cor- 

elation, and cosine distances. Todeschini et al. [31] focused on in- 

estigating the effects of using different distance measures in clas- 

ification problems, as well as the relationships between them and 

heir properties. Based on the results obtained with the kNN algo- 

ithm on eight real datasets with 18 different measures, they con- 

luded that the Mahalanobis distance does not seem to be use- 

ul in classification problems and that the cosine distance also 
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resents a weak behavior, highlighting the performance of mea- 

ures such as the Euclidean or Manhattan distances. In the work 

f Alfeilat et al. [34] , following a categorization similar to that pre- 

ented by Cha [29] , the performance of a large number of dis- 

ance measures in kNN was analyzed and the behavior of some 

f them in the presence of different noise levels was studied. For 

heir part, Parmezan et al. [35] proposed a variant of kNN and ana- 

yze the effect of using 25 distance measures in temporal data from 

ifferent domains. The best-performing measures were Euclidean, 

anberra, correlation, Manhattan, and cosine distances. Kocher and 

avoy [36] investigated the best distance measure to solve the au- 

hor profiling question using a kNN classifier. They stated that the 

anberra distance achieved the best overall performance, but that 

he Manhattan distance had a clear advantage due to the shorter 

omputation time. More recently, Adjabi et al. [37] evaluated var- 

ous distance measures, including Euclidean and Manhattan, using 

NN in a face recognition problem. They concluded that the latter 

ields the most reliable recognition performance. 

In clustering, research related to similarity measures is also a 

requent topic. Shirkhorshidi et al. [4] analyzed 12 distance mea- 

ures (including Euclidean, Manhattan, cosine, and Mahalanobis) 

n four different clustering algorithms. In the experiments, they 

sed 15 continuous datasets from different fields and focused 

n investigating performance in low and contexts. According to 

heir results, the Mahalanobis distance is a good option for low- 

imensional datasets, while the cosine distance is appropriate for 

igh-dimensional ones. Loohach and Garg [5] discussed the effect 

f Euclidean and Manhattan metrics in relation to the k -means al- 

orithm. Their results suggest that the Manhattan distance gen- 

rally requires fewer iterations than the Euclidean distance, and 

herefore lower computational cost. Singh et al. [38] also investi- 

ated the use of Minkowski distances on the k -means algorithm on 

ummy data, concluding that the best result was achieved by the 

uclidean distance. Arora et al. [41] evaluated the effectiveness of 

istance measures in the fuzzy c-means clustering algorithm, find- 

ng that Euclidean distance performed well in most of the analyzed 

atasets and that Manhattan distance was also equally suitable for 

lustering. Bisandu et al. [42] evaluated the adequacy of different 

easures used in text and data clustering as a function of certain 

roperties. They claimed that, on average, the cosine distance had 

he highest overall performance with low memory consumption. 

hey also concluded that choosing the best measure depends on 

actors such as the purpose of the research and the level of dis- 

arity of the dataset. For their part, Chen et al. [43] investigated 

ifferent distance measures in clustering applied to biological data. 

hey proposed a new measure, claiming that it is more robust 

han others, such as cosine distance. Finally, it is worth mention- 

ng the work of Kumar et al. [40] , which analyzes the performance 

f ten distance measures in different clustering techniques. They 

oncluded that none of them was better in all cases, with large 

ariations depending on the nature of the data and the clustering 

echnique employed. 

In the area of information retrieval, Khosla et al. [12] analyzed 

he performance of Euclidean and Manhattan distances in the con- 

ext of content-based image retrieval (CBIR) systems. In particular, 

hey represented images using feature vectors composed of color 

nd texture properties, and ordered them by a distance measure 

o compare them to each other. Based on the experiments per- 

ormed, they concluded that the Manhattan distance is more accu- 

ate than the Euclidean distance. Similarly, Vadivel et al. [11] com- 

ared the use of Euclidean, Manhattan, and cosine distances in 

BIR applications. In this case, they used distance measures to 

ompare color histograms extracted from the images. As in the 

revious study, the Manhattan distance showed the best perfor- 

ance. Ayyachamy et al. [47] discussed the performance of differ- 

nt distance measures in medical image retrieval, being Euclidean 
4 
nd Mahalanobis distances the ones that achieved better accuracy. 

uian et al. [48] presented a study on the use of Euclidean dis- 

ance and cosine for nearest neighbor queries in high dimensional 

ata spaces, concluding that both measures presented very similar 

esults. The research works of Korenius et al. [44] and Subhashini 

nd Kumar [45] also contain analysis and comparisons of the use 

f Euclidean and cosine distances in retrieval information, specifi- 

ally in document clustering. Subhashini and Kumar conclude that 

uclidean distance is not appropriate in high dimensional sparse 

ata environments. Bekhet and Ahmed [46] investigated the effec- 

iveness of the most commonly used measures for video retrieval, 

ith Manhattan and Euclidean distances being the best in terms of 

etrieval ability. 

Concerning anomaly detection, some interesting projects were 

lso carried out. Based on the work of Deza and Deza [1] , Weller-

ahy et al. [10] distinguished between four categories of distance 

easures: power distances, distances on law distributions, corre- 

ation similarities, and other measures that use combinations of 

he above. The paper discusses the most commonly used measures 

ithin the network intrusion analysis detection field, by selecting 

00 of the latest works in the area during the last few years. They 

mphasized that in most of the papers reviewed, the lack of clar- 

ty in defining the measures used is highly frequent. Nevertheless, 

mong the most selected measures, the Euclidean and Manhattan 

istances stand out. Finally, Chen et al. [49] evaluated the perfor- 

ance of various distance measures to detect electroencephalo- 

ram (EEG) anomalies. In order to detect anomalous signals they 

ompared the feature vectors extracted from raw EGG data using 

istances. The results demonstrated the poor performance of the 

uclidean distance. 

Finally, it should be noted that significant effort is being de- 

oted to the study of measures in the context of fuzzy sys- 

ems [50] . These measures differ from the classical ones, which are 

he ones discussed in the present work, but they are increasingly 

sed in a wide range of pattern recognition, decision-making, clus- 

ering, and classification problems [51] . 

In summary, the Euclidean distance is always present in the 

omparative studies considered in all the areas addressed ( Table 1 ). 

anhattan and cosine distances are also commonly found. Both 

anberra and Bray-Curtis distances are analyzed in general the- 

atic studies, but they are not usually selected when carrying out 

 comparative analysis in more specific domains. Finally, the cor- 

elation distance is the least covered, usually in classification, and 

as a lower performance than the other measures considered. In 

eneral, in classification the most recommended measures are Eu- 

lidean and Manhattan distances, the latter also standing out in 

nformation retrieval. In clustering, there is no general consensus. 

he only work that includes all the measures in this study con- 

ludes that no measure stands out above the rest, since it de- 

ends on the type of dataset and algorithm used. Although the Eu- 

lidean distance offers the best response in some cases, it is also 

entioned that it is not appropriate in high dimensional sparse 

ata environments, where the cosine distance seems to perform 

etter. Concerning anomaly detection, there is a lack of research 

orks that discuss the performance of different measures. Since 

his task is usually approached using classification and clustering 

echniques, conclusions drawn from previous research can be ap- 

lied. 

. Selected measures 

We selected seven distance measures that we consider rele- 

ant in the field of machine learning, specifically in areas such 

s classification, clustering, transfer learning, and feature selec- 

ion, among others. Our selection includes some of the most refer- 

nced measures in the related work, along with their main proper- 
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Fig. 1. Graphical representation of some of the selected distance measures. 

t

x  

f

4

s

F

o

a

r

o

E

o  

a

4

b

m  

M  

w

k

t

M

m

t

t

4

t

t

m

r

s

s

d

C

4

w

c

i

a

M

w

l

e

E

4

i

d

e

d

b

C

w

x

4

a

n

w

a

v

f

C

4

d

t

i

d

f

B

ies and applications, detailed below. In the following definitions, 

 = { x 1 , ..., x n } and y = { y 1 , ..., y n } are two vectors defined over a

eature space X . 

.1. Euclidean distance 

The Euclidean distance (ED) is the most commonly used mea- 

ure of distance between two vectors in geometric problems (see 

ig. 1 a). It is often categorized as a Minkowski metric, L 2 distance, 

r power distance. ED is the basis of many measures of similarity 

nd the standard in many of the most used machine learning algo- 

ithms in classification and clustering, such as k -nearest neighbor 

r k -means [16] . The Euclidean distance is calculated as follows: 

D ( x , y ) = 

√ 

n ∑ 

i =1 

| x i − y i | 2 (3) 

The squared version of the ED is also a Bregman divergence, 

btained by replacing φ = ‖ x ‖ 2 in Eq. 2 , i.e., the inner product’s
ssociated norm. 

.2. Manhattan distance 

The Manhattan distance (MAND), also known as taxicab, city 

lock, or L1 distance, was proposed by the mathematician Her- 

ann Minkowski in the 19th century [29] . It is a special case of

inkowski’s distance for p = 1 , as mentioned in Section 2.2 , and

orks in a different geometry than the Euclidean one, commonly 

nown as the taxicab geometry. The MAND is calculated based on 

he sum of the absolute differences in all dimensions: 

AND ( x , y ) = 

n ∑ 

i =1 

| x i − y i | (4) 

The shortest path is built through horizontal and vertical seg- 

ents and, therefore, there may be more than one path to cover 

he shortest distance between two points (see Fig. 1 b), contrary to 

he Euclidean geometry. 

.3. Cosine distance 

The cosine distance (CD) calculates the cosine of the angle be- 

ween two projected vectors in a multidimensional space. Unlike 

he previous measures seen so far, this distance does not use the 

agnitude of the vectors to find their similarity, but only their di- 

ection (see Fig. 1 c). This is interesting when the vectors repre- 

ent datasets of different sizes and we intend to determine their 

imilarity based on their distributions, regardless of their size. It is 

efined as: 

D ( x , y ) = 1 −
∑ n 

i =1 x i y i √ ∑ n 
i =1 x 

2 
i 

√ ∑ n 
i =1 y 

2 
i 

(5) 
5 
.4. Mahalanobis distance 

Mahalanobis distance (MAHD), first introduced in 1936 [52] , 

as originally developed to calculate distances from a point to a 

enter distribution (see Fig. 1 d), but it is well suited for comput- 

ng distances between groups or populations using random vari- 

bles. The MAHD is computed as follows: 

AHD ( x , y ) = 

√ 

( x − y ) T C −1 ( x − y ) , (6) 

here C is the covariance matrix of the set to which x and y be- 

ong, and T denotes the transpose operation. Note that it can be 

xpressed as a Bregman divergence by choosing φ( x ) = 
1 
2 x 

T C x in 

q. 2 . 

.5. Correlation distance 

The correlation distance (CORD), proposed by Székely et al. [53] , 

s a measure of dependence between random variables in arbitrary 

imensions. It is based on the Euclidean distance between its el- 

ments and is derived from other measures such as the variance 

istance and the covariance distance [54,55] . The empirical CORD 

etween two random vectors is calculated as follows: 

ORD ( x , y ) = 1 − ( x − x̄ ) · ( y − ȳ ) 

‖ ( x − x̄ ) ‖ 2 ‖ ( y − ȳ ) ‖ 2 

, (7) 

here · is the dot product, ‖ . ‖ 2 represents the Euclidean norm and 

¯ and ȳ are the mean of the elements x and y , respectively. 

.6. Canberra distance 

The Canberra distance (CAD) was developed in 1966 by Lance 

nd Williams [56] . Although it was initially designed for unsigned 

umbers, it was later modified for signed real values. It is the 

eighted version of the Manhattan distance, as it calculates the 

bsolute difference between two vectors and normalizes it by di- 

iding it by the absolute sum of their values. The definition is as 

ollows: 

AD ( x , y ) = 

n ∑ 

i =1 

| x i − y i | 
| x i | + | y i | (8) 

.7. Bray-Curtis distance 

The Bray-Curtis distance [57] (BCD), also known as the Sorensen 

istance, is used to quantify the dissimilarity in the composition of 

wo vectors based on the raw counts. Like the Canberra distance, it 

s a modified version of the Manhattan distance. It is calculated by 

ividing the absolute differences by their sum with the following 

ormula: 

CD ( x , y ) = 

∑ n 
i =1 | x i − y i | ∑ n 
i =1 | x i + y i | (9) 
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Table 2 

Summary of the properties satisfied by the distance measures analyzed. The check symbol ( 
√ 

) indicates 

that the property is satisfied and the cross symbol ( ✗ ) that it is not. 

N-N SYM IND TRI TRA SCA ROT HOM BND 

ED 
√ √ √ √ √ 

✗ 
√ 

k = 1 ✗ 

[39,58] [39,58] [39,58] [39,58] [58,59] [58,59] [58,59] 

MAND 
√ √ √ √ √ 

✗ ✗ k = 1 ✗ 

[10] [10] [10] [10] [31] [31] 

CD 
√ √ √ 

✗ ✗ 
√ √ 

k = 0 
√ 

[10,39] [10,44] [10,44] [10,44] [31,58] [58] [4] 

MAHD 
√ √ √ √ √ √ √ 

k = 0 ✗ 

[10] [10] [10] [10] [31] [31,60] 

CORD 
√ √ √ 

✗ 
√ √ 

✗ k = 0 
√ 

[40] [40,53] [40,53] 

CAD 
√ √ √ √ 

✗ 
√ 

✗ k = 0 ✗ 

[40] [40] [40] [40] [61] 

BCD 
√ √ √ 

✗ ✗ 
√ 

✗ k = 0 
√ ∗

[62] 

N-N: non-negativity. SYM: symmetry. IND: Identity of indiscernibles. TRI: triangular inequality. TRA: trans- 

lation invariance. SCA: scale invariance. ROT: rotation invariance. HOM: homogeneity. BND: bounded. ∗: 
bounded only for positive vectors. 
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.8. Properties summary 

Table 2 contains a summary of the most popular properties in 

he literature related to distance measures. Specifically, the prop- 

rties required to consider them as metrics and their invariance to 

ertain transformations. For each measure, it is indicated whether 

t fulfills the property ( 
√ 

) or not ( ✗ ), accompanied by some refer-

nces (below). The cases of properties for which no reference was 

ound (i.e., the aforementioned symbols do not have citations be- 

ow them), were empirically tested by simple experiments follow- 

ng the definitions of the properties given in Section 2.3 . The vec- 

ors and constants employed were obtained randomly. 

According to the properties considered, the Mahalanobis dis- 

ance (MAHD) is the most fulfilling. However, it is important to 

emember that taking into account the inverse of the covariance 

atrix, it is necessary to have more samples than features. There- 

ore, it may not be suitable in high-dimensional contexts. In ad- 

ition, the vast majority of implemented algorithms are based on 

he difference between the two vectors without considering this 

rgument, so it would require additional adjustments for its proper 

se. The Euclidean (ED) and correlation (CORD) distances meet all 

ut two properties. The ED measure is not invariant to scaling, but 

t could be solved by normalizing or standardizing, only in case 

he absolute value of the variables is not relevant. It is also not 

ounded and its use is not recommended with high-dimensional 

ectors. Unlike the previous ones, CORD is bounded, but it is nei- 

her a true metric nor rotation invariant. However, it has great 

dvantages in addition to those reflected in the table: it can ap- 

ly variables of any dimension, detect nonlinear associations, and 

orks well in high dimensions. Therefore, it is an excellent candi- 

ate when samples with several features are used and their associ- 

tion is a key aspect. Also worth mentioning is the cosine distance 

CD), which, like the Manhattan and Canberra distances, satisfies 

ll but three of the properties studied. The CD is not invariant to 

ranslations nor does it satisfy the triangular inequality. However, 

ts invariance to scaling and rotations could make it a good choice 

or clustering. Also, it is important to remember that it can be cal- 

ulated with vectors of different sizes and its output is bounded. 

. Experimental results 

The experiments presented below were designed to analyze the 

orrelation between the seven distance measures considered and 

valuate their performance in different machine learning problems. 

hese experiments are: 
6 
• Similarity analysis to assess the correlation between the re- 

sults of the distance measures applied to the same data. 
• Discrimination ability between samples by evaluating the per- 

formance of the measures in classification and clustering, two 

common tasks in areas such as pattern recognition, information 

retrieval, or anomaly detection. The performance degradation 

under different noise levels was addressed and the required 

execution time was assessed with respect to the performance 

achieved. 

For experimentation purposes, we use six real datasets (see 

able 3 ) publicly available in the UCI Machine Learning Reposi- 

ory [63] . Regarding the implementations of the distance measures 

onsidered, they are also available in Python libraries such as scipy 

nd R libraries such as philentropy [64] . 

.1. Similarity analysis 

In order to explore the relationship between the different dis- 

ance measures considered, cluster analysis was conducted follow- 

ng the procedure described by Cha [29] . The first step was to 

andomly generate 10 0 0 random samples, S = { s 1 , ..., s 10 0 0 } , and a
uery random sample, q . For this purpose, 100-dimensional vectors 

ere obtained by generating random numbers in the range [0,100]. 

hen, the distance values d(s i , q ) , ∀ i = 1 , ..., 10 0 0 were calculated

or each of the studied measures, D = { d 1 , ..., d 7 } . The Pearson cor-
elation coefficient (PCC) [65] , a statistical test that computes the 

trength of the relationship between two variables (distance val- 

es) and their association with each other, was computed with the 

esults obtained for each distance. PCC returns values in the range 

 −1 , 1] , where 0 indicates that there is no correlation between the

ariables, whereas +1 and −1 indicate a strong positive or neg- 

tive correlation, respectively. The results obtained are shown in 

ig. 2 (a). Finally, a hierarchical grouping of the correlation results 

as performed through single linkage clustering (see Fig. 2 (b)) us- 

ng the following formula: 

 HC = 1 − | correlation (d j , d k ) | , ∀ d j , d k ∈ D (10)

As can be seen in Fig. 2 (a), there is a strong correlation ( ≥
 . 5 ) between all the measures. As expected, the measures of the 

inkowski family, Euclidean (ED) and Manhattan (MAND) dis- 

ances, are highly correlated (0.95). In this same group are also 

he Mahalanobis distance (MAHD) and the cosine distance (CD). 

s previously mentioned in Section 4.4 , MAHD is equivalent to ED 

hen the variables are not related and it can be defined as the Eu- 

lidean norm of the standardized principal component scores [60] . 
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Fig. 2. Similarity between the selected distance measures: (a) Pearson correlation values and (b) dendrogram obtained from clustering. 
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ikewise, CD is equivalent to ED of normalized vectors. Also, the 

anberra (CAD) and Bray-Curtis distances (BCD) have a high corre- 

ation with the above measures, as well as with each other. This is 

ecause both are considered modifications of the Manhattan dis- 

ance. The Euclidean norm is also used as the basis in the correla- 

ion distance, so the level of correlation between it and ED is also 

trong, and by extension because of the aforementioned relation- 

hips, with MAND, MAHD, and CD. CAD and correlation distance 

CORD) are the least alike, and in general with respect to the other 

easure, as shown in Fig. 2 (b). 

.2. Discrimination ability between samples 

Our goal is to study the behavior of the distance measures con- 

idered in two popular machine learning problems: classification 

nd clustering. The main reason is that classification and clustering 

lgorithms are used as the basis for numerous applications, such 

s pattern recognition, information retrieval, and anomaly detec- 

ion, among many others. For this purpose, the six datasets listed 

n Table 3 were used. The degradation of the result of each dis- 

ance measure in the presence of different noise levels was also 

valuated. Finally, a comparative study is presented to evaluate 

ach measure with respect to two factors: execution time and per- 

ormance. The Mahalanobis distance (MAHD) makes use of the 

nowledge of the entire dataset to calculate the covariance ma- 

rix when performing its calculations. Therefore, this distance uses 

hree input arguments: two vectors and the covariance matrix. The 

vailable implementations of the classification and clustering algo- 

ithms used only allow distances with two input arguments. Calcu- 

ating the covariance-based only on the two input vectors instead 

f the whole dataset would perturb the results, so the Mahalanobis 

istance was not tested in the following experiments. 

The procedure described by Nettleton et al. [66] was followed 

o generate different noise levels ( F n ). The F n values used are in

he range [0,1] and the generation process is as follows: 

• Attribute noise. For each attribute, a samples of the test set 

were randomly selected to be modified following a discrete uni- 

form distribution, with a = (F n ∗ b) , where b is equal to the

number of examples and F n is the noise level. The new at- 

tribute value for each of the a samples was replaced with the 

value generated by a normal distribution using the mean and 

standard deviation that the attribute presents in the whole set. 
• Class noise. For each sample in the training set, a reference 

value v generated from a continuous uniform distribution in the 

range [0,1] was obtained. If v < F n , the class of the sample was
7

replaced by one of the remaining classes using a discrete uni- 

form distribution. 

.2.1. Classification 

To perform the classification tests, we selected one of the best 

nown and most used algorithms in the area, k -nearest neighbor 

kNN) [67] . This algorithm works by classifying a sample accord- 

ng to the most common distance between its k nearest neighbors 

ased on a distance measure. We chose this classifier because it 

akes few assumptions about the data and no parameter tuning 

s required. The datasets used are those described in Table 3 , ap- 

lying different noise levels. Specifically, F n ∈ [0 , 0 . 9] for attribute

oise and F n ∈ [0 , 0 . 5] for class noise, with increments of 0.1 in

oth cases. The classification accuracy was used to evaluate the 

erformance of the different measures. 

Figs. 3 and 4 show the average accuracy achieved by the differ- 

nt measures for each noise type after 10 repetitions of the kNN 

lgorithm with a different number of neighbors ( k ∈ { 1 , 3 , 5 , 7 , 9 } ).
he accuracy value represented in the graph corresponds to the 

ne reached with the best value of k , showing the standard de- 

iation obtained when calculating the mean accuracy with all the 

 values. Note that, for visualization purposes, the y-axis is scaled 

ifferently in each plot. In terms of overall performance, the Can- 

erra distance (CAD) clearly stands out from the rest of the mea- 

ures. In the Wine dataset, it is the only one that achieves an ac- 

uracy higher than 0.9. This dataset includes both integer and real 

ttributes, with particularly high integer values. As far as can be 

een, CAD is the measure that is least affected by large-scale fea- 

ures. In this case, the Euclidean distance (ED) is the most affected. 

ith respect to the rest of the datasets, CAD also presents a su- 

erior performance in Breast Cancer and Isolet datasets, and the 

ifference with respect to the rest of the measures in the Iris and 

o-Res Spectrometer datasets is < 0 . 02 and < 0 . 01 , respectively. 

The addition of attribute noise (see Fig. 3 ) causes a large drop 

n accuracy, as expected. In the Iris, Wine, and Madelon datasets, 

ll measures show a similar fall from the first level. In the Breast 

ancer dataset, CAD is the measure that best tolerates the noise, 

eaching much higher accuracy values than the other measures at 

ll levels, as in the Wine and Isolet datasets. Finally, in the Lo-Res 

pectrometer dataset, all the measures show a slight drop up to 

 n = 0 . 4 . In this dataset, CAD again stands out with respect to the

est of the measures. Class noise is better tolerated, with a very 

light decrease in accuracy up to level 0.2 in all datasets with the 

xception of Madelon (see Fig. 4 ). As can be seen, some of the pre-

iously mentioned conclusions hold. In the Iris dataset, the mea- 

ures show similar behavior, as well as in Breast Cancer, where 

AD stands out slightly. In the Wine dataset, CAD far outperforms 



E. Blanco-Mallo, L. Morán-Fernández, B. Remeseiro et al. Pattern Recognition 141 (2023) 109646 

Fig. 3. Average accuracy of kNN per dataset for all the distance measures considered with attribute noise ( F n ) after 10 repetitions. Note that the y-axes are scaled differently 

for better viewing. 

Fig. 4. Average accuracy of kNN per dataset for all the distance measures considered with class noise ( F n ) after 10 repetitions. Note that the y-axes are scaled differently for 

better viewing. 
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he rest of the measures. Note that CORD and CD show akin be- 

avior on all datasets, as do MAND and BCD. 

The influence of the number of neighbors on the result is not 

ignificant without the presence of noise. In the Iris, Breast Cancer, 

nd Lo-Res Spectrometer datasets, all the measures have a stan- 

ard deviation ≤ 0 . 01 . In the other datasets, the mean deviation 

alue oscillates in the range (0 . 01 − 0 . 03) . With the introduction of

oise, the influence increases considerably, especially in the pres- 

nce of class noise. Overall, the best neighbor values are especially 

igh, with k ≥ 5 in practically all cases, rising as more noise is in-

roduced. 

Finally, in order to explore the statistical significance of our 

lassification results, we analyzed the accuracies achieved by the 

ifferent distances in each dataset without the presence of noise. 
8 
or this purpose, we used a Friedman test with Nemenyi’s post- 

oc test [68] . Fig. 5 presents the critical difference diagrams where 

roups of distances that are not significantly different (at α = 0 . 05 )

re connected. The diagrams show the mean ranks for each mea- 

ure, the higher the rank (further to the right) the better the per- 

ormance. If a horizontal line connects two or more measures, this 

eans that there is no significant difference between them. As can 

e seen, there are only significant differences in the Wine and Iso- 

et datasets. In the former, CAD performs significantly better than 

D, CD, and MAND. In the latter, the performance of CAD is sig- 

ificantly better than ED, CD, and CORD. In the remaining cases, 

ither no differences are noticed (all measures are grouped on a 

ingle horizontal line) or the data are not sufficient to detect them 

the horizontal lines overlap). Although there are no significant dif- 



E. Blanco-Mallo, L. Morán-Fernández, B. Remeseiro et al. Pattern Recognition 141 (2023) 109646 

Fig. 5. Critical difference diagrams showing the accuracy obtained by the different measures on each dataset, without the presence of noise and using the kNN algorithm. 
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erences, it can be seen that CAD has a much higher performance 

han the rest, being located further to the right of the diagram in 

ll cases. 

.2.2. Clustering 

In clustering, one of the best known and most widely adopted 

lgorithms is k -means [67] . However, it is not suitable for our 

tudy, since its use with different similarity measures could lead 

o non-convergence problems. In k -means, clustering is performed 

y minimizing the sum of the squares of the distances between 

he data and the centroid of the corresponding cluster, i.e., the Eu- 

lidean distance. The centroids are selected at each iteration based 

n the mean of the data in each cluster, changing location step 

y step until no more changes occur. In order to converge, adding 

 new cluster center must decrease the objective function. There- 

ore, both the assignment step and the centroid update step must 

ptimize the same criterion. For this reason, it cannot be used with 

rbitrary distance measures. 

A similar clustering algorithm but that does not present this 

onstraint is k -medoids [69] . Its goal is also to minimize the dis-

ance between the data relative to the centroid of the clusters, 

ith the difference that k -medoids uses real representative data 

s centroids instead of calculating the mean in each cluster. Con- 

equently, it not only avoids the convergence problem mentioned 

bove but also provides more robustness to outliers. Thus, this is 

ne of the algorithms chosen to perform the clustering experi- 

ents. The major drawback of k -medoids with respect to k -means 

s its complexity, and hence, its run time. 

A hierarchical clustering algorithm was also chosen to evalu- 

te the performance of different distances. This type of method 

ocuses on building a tree, assuming that the clusters are hi- 

rarchically structured. Specifically, the complete linkage method 

CLM) [70] was selected. Initially, each sample forms its own clus- 

er. Then, the tree is built from bottom to top by merging the most 

imilar clusters considering the maximum distance between the 

wo farthest points in two clusters. 
9

Since unsupervised learning algorithms were used in these ex- 

eriments, only the case of attribute noise was studied. As in the 

revious experiment, noise levels in the range [0,0.9] were used 

nd 10 repetitions of each experiment were conducted. The quality 

f the clustering result was assessed through the purity , a popu- 

ar measure in the field [39,71] that indicates the extent to which 

lusters contain a single class. More specifically, it computes the 

oherence of the clustering result by taking into account the num- 

er of samples of the majority class per cluster. Let � be the set 

f clusters found by the algorithm and C the set of classes of the 

abeled samples, the purity is defined as follows: 

purity (�, C ) = 

1 

N 

∑ 

ω∈ �
max 
c∈ C 

| ω ∩ c| (11) 

here N is the number of labeled samples and | ω ∩ c| represents 
he number of samples in cluster ω that belong to class c. 

Figs. 6 and 7 presents the average results obtained for each 

ataset. Regarding the purity obtained without noise with k - 

edoids, the greatest difference is found in the Wine, Breast Can- 

er, and Lo-Res Spectrometer datasets, with the performance of 

AD standing out above the rest of the measures. With the com- 

lete linkage algorithm, CAD again stands out together with BCD 

nd CORD. It can also be observed that, as the number of features 

n the dataset increases, the performance of the measures deterio- 

ates with both algorithms. In particular, in the Madelon and Isolet 

atasets, the purity obtained is very low in general. In addition to 

he complexity involved in dealing with a large number of features, 

hese two data sets are the ones that contain a greater number of 

amples. Furthermore, both problems are multivariate and Made- 

on is non-linear. In terms of noise tolerance, from level 0.1 the 

urity plummets in all measures in both algorithms when noise is 

ntroduced into the datasets. CAD is again the measure that shows 

 slightly higher tolerance than the others. 

Figs. 8 and 9 show the critical difference diagrams generated 

sing the Friedman test with Nemenyi’s post-hoc test ( α = 0 . 05 )

sing the purity value achieved by the measures in the differ- 

nt datasets, without noise and using the k -medoids and complete 
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Fig. 6. Average purity of k -medoids per dataset for all the distance measures considered with attribute noise ( F n ) after 10 repetitions. Note that the y-axes are scaled 

differently for better viewing. 

Fig. 7. Average purity of the complete linkage method per dataset for all the distance measures considered with attribute noise ( F n ) after 10 repetitions. Note that the y-axes 

are scaled differently for better viewing. 
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inkage algorithms, respectively. In the k -medoids scenario, signifi- 

ant differences are only found in the Breast Cancer dataset, where 

AD is significantly better than ED, CORD, and MAND. Note that, 

lso in this case, CAD is on the right side of the ranking in all

ases. Therefore, although there is no statistical significance over 

he rest of the measures, its performance is superior. In the case of 

he complete linkage algorithm, no significant differences between 

he measures are found in any dataset. 

In summary, all measures suffer considerably when noise is in- 

roduced into the datasets. Without considering noise, the measure 

hat performs best on average in both clustering methods in the 

onsidered datasets is the CAD, followed by BCD, CORD, and CD. 
10 
.3. Performance vs. execution time 

When choosing between different distance measures in a ma- 

hine learning problem, the execution time plays a key role. There- 

ore, we evaluated each measure in terms of two factors: its per- 

ormance (accuracy or purity) and its runtime. The performance 

esults compared are those obtained without the presence of noise 

n the different datasets and the execution times were transformed 

o the range [0 , 1] following min-max normalization. 

As can be seen, in kNN ( Fig. 10 (a)) and k -medoids ( Fig. 10

b)), the fastest measures on average are Canberra (CAD), Bray- 

urtis (BCD), and correlation (CORD) distances, with very similar 
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Fig. 8. Critical difference diagrams showing the purity obtained by the different measures on each dataset, without the presence of noise and using the k -medoids algorithm. 

Fig. 9. Critical difference diagrams showing the purity obtained by the different measures on each dataset, without the presence of noise and using the complete linkage 

algorithm. 
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xecution times. The same applies to the slowest ones, which are 

uclidean (ED), Manhattan (MAND), and Cosine (CD) distances. In 

erms of performance/time, CAD stands out above the rest, obtain- 

ng the highest purity and accuracy values more quickly. It is fol- 

owed by BCD and MAND in classification, and CORD and CD in 

lustering. However, in the case of CORD, an increase in execution 
11 
ime is noted depending on the number of samples in the dataset, 

hich is not observed in the rest of the measures. On the con- 

rary, ED, MAND, and CD are matching their execution time with 

he others as this factor increases, although their performance in 

omparison is lower. In the complete linkage method ( Fig. 10 (c)), 

o clear patterns are observed as in the previous algorithms. CAD 
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Fig. 10. Average performance versus average execution time over 10 repetitions of 

the kNN algorithm (a), 10 repetitions of the k-medoids algorithm (b), and 10 rep- 

etitions of the complete linkage method for the six real datasets considered (see 

Table 3 ). Note that the y-axes are scaled differently for better viewing. 

Table 3 

Properties of the real datasets used. The symbol (+) indicates that the attributes 

of the dataset are positive values only, while (+,–) indicates that there are both 

positive and negative values. Attr: Attributes, Cl: Classes, S: Samples, D.Type: Data 

type. 

Dataset #Attr #Cl #S D.Type 

Iris 4 3 150 Real ( + ) 

Wine 13 3 178 Integer, Real ( + ) 

Breast Cancer Wisconsin 30 2 569 Real ( + ) 

Low Resolution Spectrometer 100 9 531 Integer, Real ( + ,–) 

Madelon 500 2 2600 Real ( + ) 

Isolet 617 26 7797 Real ( + , –) 
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12 
s one of the slowest measures, but it is still the best average mea- 

ure in terms of purity. ED is usually fast on all datasets, but as the

umber of features increases its purity decreases. This is probably 

ecause ED is the measure most affected by the curse of dimen- 

ionality. 

.4. Summary results 

Table 4 presents a summary of the performance of all the mea- 

ures in the experiments conducted as a function of different vari- 

bles. Specifically, accuracy in kNN, purity in k -medoids and com- 

lete linkage methods, and noise tolerance and execution time in 

oth tasks. The performance of a measure with respect to a given 

ariable is evaluated in the range [1 , 5] , where a larger number

f dots implies better behavior. A distance measure reaching five 

ots on a variable indicates that it performs well on it, i.e., it leads 

o high accuracy, exhibits a fast execution time or tolerates noise 

ell, for example. In light of the results, the most suitable mea- 

ure for classification is the Canberra distance (CAD), followed by 

he Bray-Curtis (BCD), and the Manhattan (MAND) distances. Eu- 

lidean (ED), cosine (CD), and correlation (CORD) distances show 

he worst behavior, proving to be the least advisable in classifica- 

ion. Regarding clustering, CAD again stands out favorably against 

he rest, followed by BCD, CORD, and CD. The measures showing 

he poorest performance in clustering are MAND and ED, the latter 

eing the least preferable in general in both tasks. 

In summary, the best performing measure is CAD, since it be- 

aves equally or better than the others in all cases except for exe- 

ution time in the complete linkage algorithm. Notice that it pro- 

ides, on average, the highest results in terms of accuracy and 

urity. Additionally, it shows the best noise tolerance. The main 

rawback is that it exhibits a low tolerance to clustering noise, al- 

hough all measures behave particularly poorly in this case. 

. Discussion and conclusion 

Due to the relevant role of distance and similarity measures in 

 multitude of machine learning and data mining tasks, the aim 

f this paper is to shed light on the different types of measures 

sed, their fundamental properties, and some relevant aspects to 

e taken into account depending on the needs of each particular 

roblem. For this purpose, we summarized the most relevant pub- 

ications of the last few years on the subject and selected seven 

utstanding measures with detailed descriptions, focusing on their 

ain properties. Also, a similarity study between them was pre- 

ented and their performance on two common ML tasks (classifi- 

ation and clustering) was evaluated. 

Since most of the measures are highly correlated with each 

ther, many of them achieved very similar results. Most of the ana- 

yzed measures achieved a good performance without the presence 

f noise, and due to their high correlation, in many cases lead to 

imilar results. In fact, in the vast majority of critical difference di- 

grams analyzed, no statistical significance is found between the 

easures. Moreover, a multitude of variants of all of them and ex- 

mples of successful applications of practically all types of prob- 

ems can be found in the literature. So we could say that, in a cer-

ain sense, all roads could lead to Rome. However, if the guidelines 

re confusing or mistaken, things get complicated. The more noise 

s observed in the datasets, the more differences are observed be- 

ween the performance of the distances analyzed. Although higher 

oise tolerance is observed in kNN, performance plummets in the 

lustering algorithms. In fact, none of the measures achieves good 

esults in the Madelon and Isolet datasets in this task. These are 

he datasets with the largest number of samples and features, the 

ormer marked by a high level of redundancy and the latter con- 

isting of a total of 26 classes. The more complex the problem, 
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Table 4 

Summary of the results obtained in the experimentation. 

ED MAND CD CORD CAD BCD 

kNN Accuracy •• ••• •• •• •••• •••
Attr. Noise Tolerance • •• • • ••• ••
Cl. Noise Tolerance •• ••• •• •• •••• •••
Execution time ••• ••• ••• ••••• ••••• •••••

k -medoids Purity •• •• ••• ••• •••• •••
Attr.Noise Tolerance • • • • •• •
Execution time •••• •••• •••• ••••• ••••• •••••

C-linkage Purity • •• •• ••• ••• •••
Attr. Noise Tolerance • • • • •• •
Execution time •••• ••• ••• ••• • ••

t

p

v

t

c

t

t

h

p

i

m

a

t

d

m

t

t

c

t

E

d

a

d

e

n

i

A

c

t

o

w

I

t

H

i

o

r

t

d

D

c

i

D

A

t

m

S

0

w

t

s

c

P

t

R

 

 

he lower the results achieved in general. This suggests that pre- 

rocessing, such as feature selection, may be of particular rele- 

ance to clustering in this type of scenario, no matter what dis- 

ance is used. 

Regarding kNN, although the number of neighbors does not 

ause a significant difference between the considered measures, 

he more features the dataset has, the more neighbors are needed 

o achieve higher accuracy, such as when introducing noise. Our 

ypothesis is that, the more neighbors are used, the higher the 

robability of having more correct samples among them, decreas- 

ng noise at the local level. Furthermore, due to the curse of di- 

ensionality, using more neighbors implies being able to access 

 larger information gain, thus increasing the ability to capture 

he differences between the different neighborhoods. The results 

rawn from the experimentation reveal that the most advisable 

easures for classification are Canberra, Bray-Curtis, and Manhat- 

an distances. In the case of clustering, the best results are ob- 

ained with Canberra distance, followed by Bray-Curtis, cosine, and 

orrelation distances. In general terms, the overall performance of 

he Canberra distance is the most remarkable. On the contrary, the 

uclidean distance, one of the most used in several applications 

ue to its simplicity, is the one that shows the worst results on 

verage. 

The behavior of distance measures when dealing with high- 

imensional datasets is a topic attracting increasing attention. Sev- 

ral fields such as bioinformatics, medicine, marketing, and fi- 

ances, among others, make an active use of machine learn- 

ng tasks based on distance measures to address their problems. 

 common denominator in these areas is that they work with 

omplex data types. Therefore, future work would be focused on 

he integration of these measures in a distributed environment 

ptimized for large-scale data processing, such as Spark, which 

ould bring great improvements in terms of computational cost. 

n view of the results of the experimentation, the more complex 

he dataset, the worse the results of the measures in general. 

owever, the concrete reasons why this occurs and how to solve 

t would require new experiments, which are beyond the scope 

f this study. Therefore, it would also be interesting to incorpo- 

ate data pre-processing techniques to evaluate how they affect 

he behavior of different distance measures in the face of high- 

imensional datasets. 
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