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Many machine learning and data mining tasks are based on distance measures, so a large amount of lit-
erature addresses this aspect somehow. Due to the broad scope of the topic, this paper aims to provide
an overview of the use of these measures in the most common machine learning problems, pointing out
those aspects to consider to choose the most appropriate measure for a particular task. For this purpose,
the most recent works addressing the subject were reviewed and seven of the most commonly used
measures were analyzed, investigating in detail their main properties and applications. Different experi-
ments were carried out to study their relationships and compare their performance. The degradation of
the results in the presence of noise was also considered, as well as the execution time required by each
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1. Introduction

Distance and similarity measures describe how far or close two
objects are. Since many real-world problems are based on finding
similarities between groups of objects or populations, the list of
knowledge areas that make use of them is very extensive. Some
examples are biology, physics, chemistry, geography, ecology, social
sciences, anthropology, algebra, statistical mathematics, engineer-
ing, and computer science [1]. In particular, within artificial intel-
ligence, and more specifically in machine learning (ML) and data
mining, many techniques rely on the use of distance and similar-
ity measures. In fact, the knowledge areas mentioned above often
make use of these techniques to tackle different issues.

Some examples of significant subareas of ML and their relation-
ship to distance measures are as follows: (1) in some classifica-
tion [2] or regression [3] problems, it is necessary to calculate the
distance between new examples and those available in the train-
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ing set, as well as the error in the predictions; (2) clustering al-
gorithms require a similarity measure to group objects according
to their attributes [4,5]; (3) in feature selection, the decision crite-
rion is based on the distance between sets [6,7]; (4) in quantifica-
tion problems, similarity measures are used to compare probabil-
ity distributions and estimate the distribution of each class [8]; (5)
in anomaly detection, the distance between the examples is mea-
sured according to a reference distribution to detect outliers [9,10];
(6) in information retrieval, objects similar to a reference object are
searched [11,12]; (7) in active learning, distance measurements are
used to identify the most representative samples [13]; and (8) in
transfer learning, it is necessary to assess the difference between
the distributions of the source and target sets [14,15].

As already mentioned, distance and similarity measures are in-
tegrated into a large number of machine learning tasks. In these
scenarios, the choice of a proper distance measure is, in general,
more important for success than the choice of the learning algo-
rithm itself [16]. However, this aspect is not addressed with as
much emphasis in the literature, as it depends largely on domain-
specific knowledge and is not so easy to generalize. In addition,
due to the extensive amount of measures available, the existing
knowledge is too broad to address it completely. Therefore, it is
common to find research works focused on analyzing a specific
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family of measures or those most used in a specific field or prob-
lem. However, it is necessary to highlight that the high theoretical
content of many of them makes them hardly accessible to non-
experts.

Thus, our intention is to provide a clear and intuitive back-
ground on the use of distance measures applied in machine learn-
ing problems, emphasizing various aspects or properties to be con-
sidered in order to select the most appropriate one according to
the characteristics of a particular problem or application domain.
For this purpose, several of the most relevant measures used in
the field are discussed, providing detailed explanations and ana-
lyzing their main advantages and drawbacks. The rest of this pa-
per is organized as follows. Section 2 introduces some historical
background related to the concept of distance measures and met-
rics, and the main general definitions and properties that are in-
teresting to consider in this context. Section 3 presents a sum-
mary of the main related works found in the literature in recent
years. Section 4 contains the selected measures, with detailed def-
initions, properties, and main applications. Section 5 covers all the
experimentation carried out, including a study of similarity be-
tween measures and several performance tests on different ML
tasks, such as classification and clustering. Finally, the main con-
clusions drawn from the present work are given in Section 6.

2. Background
2.1. A brief history

The origins of the concept of a distance function involve two
widely known mathematical theories: (1) Euclid’s third postu-
late in his treatise The Elements, which states that a circle can
be drawn with any center and any radius; and (2) the widely
studied Pythagorean theorem, which states that if we know two
sides of a right triangle we can solve the third unknown. When
René Descartes [17] developed the Cartesian coordinate system in
1637, the theories of both math disciplines, geometry and alge-
bra, were joined to develop the notion of distance that we use
nowadays. Almost 200 years later, Cayley [18] initiated the study
of n-dimensional geometry and, shortly after, Cauchy [19] was the
first to define the Euclidean distance in n-dimensional space. Eu-
clidean distance, also called Pythagorean distance, is one of the
most widely used and known distance measures, and is derived
directly from the two theorems mentioned above. However, it was
not until 1906 when Fréchet [20] first introduced the mathematical
notion of distance metric, and the first formal definition of a met-
ric space was given by Haussdorf [21] in 1914, whose definitions
are shown below.

2.2. Main definitions

A metric on an arbitrary set X is a distance function d : X x
X — R, such that V x,y,z € X, the following properties are satis-
fied:

1. Non-negativity. The distance between x and y is always a value
greater than or equal to zero: d(x,y) > 0.

2. Identity of indiscernibles. The distance between x and y is
equal to zero if and only if x is equal to y: d(x,y) =0 <= x=
Y.

3. Symmetry. The distance between x and y is equal to the dis-
tance between y and x: d(x,y) = d(y, X).

4, Triangle inequality: The distance between two objects is the
shortest distance along any path: d(x,y) <d(x,z) +d(y. 2).

Conditions (1) and (2) together produce positive definiteness.
A measure of distance can be seen as a measure of dissimilar-
ity, and when the distance is in the range [0, 1], the calculation
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of its corresponding similarity measure s(x,y) is [1]: s(x,y) =
1 —d(x,y). Many of the most used distance measures are not met-
rics, failing in many cases the properties of (3) symmetry or/and
(4) triangle inequality. Divergences are a superset of distance func-
tions that only require conditions (1) and (2). The lack of symme-
try allows greater flexibility in formulation, which can be interest-
ing in some problems, such as clustering [22]. Regarding triangle
inequality, a direct consequence of violating it could lead to a lack
of optimization or well-definiteness [23]. A metric space is just a
set equipped with a function d that measures the distance between
its elements.

Distance and similarity measures can be classified into two
main groups: those based on geometric properties and those
based on probability distributions. This paper focuses on the for-
mer ones, which are intended to be used in the context of Eu-
clidean spaces, where only the positions of the coordinates of
points in the related space are taken into account to calculate dis-
tances. The Minkowski distance is a generalized metric distance
based on this idea, and is formulated as follows:

P

n
Dux.y) =Y lxi-yl?] . (1)
i1

where X = {x1,....,xp} and y = {y1....,yn} are two random vectors
defined over a feature space X. In the case of p=1 the Manhat-
tan distance is obtained, for p = 2 the Euclidean distance, and for
p = oo the Chebyshev distance. If, in addition to considering the
positions in space, we want to take into account the distribution of
the data, there is one specific distance that stands out: the Maha-
lanobis distance. However, despite being a metric because it fulfills
all the required properties, it is considered a special case of Breg-
man divergence. Bregman divergences are a family of divergences
that can be defined for both general vectors and probability distri-
butions. Being ¢ a differentiable strictly convex function, the Breg-
man divergence is defined as follows:

Dy(x,y) = p(X) —d(y) — (x—y. Vo (¥)), (2)
where V¢ (y) represents the gradient vector of ¢ evaluated at y
and (.) the inner product. Depending on ¢, different divergences
can be obtained, such as squared Euclidean and Mahalanobis dis-
tances.

2.3. Relevant properties

Note that any function that fulfills at least the first two prop-
erties defined in the previous section can be considered a distance
measure, so the number of functions that can be defined is infinite.
In fact, there are a huge number of widely known and studied dis-
tance measures in the literature. Although they all have the same
goal, their focus, and formulation can be tremendously different.
Therefore, when selecting the distance measure that best solves a
particular problem, it is also interesting to consider the following
properties:

« Invariance under transformations. A distance function d is in-
variant under the class of transformations 7 if d(h(x), h(y)) =
dx,y),VheT.

e Translation invariance: d(c+x,c+y) =d(x,y), YVc e R.

 Rotation invariance: d(6x, 0y) = d(x,y), for any angle 6.

e Scale invariance: d(cx,cy) =d(x,y), Yc e R.
If we think about real-world problems, it is important that
a distance or similarity measure presents certain invariance
within determined transformations. Invariance to rotations and
translations is convenient in many applications, such as pat-
tern recognition [24,25]. Scale invariance is a desirable property
when the absolute scale of the data is unknown or when there
is a high intra-class scale variation [26].
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Table 1
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Summary of the main reviews of distance and similarity measures in the context of machine learning.
ED: Euclidean distance. MAND: Manhattan distance. CD: cosine distance. MAHD: Mahalanobis distance.
CORD: correlation distance. CAD: Canberra distance. BCD: Bray-Curtis distance. GEN: general purpose. CLA:
classification. CLU: clustering. AD: anomaly detection. IR: information retrieval.

Field ED MAND (D MAHD CORD CAD BCD
Deza and Deza [1] GEN J v J J N J
Cha [29] GEN Vv N v - - v v
Choi et al. [30] GEN v v v - - v Vv
Todeschini et al. [31] GEN/CLAS v J N N J N
Chomboom et al. [32] CLAS J J N N N - -
Hu et al. [33] CLAS v N N - N - -
Alfeilat et al. [34] CLAS v v v - - v v
Parmezan et al. [35] CLAS J J N - N N -
Kocher and Savoy [36] CLAS J N N - - N -
Adjabi et al. [37] CLAS v v - - - - -
Singh et al. [38] CLUS J J - - - - -
Huang [39] CLUS N - Vv - - - -
Shirkhorshidi et al. [4] CLUS N v v v - - -
Kumar et al. [40] CLUS J v J J J N J
Arora et al. [41] CLUS N J - N - - -
Loohach and Garg [5] CLUS v N - - - - -
Bisandu et al. [42] CLUS - - N - - - -
Chen et al. [43] CLUS - - N - - -
Korenius et al. [44] CLUS/IR v - N - - - -
Subhashini and Kumar [45]  CLUS/IR i - v - - - -
Bekhet and Ahmed [46] IR v Vv J - - - -
Khosla et al. [12] IR v J - - - - -
Ayyachamy et al. [47] IR v v - v - v v
Quian et al. [48] IR J - J - - - -
Vadivel et al. [11] IR v J J - - - -
Chen et al. [49] AD v - - - - - -
Weller et al. [10] AD v v v v - - -

+ Homogeneity. A distance function d is homogeneous if it has a
scaling behavior: d(cx, cy) = c*d(x,y), ¥c, k € R. Note that k=0
is scale invariance and k = 1 linear homogeneity.

* Boundedness. A distance function d is called bounded if there
exists a real number c such that d(x,y) < c, Vc € R. This ques-
tion becomes especially relevant when the magnitude of the
distance or similarity is important. For example, if there is a
choice between different actions depending on the degree of
similarity between objects, it is necessary to set certain thresh-
olds. If the output takes values in the range (0, +o0), determin-
ing how large is large enough becomes challenging, especially
in the presence of outliers.

Additionally, when working in high-dimensional spaces, a series
of problems commonly referred to as the curse of dimensional-
ity [27] arise. As the number of attributes or dimensions increases,
so does the number of examples necessary for the model to ad-
equately generalize, specifically in an exponential way. The ideal
situation is to have all possible combinations of attributes in the
training set to make correct inferences for future samples, leading
to data sparsity. Another consequence, especially interesting and
directly related to distance functions, is that all the distances be-
tween pairs of different samples in space end up converging to-
wards the same value as the dimensionality increases [28]. There-
fore, the distance obtained in these situations is not able to capture
the differences between both sets and becomes useless. Some so-
lutions proposed in the literature to address this problem focus on
reducing the dimensionality of the data in a previous step, through
feature selection or feature extraction.

3. Related work

Due to the extensive use of distance and similarity measures,
numerous comparisons and analyses focused on them can be
found in the literature, some of which are summarized in Table 1.
The selection of papers to be included in this review follows the
procedure described below.

First, the relevant papers published in the last 10 years and fo-
cused on the comparative analysis of distance measures within the
area of machine learning were considered. Next, the most relevant
ones were selected according to two factors: (1) papers published
in journals or conferences with a high impact factor and requir-
ing peer reviews, and (2) papers with a significant number of ci-
tations (greater than 100). In addition, we included some works
that, although they were published more than 10 years ago, meet
the aforementioned factors and their contribution is of particu-
lar interest to the topic under discussion. Many of these works
analyze several properties of the measures and the relationships
between them. For example, Deza and Deza [1] offer a very ex-
tensive collection of measures in several fields of application and
different implementations of the most popular distance measures.
Cha [29] also presented a broad collection of distance and simi-
larity measures between probability density functions, grouped ac-
cording to their syntactic similarities. Choi et al. [30] investigate
the correlations of 76 distance measures using a hierarchical clus-
tering technique.

Focused on classification problems, there are many research
works dedicated to evaluating the performance of distance mea-
sures, especially with the k-nearest neighbor algorithm (kNN).
Chomboon et al. [32] studied the use of 11 distance measures,
in which Euclidean, Manhattan, cosine, and Mahalanobis distances
showed the best performance. The work of Hu et al. [33] is specif-
ically focused on the medical area. For this purpose, they an-
alyzed the behavior of distance measures in different medical
datasets containing categorical, numerical, and mixed data. Among
the measures analyzed, we can find the Euclidean, Manhattan, cor-
relation, and cosine distances. Todeschini et al. [31] focused on in-
vestigating the effects of using different distance measures in clas-
sification problems, as well as the relationships between them and
their properties. Based on the results obtained with the kNN algo-
rithm on eight real datasets with 18 different measures, they con-
cluded that the Mahalanobis distance does not seem to be use-
ful in classification problems and that the cosine distance also
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presents a weak behavior, highlighting the performance of mea-
sures such as the Euclidean or Manhattan distances. In the work
of Alfeilat et al. [34], following a categorization similar to that pre-
sented by Cha [29], the performance of a large number of dis-
tance measures in KNN was analyzed and the behavior of some
of them in the presence of different noise levels was studied. For
their part, Parmezan et al. [35] proposed a variant of KNN and ana-
lyze the effect of using 25 distance measures in temporal data from
different domains. The best-performing measures were Euclidean,
Canberra, correlation, Manhattan, and cosine distances. Kocher and
Savoy [36] investigated the best distance measure to solve the au-
thor profiling question using a kNN classifier. They stated that the
Canberra distance achieved the best overall performance, but that
the Manhattan distance had a clear advantage due to the shorter
computation time. More recently, Adjabi et al. [37] evaluated var-
ious distance measures, including Euclidean and Manhattan, using
kNN in a face recognition problem. They concluded that the latter
yields the most reliable recognition performance.

In clustering, research related to similarity measures is also a
frequent topic. Shirkhorshidi et al. [4] analyzed 12 distance mea-
sures (including Euclidean, Manhattan, cosine, and Mahalanobis)
in four different clustering algorithms. In the experiments, they
used 15 continuous datasets from different fields and focused
on investigating performance in low and contexts. According to
their results, the Mahalanobis distance is a good option for low-
dimensional datasets, while the cosine distance is appropriate for
high-dimensional ones. Loohach and Garg [5] discussed the effect
of Euclidean and Manhattan metrics in relation to the k-means al-
gorithm. Their results suggest that the Manhattan distance gen-
erally requires fewer iterations than the Euclidean distance, and
therefore lower computational cost. Singh et al. [38] also investi-
gated the use of Minkowski distances on the k-means algorithm on
dummy data, concluding that the best result was achieved by the
Euclidean distance. Arora et al. [41] evaluated the effectiveness of
distance measures in the fuzzy c-means clustering algorithm, find-
ing that Euclidean distance performed well in most of the analyzed
datasets and that Manhattan distance was also equally suitable for
clustering. Bisandu et al. [42] evaluated the adequacy of different
measures used in text and data clustering as a function of certain
properties. They claimed that, on average, the cosine distance had
the highest overall performance with low memory consumption.
They also concluded that choosing the best measure depends on
factors such as the purpose of the research and the level of dis-
parity of the dataset. For their part, Chen et al. [43] investigated
different distance measures in clustering applied to biological data.
They proposed a new measure, claiming that it is more robust
than others, such as cosine distance. Finally, it is worth mention-
ing the work of Kumar et al. [40], which analyzes the performance
of ten distance measures in different clustering techniques. They
concluded that none of them was better in all cases, with large
variations depending on the nature of the data and the clustering
technique employed.

In the area of information retrieval, Khosla et al. [12] analyzed
the performance of Euclidean and Manhattan distances in the con-
text of content-based image retrieval (CBIR) systems. In particular,
they represented images using feature vectors composed of color
and texture properties, and ordered them by a distance measure
to compare them to each other. Based on the experiments per-
formed, they concluded that the Manhattan distance is more accu-
rate than the Euclidean distance. Similarly, Vadivel et al. [11] com-
pared the use of Euclidean, Manhattan, and cosine distances in
CBIR applications. In this case, they used distance measures to
compare color histograms extracted from the images. As in the
previous study, the Manhattan distance showed the best perfor-
mance. Ayyachamy et al. [47] discussed the performance of differ-
ent distance measures in medical image retrieval, being Euclidean
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and Mahalanobis distances the ones that achieved better accuracy.
Quian et al. [48] presented a study on the use of Euclidean dis-
tance and cosine for nearest neighbor queries in high dimensional
data spaces, concluding that both measures presented very similar
results. The research works of Korenius et al. [44] and Subhashini
and Kumar [45] also contain analysis and comparisons of the use
of Euclidean and cosine distances in retrieval information, specifi-
cally in document clustering. Subhashini and Kumar conclude that
Euclidean distance is not appropriate in high dimensional sparse
data environments. Bekhet and Ahmed [46] investigated the effec-
tiveness of the most commonly used measures for video retrieval,
with Manhattan and Euclidean distances being the best in terms of
retrieval ability.

Concerning anomaly detection, some interesting projects were
also carried out. Based on the work of Deza and Deza [1], Weller-
Fahy et al. [10] distinguished between four categories of distance
measures: power distances, distances on law distributions, corre-
lation similarities, and other measures that use combinations of
the above. The paper discusses the most commonly used measures
within the network intrusion analysis detection field, by selecting
100 of the latest works in the area during the last few years. They
emphasized that in most of the papers reviewed, the lack of clar-
ity in defining the measures used is highly frequent. Nevertheless,
among the most selected measures, the Euclidean and Manhattan
distances stand out. Finally, Chen et al. [49] evaluated the perfor-
mance of various distance measures to detect electroencephalo-
gram (EEG) anomalies. In order to detect anomalous signals they
compared the feature vectors extracted from raw EGG data using
distances. The results demonstrated the poor performance of the
Euclidean distance.

Finally, it should be noted that significant effort is being de-
voted to the study of measures in the context of fuzzy sys-
tems [50]. These measures differ from the classical ones, which are
the ones discussed in the present work, but they are increasingly
used in a wide range of pattern recognition, decision-making, clus-
tering, and classification problems [51].

In summary, the Euclidean distance is always present in the
comparative studies considered in all the areas addressed (Table 1).
Manhattan and cosine distances are also commonly found. Both
Canberra and Bray-Curtis distances are analyzed in general the-
matic studies, but they are not usually selected when carrying out
a comparative analysis in more specific domains. Finally, the cor-
relation distance is the least covered, usually in classification, and
has a lower performance than the other measures considered. In
general, in classification the most recommended measures are Eu-
clidean and Manhattan distances, the latter also standing out in
information retrieval. In clustering, there is no general consensus.
The only work that includes all the measures in this study con-
cludes that no measure stands out above the rest, since it de-
pends on the type of dataset and algorithm used. Although the Eu-
clidean distance offers the best response in some cases, it is also
mentioned that it is not appropriate in high dimensional sparse
data environments, where the cosine distance seems to perform
better. Concerning anomaly detection, there is a lack of research
works that discuss the performance of different measures. Since
this task is usually approached using classification and clustering
techniques, conclusions drawn from previous research can be ap-
plied.

4. Selected measures

We selected seven distance measures that we consider rele-
vant in the field of machine learning, specifically in areas such
as classification, clustering, transfer learning, and feature selec-
tion, among others. Our selection includes some of the most refer-
enced measures in the related work, along with their main proper-
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/ J

(a) Euclidean (b) Manhattan

(c) Cosine (d) Mahalanobis

Fig. 1. Graphical representation of some of the selected distance measures.

ties and applications, detailed below. In the following definitions,
X ={X1,....xn} and y = {y1....,yn} are two vectors defined over a
feature space X.

4.1. Euclidean distance

The Euclidean distance (ED) is the most commonly used mea-
sure of distance between two vectors in geometric problems (see
Fig. 1 a). It is often categorized as a Minkowski metric, L, distance,
or power distance. ED is the basis of many measures of similarity
and the standard in many of the most used machine learning algo-
rithms in classification and clustering, such as k-nearest neighbor
or k-means [16]. The Euclidean distance is calculated as follows:

n
Z |xi — yil?
i=1

The squared version of the ED is also a Bregman divergence,
obtained by replacing ¢ = ||x||, in Eq. 2, i.e., the inner product’s
associated norm.

ED(x.y) = 3)

4.2. Manhattan distance

The Manhattan distance (MAND), also known as taxicab, city
block, or L1 distance, was proposed by the mathematician Her-
mann Minkowski in the 19th century [29]. It is a special case of
Minkowski's distance for p =1, as mentioned in Section 2.2, and
works in a different geometry than the Euclidean one, commonly
known as the taxicab geometry. The MAND is calculated based on
the sum of the absolute differences in all dimensions:

n
MAND(x.y) = > |x; — yil (4)
i=1

The shortest path is built through horizontal and vertical seg-
ments and, therefore, there may be more than one path to cover
the shortest distance between two points (see Fig. 1 b), contrary to
the Euclidean geometry.

4.3. Cosine distance

The cosine distance (CD) calculates the cosine of the angle be-
tween two projected vectors in a multidimensional space. Unlike
the previous measures seen so far, this distance does not use the
magnitude of the vectors to find their similarity, but only their di-
rection (see Fig. 1 c¢). This is interesting when the vectors repre-
sent datasets of different sizes and we intend to determine their
similarity based on their distributions, regardless of their size. It is
defined as:

Y XiYi

NN BT NO R -

CD(x,y)=1-— (5)

4.4. Mahalanobis distance

Mahalanobis distance (MAHD), first introduced in 1936 [52],
was originally developed to calculate distances from a point to a
center distribution (see Fig. 1 d), but it is well suited for comput-
ing distances between groups or populations using random vari-
ables. The MAHD is computed as follows:

MAHD(x,y) = v/ (x —y)TC-1 (x —y), (6)

where C is the covariance matrix of the set to which x and y be-
long, and T denotes the transpose operation. Note that it can be
expressed as a Bregman divergence by choosing ¢ (x) = %XTCX in
Eq. 2.

4.5. Correlation distance

The correlation distance (CORD), proposed by Székely et al. [53],
is a measure of dependence between random variables in arbitrary
dimensions. It is based on the Euclidean distance between its el-
ements and is derived from other measures such as the variance
distance and the covariance distance [54,55]. The empirical CORD
between two random vectors is calculated as follows:

L x-%0-y-9)
A

where - is the dot product, ||.||, represents the Euclidean norm and
X and § are the mean of the elements x and y, respectively.

CORD(x,y) =1 (7)

4.6. Canberra distance

The Canberra distance (CAD) was developed in 1966 by Lance
and Williams [56]. Although it was initially designed for unsigned
numbers, it was later modified for signed real values. It is the
weighted version of the Manhattan distance, as it calculates the
absolute difference between two vectors and normalizes it by di-
viding it by the absolute sum of their values. The definition is as
follows:

n
_ Xi — Yil
CADXY) = 2 G5 Iy (®)

4.7. Bray-Curtis distance

The Bray-Curtis distance [57] (BCD), also known as the Sorensen
distance, is used to quantify the dissimilarity in the composition of
two vectors based on the raw counts. Like the Canberra distance, it
is a modified version of the Manhattan distance. It is calculated by
dividing the absolute differences by their sum with the following
formula:

it X —yil
BCD(x,y) ===~ 9
) Yl X+ yil )
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Summary of the properties satisfied by the distance measures analyzed. The check symbol (/) indicates
that the property is satisfied and the cross symbol (X) that it is not.

N-N SYM IND TRI TRA SCA ROT HOM  BND
ED J J J J V x J k=1 x
[39,58] [3958] [39,58] [39,58] [58,59] [5859]  [58,59]
MAND J J J J X x k=1 «x
[10] [10] [10] [10] [31] [31]
cD J J W X x J J k=0
[1039] [10,44] [1044] [1044] [3158] [58] [4]
MAHD v v v v v v k=0 x
[10] [10] [10] [10] [31] [31,60]
CORD J J X J v x k=0
[40] [40,53]  [40,53]
CAD J V J W x J X k=0 X
[40] [40] [40] [40] [61]
BCD J J J X X J x k=0
[62]

N-N: non-negativity. SYM: symmetry. IND: Identity of indiscernibles. TRI: triangular inequality. TRA: trans-
lation invariance. SCA: scale invariance. ROT: rotation invariance. HOM: homogeneity. BND: bounded. *:

bounded only for positive vectors.

4.8. Properties summary

Table 2 contains a summary of the most popular properties in
the literature related to distance measures. Specifically, the prop-
erties required to consider them as metrics and their invariance to
certain transformations. For each measure, it is indicated whether
it fulfills the property (/) or not (X), accompanied by some refer-
ences (below). The cases of properties for which no reference was
found (i.e., the aforementioned symbols do not have citations be-
low them), were empirically tested by simple experiments follow-
ing the definitions of the properties given in Section 2.3. The vec-
tors and constants employed were obtained randomly.

According to the properties considered, the Mahalanobis dis-
tance (MAHD) is the most fulfilling. However, it is important to
remember that taking into account the inverse of the covariance
matrix, it is necessary to have more samples than features. There-
fore, it may not be suitable in high-dimensional contexts. In ad-
dition, the vast majority of implemented algorithms are based on
the difference between the two vectors without considering this
argument, so it would require additional adjustments for its proper
use. The Euclidean (ED) and correlation (CORD) distances meet all
but two properties. The ED measure is not invariant to scaling, but
it could be solved by normalizing or standardizing, only in case
the absolute value of the variables is not relevant. It is also not
bounded and its use is not recommended with high-dimensional
vectors. Unlike the previous ones, CORD is bounded, but it is nei-
ther a true metric nor rotation invariant. However, it has great
advantages in addition to those reflected in the table: it can ap-
ply variables of any dimension, detect nonlinear associations, and
works well in high dimensions. Therefore, it is an excellent candi-
date when samples with several features are used and their associ-
ation is a key aspect. Also worth mentioning is the cosine distance
(CD), which, like the Manhattan and Canberra distances, satisfies
all but three of the properties studied. The CD is not invariant to
translations nor does it satisfy the triangular inequality. However,
its invariance to scaling and rotations could make it a good choice
for clustering. Also, it is important to remember that it can be cal-
culated with vectors of different sizes and its output is bounded.

5. Experimental results

The experiments presented below were designed to analyze the
correlation between the seven distance measures considered and
evaluate their performance in different machine learning problems.
These experiments are:

o Similarity analysis to assess the correlation between the re-
sults of the distance measures applied to the same data.

 Discrimination ability between samples by evaluating the per-
formance of the measures in classification and clustering, two
common tasks in areas such as pattern recognition, information
retrieval, or anomaly detection. The performance degradation
under different noise levels was addressed and the required
execution time was assessed with respect to the performance
achieved.

For experimentation purposes, we use six real datasets (see
Table 3) publicly available in the UCI Machine Learning Reposi-
tory [63]. Regarding the implementations of the distance measures
considered, they are also available in Python libraries such as scipy
and R libraries such as philentropy [64].

5.1. Similarity analysis

In order to explore the relationship between the different dis-
tance measures considered, cluster analysis was conducted follow-
ing the procedure described by Cha [29]. The first step was to
randomly generate 1000 random samples, S = {sq, ..., 1900}, and a
query random sample, q. For this purpose, 100-dimensional vectors
were obtained by generating random numbers in the range [0,100].
Then, the distance values d(s;,q),Vi=1,..., 1000 were calculated
for each of the studied measures, D = {dy, ..., d;}. The Pearson cor-
relation coefficient (PCC) [65], a statistical test that computes the
strength of the relationship between two variables (distance val-
ues) and their association with each other, was computed with the
results obtained for each distance. PCC returns values in the range
[—1, 1], where O indicates that there is no correlation between the
variables, whereas +1 and —1 indicate a strong positive or neg-
ative correlation, respectively. The results obtained are shown in
Fig. 2(a). Finally, a hierarchical grouping of the correlation results
was performed through single linkage clustering (see Fig. 2(b)) us-
ing the following formula:

dyc = 1 — |correlation(d;, di)|, Vd;, di € D (10)

As can be seen in Fig. 2(a), there is a strong correlation (>
0.5) between all the measures. As expected, the measures of the
Minkowski family, Euclidean (ED) and Manhattan (MAND) dis-
tances, are highly correlated (0.95). In this same group are also
the Mahalanobis distance (MAHD) and the cosine distance (CD).
As previously mentioned in Section 4.4, MAHD is equivalent to ED
when the variables are not related and it can be defined as the Eu-
clidean norm of the standardized principal component scores [60].
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Fig. 2. Similarity between the selected distance measures: (a) Pearson correlation values and (b) dendrogram obtained from clustering.

Likewise, CD is equivalent to ED of normalized vectors. Also, the
Canberra (CAD) and Bray-Curtis distances (BCD) have a high corre-
lation with the above measures, as well as with each other. This is
because both are considered modifications of the Manhattan dis-
tance. The Euclidean norm is also used as the basis in the correla-
tion distance, so the level of correlation between it and ED is also
strong, and by extension because of the aforementioned relation-
ships, with MAND, MAHD, and CD. CAD and correlation distance
(CORD) are the least alike, and in general with respect to the other
measure, as shown in Fig. 2(b).

5.2. Discrimination ability between samples

Our goal is to study the behavior of the distance measures con-
sidered in two popular machine learning problems: classification
and clustering. The main reason is that classification and clustering
algorithms are used as the basis for numerous applications, such
as pattern recognition, information retrieval, and anomaly detec-
tion, among many others. For this purpose, the six datasets listed
in Table 3 were used. The degradation of the result of each dis-
tance measure in the presence of different noise levels was also
evaluated. Finally, a comparative study is presented to evaluate
each measure with respect to two factors: execution time and per-
formance. The Mahalanobis distance (MAHD) makes use of the
knowledge of the entire dataset to calculate the covariance ma-
trix when performing its calculations. Therefore, this distance uses
three input arguments: two vectors and the covariance matrix. The
available implementations of the classification and clustering algo-
rithms used only allow distances with two input arguments. Calcu-
lating the covariance-based only on the two input vectors instead
of the whole dataset would perturb the results, so the Mahalanobis
distance was not tested in the following experiments.

The procedure described by Nettleton et al. [66] was followed
to generate different noise levels (Fn). The Fn values used are in
the range [0,1] and the generation process is as follows:

« Attribute noise. For each attribute, a samples of the test set
were randomly selected to be modified following a discrete uni-
form distribution, with a = (Fnxb), where b is equal to the
number of examples and Fn is the noise level. The new at-
tribute value for each of the a samples was replaced with the
value generated by a normal distribution using the mean and
standard deviation that the attribute presents in the whole set.

o Class noise. For each sample in the training set, a reference
value v generated from a continuous uniform distribution in the
range [0,1] was obtained. If v < Fn, the class of the sample was

Euclidean distance
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replaced by one of the remaining classes using a discrete uni-
form distribution.

5.2.1. Classification

To perform the classification tests, we selected one of the best
known and most used algorithms in the area, k-nearest neighbor
(kNN) [67]. This algorithm works by classifying a sample accord-
ing to the most common distance between its k nearest neighbors
based on a distance measure. We chose this classifier because it
makes few assumptions about the data and no parameter tuning
is required. The datasets used are those described in Table 3, ap-
plying different noise levels. Specifically, Fn € [0, 0.9] for attribute
noise and Fn ¢ [0,0.5] for class noise, with increments of 0.1 in
both cases. The classification accuracy was used to evaluate the
performance of the different measures.

Figs. 3 and 4 show the average accuracy achieved by the differ-
ent measures for each noise type after 10 repetitions of the kNN
algorithm with a different number of neighbors (k € {1,3,5,7,9}).
The accuracy value represented in the graph corresponds to the
one reached with the best value of k, showing the standard de-
viation obtained when calculating the mean accuracy with all the
k values. Note that, for visualization purposes, the y-axis is scaled
differently in each plot. In terms of overall performance, the Can-
berra distance (CAD) clearly stands out from the rest of the mea-
sures. In the Wine dataset, it is the only one that achieves an ac-
curacy higher than 0.9. This dataset includes both integer and real
attributes, with particularly high integer values. As far as can be
seen, CAD is the measure that is least affected by large-scale fea-
tures. In this case, the Euclidean distance (ED) is the most affected.
With respect to the rest of the datasets, CAD also presents a su-
perior performance in Breast Cancer and Isolet datasets, and the
difference with respect to the rest of the measures in the Iris and
Lo-Res Spectrometer datasets is < 0.02 and < 0.01, respectively.

The addition of attribute noise (see Fig. 3) causes a large drop
in accuracy, as expected. In the Iris, Wine, and Madelon datasets,
all measures show a similar fall from the first level. In the Breast
Cancer dataset, CAD is the measure that best tolerates the noise,
reaching much higher accuracy values than the other measures at
all levels, as in the Wine and Isolet datasets. Finally, in the Lo-Res
Spectrometer dataset, all the measures show a slight drop up to
F, = 0.4. In this dataset, CAD again stands out with respect to the
rest of the measures. Class noise is better tolerated, with a very
slight decrease in accuracy up to level 0.2 in all datasets with the
exception of Madelon (see Fig. 4). As can be seen, some of the pre-
viously mentioned conclusions hold. In the Iris dataset, the mea-
sures show similar behavior, as well as in Breast Cancer, where
CAD stands out slightly. In the Wine dataset, CAD far outperforms
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Fig. 3. Average accuracy of KNN per dataset for all the distance measures considered with attribute noise (F,) after 10 repetitions. Note that the y-axes are scaled differently

for better viewing.
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Fig. 4. Average accuracy of kNN per dataset for all the distance measures considered with class noise (F,) after 10 repetitions. Note that the y-axes are scaled differently for

better viewing.

the rest of the measures. Note that CORD and CD show akin be-
havior on all datasets, as do MAND and BCD.

The influence of the number of neighbors on the result is not
significant without the presence of noise. In the Iris, Breast Cancer,
and Lo-Res Spectrometer datasets, all the measures have a stan-
dard deviation < 0.01. In the other datasets, the mean deviation
value oscillates in the range (0.01 — 0.03). With the introduction of
noise, the influence increases considerably, especially in the pres-
ence of class noise. Overall, the best neighbor values are especially
high, with k > 5 in practically all cases, rising as more noise is in-
troduced.

Finally, in order to explore the statistical significance of our
classification results, we analyzed the accuracies achieved by the
different distances in each dataset without the presence of noise.

For this purpose, we used a Friedman test with Nemenyi's post-
hoc test [68]. Fig. 5 presents the critical difference diagrams where
groups of distances that are not significantly different (at o = 0.05)
are connected. The diagrams show the mean ranks for each mea-
sure, the higher the rank (further to the right) the better the per-
formance. If a horizontal line connects two or more measures, this
means that there is no significant difference between them. As can
be seen, there are only significant differences in the Wine and Iso-
let datasets. In the former, CAD performs significantly better than
ED, CD, and MAND. In the latter, the performance of CAD is sig-
nificantly better than ED, CD, and CORD. In the remaining cases,
either no differences are noticed (all measures are grouped on a
single horizontal line) or the data are not sufficient to detect them
(the horizontal lines overlap). Although there are no significant dif-



E. Blanco-Mallo, L. Mordn-Ferndndez, B. Remeseiro et al.

BCD 4% 25 CORD
MAND 405 31 cap
cD 35 335 ED

(a) Iris
cD
_—
6 5 4 3 2 1
ED CAD
cD 44 315 BCD
CORD 38 325 MAND
(c) Breast cancer
cD
—_

[

MAND 41 35 cp
BCD 395 85 CAD

(e) Madelon

Pattern Recognition 141 (2023) 109646

ED —* cap
cD 458 28 CORD
MAND 355 345 gcD
(b) Wine
cD

cp A——’ \—u BCD

CORD 445 5 MAND
ED 348 31 cAD

(d) Lo-Res Spectrometer

ED CAD
CcD BCD
CORD 42 2 MAND

(f) Isolet

Fig. 5. Critical difference diagrams showing the accuracy obtained by the different measures on each dataset, without the presence of noise and using the kNN algorithm.

ferences, it can be seen that CAD has a much higher performance
than the rest, being located further to the right of the diagram in
all cases.

5.2.2. Clustering

In clustering, one of the best known and most widely adopted
algorithms is k-means [67]. However, it is not suitable for our
study, since its use with different similarity measures could lead
to non-convergence problems. In k-means, clustering is performed
by minimizing the sum of the squares of the distances between
the data and the centroid of the corresponding cluster, i.e., the Eu-
clidean distance. The centroids are selected at each iteration based
on the mean of the data in each cluster, changing location step
by step until no more changes occur. In order to converge, adding
a new cluster center must decrease the objective function. There-
fore, both the assignment step and the centroid update step must
optimize the same criterion. For this reason, it cannot be used with
arbitrary distance measures.

A similar clustering algorithm but that does not present this
constraint is k-medoids [69]. Its goal is also to minimize the dis-
tance between the data relative to the centroid of the clusters,
with the difference that k-medoids uses real representative data
as centroids instead of calculating the mean in each cluster. Con-
sequently, it not only avoids the convergence problem mentioned
above but also provides more robustness to outliers. Thus, this is
one of the algorithms chosen to perform the clustering experi-
ments. The major drawback of k-medoids with respect to k-means
is its complexity, and hence, its run time.

A hierarchical clustering algorithm was also chosen to evalu-
ate the performance of different distances. This type of method
focuses on building a tree, assuming that the clusters are hi-
erarchically structured. Specifically, the complete linkage method
(CLM) [70] was selected. Initially, each sample forms its own clus-
ter. Then, the tree is built from bottom to top by merging the most
similar clusters considering the maximum distance between the
two farthest points in two clusters.

Since unsupervised learning algorithms were used in these ex-
periments, only the case of attribute noise was studied. As in the
previous experiment, noise levels in the range [0,0.9] were used
and 10 repetitions of each experiment were conducted. The quality
of the clustering result was assessed through the purity, a popu-
lar measure in the field [39,71] that indicates the extent to which
clusters contain a single class. More specifically, it computes the
coherence of the clustering result by taking into account the num-
ber of samples of the majority class per cluster. Let €2 be the set
of clusters found by the algorithm and C the set of classes of the
labeled samples, the purity is defined as follows:

. 1
purity(Q, C) = N%r{&ﬂwnd (11)

where N is the number of labeled samples and |w N c| represents
the number of samples in cluster @ that belong to class c.

Figs. 6 and 7 presents the average results obtained for each
dataset. Regarding the purity obtained without noise with k-
medoids, the greatest difference is found in the Wine, Breast Can-
cer, and Lo-Res Spectrometer datasets, with the performance of
CAD standing out above the rest of the measures. With the com-
plete linkage algorithm, CAD again stands out together with BCD
and CORD. It can also be observed that, as the number of features
in the dataset increases, the performance of the measures deterio-
rates with both algorithms. In particular, in the Madelon and Isolet
datasets, the purity obtained is very low in general. In addition to
the complexity involved in dealing with a large number of features,
these two data sets are the ones that contain a greater number of
samples. Furthermore, both problems are multivariate and Made-
lon is non-linear. In terms of noise tolerance, from level 0.1 the
purity plummets in all measures in both algorithms when noise is
introduced into the datasets. CAD is again the measure that shows
a slightly higher tolerance than the others.

Figs. 8 and 9 show the critical difference diagrams generated
using the Friedman test with Nemenyi's post-hoc test (o = 0.05)
using the purity value achieved by the measures in the differ-
ent datasets, without noise and using the k-medoids and complete
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linkage algorithms, respectively. In the k-medoids scenario, signifi-
cant differences are only found in the Breast Cancer dataset, where
CAD is significantly better than ED, CORD, and MAND. Note that,
also in this case, CAD is on the right side of the ranking in all
cases. Therefore, although there is no statistical significance over
the rest of the measures, its performance is superior. In the case of
the complete linkage algorithm, no significant differences between
the measures are found in any dataset.

In summary, all measures suffer considerably when noise is in-
troduced into the datasets. Without considering noise, the measure
that performs best on average in both clustering methods in the
considered datasets is the CAD, followed by BCD, CORD, and CD.

10

5.3. Performance vs. execution time

When choosing between different distance measures in a ma-
chine learning problem, the execution time plays a key role. There-
fore, we evaluated each measure in terms of two factors: its per-
formance (accuracy or purity) and its runtime. The performance
results compared are those obtained without the presence of noise
in the different datasets and the execution times were transformed
to the range [0, 1] following min-max normalization.

As can be seen, in kNN (Fig. 10 (a)) and k-medoids (Fig. 10
(b)), the fastest measures on average are Canberra (CAD), Bray-
Curtis (BCD), and correlation (CORD) distances, with very similar
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algorithm.

execution times. The same applies to the slowest ones, which are
Euclidean (ED), Manhattan (MAND), and Cosine (CD) distances. In
terms of performance/time, CAD stands out above the rest, obtain-
ing the highest purity and accuracy values more quickly. It is fol-
lowed by BCD and MAND in classification, and CORD and CD in
clustering. However, in the case of CORD, an increase in execution

1

time is noted depending on the number of samples in the dataset,
which is not observed in the rest of the measures. On the con-
trary, ED, MAND, and CD are matching their execution time with
the others as this factor increases, although their performance in
comparison is lower. In the complete linkage method (Fig. 10 (c)),
no clear patterns are observed as in the previous algorithms. CAD
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Fig. 10. Average performance versus average execution time over 10 repetitions of
the kNN algorithm (a), 10 repetitions of the k-medoids algorithm (b), and 10 rep-
etitions of the complete linkage method for the six real datasets considered (see
Table 3). Note that the y-axes are scaled differently for better viewing.

Table 3

Properties of the real datasets used. The symbol (+) indicates that the attributes
of the dataset are positive values only, while (+,-) indicates that there are both
positive and negative values. Attr: Attributes, Cl: Classes, S: Samples, D.Type: Data
type.

Dataset #Attr  #Cl #S D.Type

Iris 4 3 150 Real (+)

Wine 13 3 178 Integer, Real (+)
Breast Cancer Wisconsin 30 2 569 Real (+)

Low Resolution Spectrometer 100 9 531 Integer, Real (+,-)
Madelon 500 2 2600  Real (+)

Isolet 617 26 7797  Real (+, -)
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is one of the slowest measures, but it is still the best average mea-
sure in terms of purity. ED is usually fast on all datasets, but as the
number of features increases its purity decreases. This is probably
because ED is the measure most affected by the curse of dimen-
sionality.

5.4. Summary results

Table 4 presents a summary of the performance of all the mea-
sures in the experiments conducted as a function of different vari-
ables. Specifically, accuracy in kNN, purity in k-medoids and com-
plete linkage methods, and noise tolerance and execution time in
both tasks. The performance of a measure with respect to a given
variable is evaluated in the range [1,5], where a larger number
of dots implies better behavior. A distance measure reaching five
dots on a variable indicates that it performs well on it, i.e., it leads
to high accuracy, exhibits a fast execution time or tolerates noise
well, for example. In light of the results, the most suitable mea-
sure for classification is the Canberra distance (CAD), followed by
the Bray-Curtis (BCD), and the Manhattan (MAND) distances. Eu-
clidean (ED), cosine (CD), and correlation (CORD) distances show
the worst behavior, proving to be the least advisable in classifica-
tion. Regarding clustering, CAD again stands out favorably against
the rest, followed by BCD, CORD, and CD. The measures showing
the poorest performance in clustering are MAND and ED, the latter
being the least preferable in general in both tasks.

In summary, the best performing measure is CAD, since it be-
haves equally or better than the others in all cases except for exe-
cution time in the complete linkage algorithm. Notice that it pro-
vides, on average, the highest results in terms of accuracy and
purity. Additionally, it shows the best noise tolerance. The main
drawback is that it exhibits a low tolerance to clustering noise, al-
though all measures behave particularly poorly in this case.

6. Discussion and conclusion

Due to the relevant role of distance and similarity measures in
a multitude of machine learning and data mining tasks, the aim
of this paper is to shed light on the different types of measures
used, their fundamental properties, and some relevant aspects to
be taken into account depending on the needs of each particular
problem. For this purpose, we summarized the most relevant pub-
lications of the last few years on the subject and selected seven
outstanding measures with detailed descriptions, focusing on their
main properties. Also, a similarity study between them was pre-
sented and their performance on two common ML tasks (classifi-
cation and clustering) was evaluated.

Since most of the measures are highly correlated with each
other, many of them achieved very similar results. Most of the ana-
lyzed measures achieved a good performance without the presence
of noise, and due to their high correlation, in many cases lead to
similar results. In fact, in the vast majority of critical difference di-
agrams analyzed, no statistical significance is found between the
measures. Moreover, a multitude of variants of all of them and ex-
amples of successful applications of practically all types of prob-
lems can be found in the literature. So we could say that, in a cer-
tain sense, all roads could lead to Rome. However, if the guidelines
are confusing or mistaken, things get complicated. The more noise
is observed in the datasets, the more differences are observed be-
tween the performance of the distances analyzed. Although higher
noise tolerance is observed in kNN, performance plummets in the
clustering algorithms. In fact, none of the measures achieves good
results in the Madelon and Isolet datasets in this task. These are
the datasets with the largest number of samples and features, the
former marked by a high level of redundancy and the latter con-
sisting of a total of 26 classes. The more complex the problem,
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Table 4
Summary of the results obtained in the experimentation.
ED MAND cD CORD CAD BCD
kNN Accuracy oo eoe oo .o eee
Attr. Noise Tolerance o oo . . oo
Cl. Noise Tolerance oo ooo oo oo oo
Execution time XY} eee XYy} LXYYY) XYY Y)
k-medoids Purity oo oo LX) ooe eoe
Attr.Noise Tolerance . . . . .o .
Execution time XYY eecee XYY XYYY) eecee XYY Y)
C-linkage Purity . oo oo Xy Xy Xy
Attr. Noise Tolerance . . . . .o .
Execution time eeee eee Xy’ XYl . oo
the lower the results achieved in general. This suggests that pre- Acknowledgments

processing, such as feature selection, may be of particular rele-
vance to clustering in this type of scenario, no matter what dis-
tance is used.

Regarding kNN, although the number of neighbors does not
cause a significant difference between the considered measures,
the more features the dataset has, the more neighbors are needed
to achieve higher accuracy, such as when introducing noise. Our
hypothesis is that, the more neighbors are used, the higher the
probability of having more correct samples among them, decreas-
ing noise at the local level. Furthermore, due to the curse of di-
mensionality, using more neighbors implies being able to access
a larger information gain, thus increasing the ability to capture
the differences between the different neighborhoods. The results
drawn from the experimentation reveal that the most advisable
measures for classification are Canberra, Bray-Curtis, and Manhat-
tan distances. In the case of clustering, the best results are ob-
tained with Canberra distance, followed by Bray-Curtis, cosine, and
correlation distances. In general terms, the overall performance of
the Canberra distance is the most remarkable. On the contrary, the
Euclidean distance, one of the most used in several applications
due to its simplicity, is the one that shows the worst results on
average.

The behavior of distance measures when dealing with high-
dimensional datasets is a topic attracting increasing attention. Sev-
eral fields such as bioinformatics, medicine, marketing, and fi-
nances, among others, make an active use of machine learn-
ing tasks based on distance measures to address their problems.
A common denominator in these areas is that they work with
complex data types. Therefore, future work would be focused on
the integration of these measures in a distributed environment
optimized for large-scale data processing, such as Spark, which
would bring great improvements in terms of computational cost.
In view of the results of the experimentation, the more complex
the dataset, the worse the results of the measures in general.
However, the concrete reasons why this occurs and how to solve
it would require new experiments, which are beyond the scope
of this study. Therefore, it would also be interesting to incorpo-
rate data pre-processing techniques to evaluate how they affect
the behavior of different distance measures in the face of high-
dimensional datasets.
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