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Abstract
Researchers are defining new types of interactions between humans and machine learn-
ing algorithms generically called human-in-the-loop machine learning. Depending on who 
is in control of the learning process, we can identify: active learning, in which the sys-
tem remains in control; interactive machine learning, in which there is a closer interaction 
between users and learning systems; and machine teaching, where human domain experts 
have control over the learning process. Aside from control, humans can also be involved 
in the learning process in other ways. In curriculum learning human domain experts try to 
impose some structure on the examples presented to improve the learning; in explainable 
AI the focus is on the ability of the model to explain to humans why a given solution was 
chosen. This collaboration between AI models and humans should not be limited only to 
the learning process; if we go further, we can see other terms that arise such as Usable and 
Useful AI. In this paper we review the state of the art of the techniques involved in the new 
forms of relationship between humans and ML algorithms. Our contribution is not merely 
listing the different approaches, but to provide definitions clarifying confusing, varied and 
sometimes contradictory terms; to elucidate and determine the boundaries between the dif-
ferent methods; and to correlate all the techniques searching for the connections and influ-
ences between them.
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1  Introduction

There is currently a great demand for machine learning (ML) solutions. This is because 
the advances that have occurred in recent years around this technology have popularized it 
and have brought it closer to the general public. But building machine learning systems is a 
complex process that requires deep knowledge of machine learning techniques.

Usually, humans are required at various points in the loop of the machine learning pro-
cess but following a kind of monolithic conception in which the machine learning algo-
rithm is modeled, built, tested and then offered to the public without further changes.

Models that are developed under this scenario might run the risk of not scaling well, 
becoming static, being hard to evaluate, and degrading their performance due to changes 
in the context they are deployed into. Also, due to the limitations of the dominating con-
nectionist approach, they usually lack logical reasoning and the possibility of identifying 
causal relations (Holmberg et al. 2020).

Researchers are defining new types of interactions between humans and machine 
learning algorithms, which we can group under the umbrella term of Human-in-the-loop 
machine learning (HITL-ML) (Munro 2020). The idea is not only to make machine learn-
ing more accurate or to obtain the desired accuracy faster, but also to make humans more 
effective and more efficient.

Depending on who is in control of the learning process, we can identify different 
approaches to HITL-ML (Holmberg et al. 2020):

•	 Active learning (AL) (Settles 2009), in which the system remains in control of the 
learning process and treats humans as oracles to annotate unlabeled data.

•	 Interactive machine learning (IML) (Amershi et al. 2014), in which there is a closer 
interaction between users and learning systems, with people interactively supplying 
information in a more focused, frequent, and incremental way compared to traditional 
machine learning.

•	 Machine teaching (MT) (Simard et al. 2017; Ramos et al. 2020), where human domain 
experts have control over the learning process by delimiting the knowledge that they 
intend to transfer to the machine learning model.

Aside from control, humans can also be involved in the learning process in other ways. For 
example, human learning has inspired different algorithms designs throughout the develop-
ment of machine learning. As an outstanding feature of human learning, curriculum, or 
learning in a meaningful order, has been exploited and transferred to machine learning, 
which forms the subdiscipline named curriculum learning (CL) (Bengio et  al. 2009). 
This idea is focused on trying to impose some structure on the training set to accelerate and 
improve the learning and it constitutes another approach to HITL-ML.

Also, we must also bear in mind that, in certain domains, it is advisable that the algo-
rithms should explain their results to humans. We are not only interested in the ability of an 
algorithm to solve a problem with a given accuracy, but also in the ability to explain why a 
given solution was chosen. This is called Explainable AI (XAI) (Adadi and Berrada 2018) 
and is a research field that aims to make the results of AI systems more understandable to 
humans. Currently, it has been noted that the humans’ role has not been sufficiently studied 
in existing approaches to explainability (Abdul et al. 2018).

Finally, we have to take into account not only the development of AI or ML models 
but also the design of the interactions and behaviors that compose the human experience 
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around the AI models (van Allen 2018). This leads us to the definition of two new terms 
related to the relationship between humans and AI models that go beyond cooperation in 
learning, called “Usable AI” and “Useful AI” (Xu 2019), and which are fundamental to 
ensure that an AI model is successful. Usable AI focuses on ensuring that AI systems are 
usable by the people interacting with them. Useful AI goes further and tries to make AI 
models useful in a broad sense, i.e., useful to the society in which they are embedded, 
approaching AI from a human perspective by considering human conditions and contexts.

In this paper we review the state of the art of the techniques involved in the new forms 
of relationship between humans and ML algorithms focusing mainly in the different strat-
egies on how to incorporate humans into the learning process. The contribution of this 
work is not merely to list papers within each discipline, but to provide definitions of each 
term and to clarify confusing, varied and sometimes contradictory definitions—e.g., the 
term Machine Teaching has been used in the literature to define very different and some-
times unrelated techniques—. It is also intended to clarify and determine the boundaries 
between the different approaches, which are not always very clear—e.g., IML comes from 
AL adding new levels of interactivity, but this can become confused or mixed with inter-
active MT—. An attempt is also made to correlate all the techniques with each other and 
to see the relationships and influences that they have between them. This aspect will be 
commented in each section and will be discussed in the final section of discussion and 
conclusions.

The field of Human-in-the-Loop ML is quite broad, so going into detail on each of the 
techniques would be unfeasible. For this reason, in each of them we focus on giving his-
torical perspectives, offering definitions, describing the main methods involved and their 
applications. Within each section, reference is also made to reviews of these techniques 
that exist in the literature, to offer a starting point for those who want to learn more details 
about them. Thus, for example, (Dudley and Kristensson 2018) review aspects related 
to the user interface in IML, (Ramos et al. 2020) reviews the human aspects involved in 
interactive MT. Sometimes these reviews offer perspectives that do not always coincide 
as occurs with XAI goals which are classified differently in recent review papers (Barredo 
Arrieta et al. 2020; Minh et al. 2021; Meske et al. 2022; Das and Rad 2020).

In Fig. 1 we can see a mind map with the structure of the paper, and in each of its sec-
tions we will introduce a mind map that helps to summarize the contents exposed within 
that particular section.

Thus, the paper is structured as follows: First, we begin with an explanation of the 
different types of learning with human collaboration: active learning (AL)—Sect.  2—, 

Fig. 1   Human-in-the-loop machine learning (HITL-ML) mind map
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interactive machine learning (IML)—Sect.  3—and Machine Teaching (MT)—Sect.  4—. 
This will be followed by a discussion on curriculum learning (CL)—Sect. 5—since it is 
a technique that will be used, to a greater or lesser extent, in the techniques commented. 
The following section is devoted to describing the process where ML models explain their 
results to humans through Explainable AI (XAI)—Sect. 6—. We will then describe more 
briefly the relationship between humans and AI and ML systems in terms that go beyond 
learning and defining usable AI and useful AI—Sect. 7—. Finally, we will end the paper 
with a chapter for discussion and conclusions—Sect. 8— in which we highlight the rela-
tionships between the different techniques and discuss trends and future developments.

2 � Active learning (AL)

When we described the human-in-the-loop machine learning (HITL-ML) approach in the 
introduction we mentioned that the inclusion of humans in the learning process could be 
done at different levels depending on who was in control of the process. The first of these 
levels is active learning (AL) in which the system remains in control and uses humans as 
oracles to annotate data. In this section we will describe the different definitions of AL, the 
process to update a ML model following this approach commenting on the different strate-
gies that can be taken. We end up with a brief review of some AL applications, the differ-
ent issues that can emerge when applying AL, and how this technique is connected with 
other ML techniques. A mind map of AL can be consulted in Fig. 2.

2.1 � AL definitions

AL is a machine learning approach in which a learner requests an oracle (who acts as a 
teacher) to label selected examples that are not clear and that will provide relevant infor-
mation to the learning process. As a result, the learner improves its learning performance 

Fig. 2   Active learning (AL) mind map
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using less training examples. It is very effective in settings where there is a lot of unlabeled 
data available, but the annotation task is expensive or time-consuming.

In this technique, the learner is in control of the data, and queries an entity with 
extensive knowledge of the domain (typically a human expert) for annotating unlabeled 
examples.

Therefore, AL is a kind of semi-supervised learning as it uses both labeled and unla-
beled data. New examples get annotated in an iterative and incremental process, where a 
query strategy is used to choose an example to be queried, and once labeled by an oracle, 
will result in a model accuracy increment.

It was inspired by the family of instructional techniques with the same name in the edu-
cation literature (Bonwell and Eison 1991) whose intention is to make the student a partner 
in the learning process and thus not being overly dependent on the teacher. The source of 
knowledge could be a set of positives examples and/or an oracle as proposed by Valiant 
(1984) and Angluin (1987). While the former focuses on the knowledge acquisition issue, 
the latter describes some alternatives on query construction. One of the first applications of 
this technique to machine learning can be found in Sammut and Banerji (1986) in which 
AL is used to enable the learner to take an active role in acquiring the new concepts.

For further reading, we refer to Settles (2009) and Olsson (2009) for detailed active 
learning literature surveys.

2.2 � AL process

Active learning uses an iterative process for obtaining training data, unlike passive learn-
ing, where all labeled data is provided in advance. It is said that the learner is curious and 
requests information from the oracle based on different query strategies.

AL is a data-driven technique as it relies on the data to get the highest performance. 
The acquisition of unlabeled examples is less expensive than the labeled ones. By using a 
mechanism that helps selecting the most relevant examples, the system reduces the amount 
of data required to train the model, while maximizing (at least maintaining) its accuracy, at 
a lower cost (Settles 2011).

The AL process is as follows, the data set is divided into two groups of examples: the 
ones that are labeled, and the ones that are still unlabeled (i.e., the label is unknown). The 
model iteratively select a new example (or set of examples) from the unlabeled group and 
provide it to the oracle so that it gets labeled. The system then trains the model using the 
new data until the desired performance or a stop condition is achieved (see Fig. 3).

Here it is important to distinguish several processes that occur within active learning 
and that are sometimes confused. The first is the sampling process also known as the 
query strategy. This process consists of selecting those instances to be labeled by the 
human expert.

Angluin (1987) was one of the very first authors that cite some alternatives on query 
construction. Another notable work is Cohn et al. (1994) that described an example-based 
approach called selective sampling, as a rudimentary form of active learning that is suited 
for concept-learning problems. The samples are selected sequentially from a region of 
uncertainty, which is the area of the domain where misclassification is still possible. For 
each example, the region of uncertainty is recalculated, and new examples are picked from 
that region. With this approach, as more examples are added to the model, the uncertainty 
decreases without decreasing the efficiency.

In this regard, Settles (2009) mentioned three main sampling strategies:
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•	 Membership query synthesis: The learner may request labels for any unlabeled 
instance in the input space, including queries that the learner generates de novo.

•	 Stream-based selective sampling: Also called sequential sampling, in which each 
unlabeled instance is drawn one at a time from the data source, and the learner must 
decide whether to query or discard it.

•	 Pool-based sampling: The entire collection of data (or a subset of it) is evaluated 
and ranked in order to select the best element to annotate.

More recently, Munro (2020) distinguishes three types of sampling strategies: random, 
uncertainty and diversity. The random query strategy is the simplest as the data to be 
labeled are randomly selected. The other two strategies are more interesting since they 
describe a well-known dilemma: exploitation vs. exploration (Hills et al. 2015).

•	 Uncertainty sampling (Exploitation): It selects instances which have the least label 
certainty under the current trained model. In this category we found:

–	 Least confidence, which takes the example with the lowest confidence in their 
most likely class label.

–	 Margin of confidence, that uses the smallest difference between the top two 
highest probabilities for each possible label.

–	 Ratio of confidence, which uses the ratio between the top two most confident 
predictions.

–	 Entropy, that uses the difference between all predictions.

•	 Diversity sampling (Exploration): It selects unlabeled items that are rare or unseen 
in the training data to increase the picture of the problem space. Here, we found:

Fig. 3   Steps taken in order to 
update the model in AL
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–	 Model-based outliers, that samples for low activation (e.g. hidden layers).
–	 Cluster-based sampling, which uses unsupervised learning to cluster the data to 

find outliers that are not part of any trend.
–	 Representative sampling, that finds items most representative of the target domain.
–	 Real-world diversity, which increases fairness with data supporting real-world 

diversity.

As we can see, while exploitation focuses on improving the efficiency using existing prod-
ucts or data, exploration goes beyond the known data samples to enhance the diversity of 
the data. The latter is relevant if we want the model to generalize (and we want it).

Other aspect related with the AL process is how many new instances are labeled 
before training again the model. In this regard Rubens et al. (2015) identify two main 
approaches:

•	 Batch: several examples get labeled until the model is trained again.
•	 Sequential: the system is retrained after each new element is labeled given immediate 

feedback to the user.

Here we can identify a trade-off between the two alternatives. Sequential training is impor-
tant, for example, when working with recommender systems, since users expect to get an 
updated list of recommendations based on their last annotation, on the other hand, allowing 
the user to rate several items, or several features of an item before readjusting the model is 
more efficient both computationally and in terms of the cost associated with the interac-
tions with humans.

Finally, the AL process we have described here is considered ideal: “The oracle is 
assumed to be infallible (never wrong), indefatigable (always answers), individual (only 
one oracle), and insensitive to costs (always free or always charges the same)”. Some 
authors like Donmez and Carbonell (2008) proposed an extension to the AL concept, 
called Proactive Learning, which is a generalization that relaxes several assumptions of 
the process seeking to cover a more realistic scenario. In this case, the oracle is probabilis-
tic (may err), reluctant (may refuse to answer), plural (different oracles), and the costs are 
variable (per oracle, per instance).

2.3 � Applications of AL

As a general rule, the fields of application of AL are those where the cost of annotating 
data is high, but these are tasks that humans generally do well, such as interpreting 
images or processing natural language.

AL is of special interest when the labeling example process is expensive or time-con-
suming, and it also applies on the scenario of a scarce number of examples (e.g., rare dis-
eases). The active learner aims to achieve high accuracy using as few labeled instances as 
possible, thereby minimizing the cost of obtaining labeled data. As a result, the learner 
improves its learning performance (i.e., maximizing accuracy).

Regarding image and video classification, in the medical context we can find AL in the 
classification of radiology reports (Hoi et al. 2006; Nguyen and Patrick 2014). In biologi-
cal research, it has been used in recognizing multiple types of plankton using images (Luo 
et al. 2004). An extensive survey in medical image analysis, which serves as the basis for 
clinical decision making, is performed in Budd et al. (2021).
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Regarding Natural Language Processing (NLP) we refer to the survey of Olsson (2009) 
as a starting reference. A modern reference is De Angeli et al. (2021) that uses AL for the 
classification of cancer pathology reports.

As we can see, AL is a mature technique and due to its versatility it has been applied 
in a diverse number of settings. For example, we could find it at the basis of recommender 
systems (Rubens et al. 2015), for the construction of a reward estimation models (Lopes 
et al. 2009), and as the base for predicting molecular energetics (Smith et al. 2018) or pre-
dicting a heart disease (El-Hasnony et al. 2022) just to mention some of them.

In response to these multiple applications, AL has been included in software program-
ming frameworks so that it can be integrated in custom developments (Jamieson et  al. 
2015; Reyes et  al. 2016; Tang et  al. 2019). AL can also be found incorporated in many 
cloud tools such as QnA Maker (Microsoft 2022), a cloud-based Natural Language Pro-
cessing (NLP) service by Microsoft or into the Appen platform used for AI data sourcing, 
data annotation and model evaluation by humans.

2.4 � AL shortcomings

Even if AL has produced good results in many scenarios, it is not free of issues, as some 
base assumptions about this technique do not always hold. Some of these issues or limita-
tions have been described by Settles (2011) and Donmez and Carbonell (2008) and we 
quote them below.

•	 Querying in batches. It is often assumed a pool-based scenario in which the learner 
would select instances to be queried one at a time, re-train the model and using the new 
generated model, repeat the process. As the training process is usually expensive and 
it is not feasible to re-train for every single instance queried, batches of instances are 
selected allowing less training steps and making the process more efficient.

•	 Noisy oracles. In most experiments it is assumed that the quality of labeled data from 
the oracle is high. Even if a human acts as the oracle, some instances are implicitly 
difficult, both for models and humans. Furthermore, humans can become distracted or 
fatigued over time, which introduces variability in the quality of their annotations. The 
use of multiple non-experts could overcome this issue, but still there are some deci-
sions to be made as how to decide an oracle label is trustworthy, when to query several 
oracles or when to get new queries for a noisy example.

•	 Variable labeling cost. The cost of obtaining new labels has been assumed uniform 
and fixed. Moreover, the cost of misclassification has been ignored in many experi-
ments. A cost-sensitive framework based on meta-features can be set to include the 
variability in the model.

•	 Alternative query types. Refers to the assumption that the query unit is always the 
same type as the target concept to be learned. The usual approach of membership query 
is used in many systems, but some other types of queries can be considered as multiple-
instance or querying features.

•	 Multi-task active learning. It is assumed that there is only one learner trying to solve 
a single task, but sometimes the same data could be labeled for various sub-tasks at the 
same time. When using classification of not mutually exclusive categories, a learner 
can decide to query for several of them at a time.

•	 Changing model classes. In some scenarios the model does not contain a represent-
ative set of examples of a real problem, and the unknown data remains unexplored. 
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When re-using a model in a different problem it can become problematic. It is also the 
case when new knowledge is available in the future and there is a need to incorporate 
this information into an existing model. The system should be prepared so that it can 
incorporate new classes, or change the existing ones.

2.5 � AL related techniques

We could also find AL combined with other techniques to produce better global results. 
For example, Transfer Learning (TL) (Zhuang et  al. 2021) is a technique used to cre-
ate high-performance learners trained with data that is easily obtained and then transfer 
their knowledge to solve real-world machine learning scenarios in which training data is 
expensive or difficult to collect (Weiss et al. 2016). TL can be used as an alternative to AL 
to overcome the lack of training examples (Aggarwal et al. 2014), but it can also be used 
in conjunction with AL to avoid a cold start in the creation of the model. Nevertheless, the 
use of TL does not change the general process of AL, since pretrained models still require 
additional human labels to achieve accurate results in their tasks. However, a substantial 
head start in labeling can influence the choice of active learning strategy to use (Munro 
2020). Thus, in general, TL is considered the basis of some of the most advanced active 
learning strategies proposed.

AL can be also related with crowdsourcing labeling services such as the Amazon 
Mechanical Turk (Amazon 2022). Crowdsourcing services offer the acquisition of non-
expert annotations at low cost outsourcing small annotation tasks to a large group of free-
lance workers. A consequence of using non-expert annotators is a lower annotation qual-
ity that requires of quality control strategies. AL and crowdsourcing are complementary 
approaches: AL reduces the number of annotations used while crowdsourcing reduces the 
cost per annotation. Combined, the two approaches could substantially lower the cost of 
creating training sets (Laws et al. 2011; Zhao et al. 2020).

We can also relate AL with curriculum learning (CL) (see Sect. 5). Humans do learn 
better if the examples used to train them are sorted and organized so that they get gradually 
more complex. This process of creating an ordered sequence of examples to be provided to 
the learner at different stages of the learning process can help improving the learner perfor-
mance. When using CL on an AL approach, instead of taking the examples near the deci-
sion surface, the focus should be on choosing the examples that the learner could poten-
tially label, and gradually add new examples near the decision border.

Finally, we can connect AL with the technique described in the following section, inter-
active machine learning (IML). As we will see, IML is a generalization of an active 
learning approach in which the control is shared between humans and learning models.

3 � Interactive machine learning (IML)

The following level inside human-in-the-loop machine learning (HITL-ML) regarding who 
is in control of the learning is interactive machine learning (IML) in which there is a closer 
interaction between users and learning systems, with people interactively supplying infor-
mation in a more focused, frequent, and incremental way compared to traditional machine 
learning. In this section we will describe the different definitions of IML, its differences 
with AL and several applications in which IML was employed. A mind map of IML can be 
consulted in Fig. 4.
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3.1 � IML definitions

The paper that first describes interactive machine learning (IML) is the work of Ware et al. 
(2001). These authors describe IML as a method for interactively constructing decision 
tree classifiers. Although their definition of IML is more restricted than the current notion 
of the term, they highlight the basic idea that is behind most IML approaches: letting users 
(experts and non-experts) build classifiers.

Following this initial approach to IML we can cite the work of Talbot et al. (2009) in 
which the authors built a system called EnsembleMatrix, that was used to visualize the con-
fusion matrices of various classifiers and allow users to interact with these visualizations 
to better understand the models and to set up model combination strategies to obtain better 
results. Some of these authors (Kapoor et al. 2010) continued on this path with, ManiMa-
trix, an interactive system that allowed interactive refinement of classification boundaries 
in a multiclass setting.

Nevertheless, the work highly cited as seminal paper of IML is Fails and Olsen (2003) 
where the human designer trains, corrects and teaches interactively the model until desired 
results are met. Here, authors do not only pose the question of introducing humans into 
the machine learning loop, but they also contrast the concept of IML with the so called 
Classical Machine-Learning (CML) concept (that in previous sections we have defined as 
passive learning), where training is performed off-line, trying to optimize learning at the 
expense of longer training times.

The idea of including humans in the loop, thus changing the working methodology, con-
tinues in Porter et al. (2013). This work proposes that humans and computers should work 
together on the same task doing what each of them does best at any specific moment. There 
are different methodologies according to the position humans have within the workflow. 
On the one hand, humans can go to the end of the flow, correcting the results of a machine 
learning system—e.g., using humans to validate, clean and correct the results. On the other 
hand, humans can be used first, performing identification and annotation tasks that are sim-
ple for them but complicated for machines—e.g., interactive image segmentation, in which 
humans provide input with basic annotation tools. Authors go further and define as a prom-
ise of IML to have systems where this dialogue between machines and humans is more 
dynamic and optimized to the abilities of each one, in the same way that crowdsourcing is 
enabling humans to be cost-effective in tasks traditionally performed by machines.

Fig. 4   Interactive machine learning (IML) mind map
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Following these works, we can find others that provide more up-to-date definitions 
of IML. For example, Holzinger (2016) defined IML as “algorithms that can interact 
with agents and can optimize their learning behavior through these interactions, where 
the agents can also be human”. Although the definition seems to downplay the fact that 
the external agents may be human, in his paper, Holzinger defends the use of “human-
in-the-loop” for complex domains such as health informatics, where biomedical data 
sets are full of uncertainty and incompleteness, and the problems to solve are hard.

The relationship between humans and ML models in IML is also highlighted by 
Jiang et al. (2019) stating that IML is “an iterative learning process that tightly couples 
a human with a machine learner” or Ramos et al. (2020) defining IML as “the process 
in which a person (or people) engages with a learning algorithm, in an interactive loop, 
to generate useful artifacts”. Later, the authors describe these artifacts as data, insights 
about data, or machine-learned models.

Ramos et al. (2020) also comment that the roles that humans can play in IML can be 
different, as they can be: ML experts, data scientists, crowdsource workers or domain 
experts. These different roles affect the form and function of the IML systems.

In this regard, Yang et  al. (2018) include into IML people who are not formally 
trained in ML, that is, non-experts, and focus the research field in the development of 
tools that allow these non-experts to actively build ML solutions to serve their needs in 
the real world.

Jiang et al. (2019) also included another aspect that is important in IML: how the 
model is updated. They stated that the process should be iterative. In this way, Amershi 
et al. (2014) focus the difference between traditional ML and IML in how the model 
is updated. In IML the updates are faster (as an immediate response to user input), 
focused (centered in a particular aspect of the model) and incremental (the model is 
changed continually, with small updates). Dudley and Kristensson (2018) also empha-
size the iterative part in their definition of IML as “an interaction paradigm in which 
a user or user group iteratively builds and refines a mathematical model to describe a 
concept through iterative cycles of input and review”.

Finally, Dudley and Kristensson (2018) described the fundamental parts of an IML 
system as: users, model, data and interface. The first three were already present in clas-
sical ML systems, although here the users’ role can be different and can include users 
with no deep understanding of ML techniques. But what is new here is the interface 
part. A classic ML system must have an interface, but it is a passive one; in IML the 
interface is responsible for the bidirectional feedback between the other three com-
ponents and for the authors, the interface design is critical to the success of the IML 
process.

From all of these definitions we can extract the main features that underpin an IML 
system:

•	 Humans in the ML loop. They have been assigned to tasks at which they are more 
efficient than machines.

•	 Humans assuming different roles. They can be domain experts, non-expert users, 
data scientists, etc.

•	 Incremental methodology. The model is updated iteratively and incrementally.
•	 The importance of the user interface. It influences how learning takes place and 

conditions learning outcomes.
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3.2 � Differences with active learning (AL)

But, what is the difference between active learning and interactive machine learning? 
We have seen in previous sections that AL differs from classical or passive learning in 
that it is an interactive process in which the model poses queries, usually in the form of 
unlabeled data instances that have to be labeled by an oracle that, normally, is a human 
annotator. Since there is an interactive process inside AL, it can be confused with IML 
which is a similar technique but with its own characteristics.

Holzinger (2016) includes AL as one of the three pillars that form the basis of IML—
the other two are Reinforcement Learning and Preference Learning—and proposes to 
use IML in fields in which there are insufficient training samples following an “expert-
in-the-loop” approach.

According to Amershi et al. (2014): “Although active learning results in faster con-
vergence, users get frustrated from having to answer the learner’s long stream of ques-
tions and not having control over the interaction”. Amershi cited several studies which 
reveal that users do not like to behave like simple oracles, and that human factors, 
such as interruptibility or frustration, should be taken into account in active learning 
techniques.

For Dudley and Kristensson (2018) both AL and IML focus on selecting new points 
for labeling by the user, but the key distinction is that in AL the selection is driven by 
the model and in IML the selection is driven by the user.

This leads to another difference between AL and IML systems: how to evaluate them. 
Fiebrink et al. (2011) already stated that in an IML system the evaluation of the models 
should go beyond their accuracy and should include subjective judgments of properties 
such as cost, confidence, complexity, etc. AL focuses on building better models in an 
algorithm-centered evaluation, but in IML systems we have to take into account human 
factors, so there is also a human-centered evaluation, focusing on the utility and effec-
tiveness of the application for end-users. Boukhelifa et al. (2018) stated that coupling 
both evaluations in IML systems can bring forth insights that can play an important role 
in addressing the “black-box” effect of machine learning algorithms.

In Fig. 5 we can see a schematic representation of the IML process, we can see that 
it is a freer scheme than the one of AL represented in Fig. 3. In this diagram interactiv-
ity becomes more important and there are different tasks that the human can do inter-
actively (such as selecting examples, labeling cases, etc.) depending on which is more 
appropriate at each step (Suh et al. 2019).

Fig. 5   Schematic representation 
of the IML process
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Therefore, we can summarize the differences between AL and IML in the following 
points.

•	 AL is the basis for IML.
•	 The difference relies more in who has the control of the learning process and not in the 

interactivity of the approach. In AL the model retains the control and uses the human 
as an oracle; in IML there is a closer interaction between users and learning systems, so 
the control is shared.

•	 Since the interaction is closer in IML, we need to take into account Human-Computer 
Interaction techniques (HCI), something that is not so important in AL.

•	 In IML, humans perform more tasks other than labeling data in a freer and less struc-
tured process.

3.3 � Applications of IML

Before starting to describe IML applications, it is useful to consider a brief description of 
the data according to their structure. In this respect, we can classify data as follows:

•	 Structured data: also known as fully-structured, is data that follows a predefined data 
model or schema (Sint et al. 2009; Abiteboul et al. 2000). A typical example is data that 
resides in tables in a relational database (or a similar structure like Excel tables or Pan-
das DataFrames).

•	 Unstructured data: is data that has no identifiable structure (Sint et al. 2009; Blum-
berg and Atre 2003), does not have a predefined model or does not fit into relational 
databases (Rusu et al. 2013). These include binary files such as image, video and audio 
files, and certain types of text documents. Non-relational or NoSQL databases are the 
best fit for managing this data.

•	 Semi-structured data: is a middle category between the other two and it is more com-
plicated to define. We can describe it as data that does not conform with a data model 
or structure, but contains tags or markers that add semantics to that data (Rusu et al. 
2013). Abiteboul et al. (2000) described it as “schemaless or self-describing terms that 
indicate that there is no separate description of the type or structure of the data” and 
Sint et  al. (2009) state that “although this type of data does not require a schema, it 
does not mean that the definition is not possible, it is rather optional”. This includes, for 
example, tagged text formats such as XML, JSON or YAML.

Even with these definitions, there are gray areas and corner cases that cast doubts on how 
to classify certain types of data. For example, structured data can contain unstructured ele-
ments, such as text documents or BLOBs (binary large objects).

When classical machine learning systems faced a problem with unstructured data, due 
to the limitations of these systems when dealing with raw data, a feature engineering phase 
is necessary to convert this raw data (e.g. pixel values of an image) into a suitable inter-
nal representation (e.g. direction of edges over the image) from which the learning model 
could detect or classify patterns (e.g. distinguish ones from zeros in images of handwritten 
digits).

Deep learning (LeCun et al. 2015), on the other hand, allows a machine to be fed with 
raw data and to automatically discover the representations needed for detection or clas-
sification. Deep learning models are composed of several layers that amplify aspects of 
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the input that are important for discriminate elements and suppress irrelevant variations. 
As noted by LeCun et al. (2015): “The key aspect of deep learning is that these layers of 
features are not designed by human engineers: they are learned from data using a general-
purpose learning procedure”.

This does not mean that feature engineering has no place in deep learning. It is often 
necessary to inject some form of prior knowledge in a deep model. But this little previous 
engineering is a competitive advantage over other learning models that is also fueled by the 
increases amounts of available data and computational performance that exists nowadays. 
For these reasons, deep learning systems have performed outstandingly well with unstruc-
tured data such as images, temporal signals, natural language processing and, in general, 
with any type of high-dimensional data.

Highlighting the structured and unstructured data division, and also emphasizing deep 
learning models ability to deal with the latter are the reasons why the application of IML 
seems to be especially useful in giving additional structure to something that does not have 
it. For example, one of the most comprehensive and recent papers we can find on applica-
tions of IML is that of Dudley and Kristensson (2018). The categorization used in this 
work is based on the underlying data type and therefore we can find the applications clas-
sified in the following categories: text, images, time series data, raw numerical data and, 
finally, assisted processing of structured information. As we can see, four out of five cat-
egories deal with unstructured data.

Let us look in detail at some of these applications in various application domains. We 
will highlight here those applications that are most relevant, other applications can be 
found in the aforementioned review by Dudley and Kristensson (2018), in the work of Jiang 
et al. (2019)—that classify the IML applications in a task-oriented taxonomy rather than in 
a data-oriented classification—or the work by Meza Martínez et al. (2019)—that defines 
an integrative theoretical framework for IML identifying five dimensions of application, 
namely classification, clustering, information retrieval, regression and teaching intelligent 
agents with 15 subdimensions inside them. We will organize the applications according to 
the type of data they use: image and video, time series data, text and, finally, complex data.

3.3.1 � Image and video

Image classification has been one of the most successful fields in machine learning in gen-
eral, and so it is in IML. One of the earliest works on the topic (Fails and Olsen 2003) 
develops the Crayons tool, a system that uses IML to create image classifiers. Another 
notable early example is CueFlik (Fogarty et al. 2008) a web image search application in 
which users create their own rules for classifying images giving examples and counterex-
amples of images that fulfill and do not fulfill the rules respectively.

But one application with images that has been very successful is using IML for inter-
active image segmentation. The idea is to facilitate the knowledge elicitation process by 
using experts as users of the IML tool and having them mark on the image they are shown 
content relevant to the model (the identification of a tumor, a face, etc.). One of the works 
that highlights the importance of this type of collaboration in IML was Porter et al. (2013) 
that remarks that “interactive image segmentation is an important tool in biomedical imag-
ing, material science, geology, manufacturing, and food inspection”.

Among the recent developments within this technique we can name the ilastik tool 
(Berg et al. 2019) that contains pre-defined workflows for image segmentation, object clas-
sification, counting and tracking and that allows non-expert users to interactively provide 
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annotations to steep the learning curve. Another tool is AIDE (Kellenberger et al. 2020), an 
acronym that stands for Annotation Interface for Data-driven Ecology. AIDE is an image 
annotation framework for ecological surveys that integrates closely users and machine 
learning models into the learning loop.

Finally, Jiang et al. (2019) made a thorough survey of existing IML works in the visual 
analytics community, focusing on those applications in which interactive visualizations 
allow users to interactively train machine learning models. These works include: visual 
pattern mining, interactive anomaly detection, interactive information retrieval, visual 
topic analysis and other tasks related with ML techniques such as visual cluster analysis 
and interactive processes of dimensionality reduction, classification, regression and model 
analysis.

3.3.2 � Time‑series data

Segmentation can be applied not only to images but also to video. For example, Kabra 
et al. (2013) use an interactive system that allows expert users, in this case biologists, to 
observe videos of different animals and allows them to add labels to frames in which they 
observe certain animals’ behaviors. These labels are then transmitted to the underlying 
machine learning system. Video, as well as sound or biomedical signals, have a temporal 
component that makes us classify these applications within the time-series data section.

With respect to music, IML was applied in the field of composition. An example is the 
development of the Wekinator tool (Fiebrink and Cook 2010; Fiebrink 2011), a software 
system that enables the application of music information retrieval techniques based on 
machine learning, to real-time musical performance. Subsequent work originated from this 
research led to the development of the BeatBox tool (Hipke et al. 2014), a system that ena-
bles end-user creation of custom beatbox recognizers and interactive adaptation of recog-
nizers to an end user’s technique, environment, and musical goals.

But when we talk about sound we do not have to limit ourselves only to music. There 
are works within the interactive sound recognition area (Ishibashi et  al. 2020) or in the 
Spoken Language Understanding (SLU) area (Begeja et al. 2004). We can find also hybrid 
sound-video applications, for example for the recognition of musical gestures (Visi and 
Tanaka 2021).

Finally, when we talk about time series, the idea that generally comes to mind is bio-
medical signals. (ECG, EEG, etc.). Here we also find applications of IML in the field of 
electromyography (EMG) analysis (Zbyszynski et al. 2020) or in the development of brain-
computer interfaces (Kosmyna et al. 2015).

3.3.3 � Text

One of the first applications that engages users interactively in the task of text processing 
is the work of Heimerl et al. (2012). It compares three approaches for interactive classifier 
training in a user study, incorporating active learning to various degrees in order to reduce 
the labeling effort as well as to increase effectiveness. They also add interactive visualiza-
tion for letting users explore the status of the classifier and for judging its quality in itera-
tive feedback loops, which is more like an IML approach than an AL approach.

On the other hand, the work of Wallace et al. (2012) is the first research publication to 
cite explicitly the application of IML to text processing with the development of the tool 
abstrackr, a system for facilitating citation screening for systematic reviews.
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Another typical example that is often cited is the work of Šavelka et  al. (2015) that 
applies IML to relevance assessment in statutory analysis, developing a framework in 
which a single human expert cooperates with a machine learning text classification 
algorithm.

Kim et al. (2015) investigate an efficient, accurate and scalable representation of high-
dimensional, complex data points that aids human reasoning when working with ML mod-
els. The authors work with text documents from news articles, but the contents of these 
documents were complex in nature.

3.3.4 � Complex data

The last paragraph leads us to another type of data on which the use of IML may be 
appropriate, that is, complex data. Complex data is defined by Castle (2017) as data that 
is big—i.e. we are dealing with large amounts of data that pose a challenge in terms of 
the computational resources needed to process them—and that come from many disparate 
sources—i.e. messy data, from multiple data sets that follow a different internal logic or 
structure. Carlson (2015) pointed that “in fact, relatively small data sets can often exhibit 
complexity making them difficult to analyze with traditional approaches”. Tolls (2018) 
described complex data as “data whose type, structure and heterogeneity make it difficult 
to analyze” and remarks that this type of data can encompass both large and small data 
sets.

There are domains, such as medicine, where it is common to find complex data to feed 
our machine learning systems. Holzinger and Jurisica (2014) stated that the central prob-
lem in healthcare and biomedical research is that biomedical data models are characterized 
by significant complexity provoking information overload (Berghel 1997), that is “drown-
ing in data, yet starving for knowledge”.

This complex data in medical domains combine vast amounts of diverse data, includ-
ing structured, semi-structured and weakly structured data and unstructured information 
(Holzinger and Jurisica 2014). In this domain, interactivity with humans is used to gener-
ate hypothesis as well as for extract relationships and information from the data. For this 
reason it is common to see applications of IML in medical domains, as we have already 
mentioned (Kosmyna et al. 2015; Porter et al. 2013; Berg et al. 2019). Another example of 
these applications is Fadhil and Wang (2018) that introduce an application of interactive 
machine learning (IML) in a telemedicine system, to enable automatic and personalized 
interventions for lifestyle promotion.

Holzinger et al. (2019) stated that IML is particularly suitable in the medical domain. 
This is due to the fact that ML algorithms, especially the deep learning ones, require large 
amounts of data to be able to infer models. In medicine we can find big databases with 
clinical cases, for example, The Cancer Genome Atlas (TCGA) (Liu et al. 2018b; Tomczak 
et al. 2015) but when we focus on a particular type of cancer, the data available may not 
be sufficient to train a deep learning model. A doctor-in-the-loop approach can use human 
expertise and long-term experience to fill the gaps in large amounts of data or deal with 
complex data (Holzinger 2016).

In addition, we can add the problem of the black-box nature of many of the ML mod-
els; although we understand the underlying mathematical principles of such models, they 
lack an explicit declarative knowledge representation that eases the interpretation of the 
decisional process (Holzinger et al. 2017), something that has great importance in clinical 
practice. IML can be a means to solve these problems: incorporating human knowledge 
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and skills we can improve the quality of the learning models and build them with less 
data, and this human component also enables features as re-traceability and explainability 
that mitigate the black-box problem. At this respect, Teso and Kersting (2019) developed a 
framework called explanatory interactive learning in which at each step, the learner que-
ries users but also explains that query to them. Users then answer the query but also cor-
rect the explanation. The idea is to enhance the explanatory power of ML algorithms and, 
consequently, the trust that the users put in them. We will review Explainable AI (XAI) in 
Sect. 6.

3.4 � IML shortcomings

Since IML is based on AL it shares some of its shortcomings, but it also adds some of 
its own. The most obvious one is that the increased interactivity causes ML aspects to be 
intermingled with HCI aspects. According to Michael et al. (2020) this entails much more 
effort in the development of applications, since they must be built and studied uniquely. 
Perhaps the search for methodologies and theoretical frameworks for IML systems, such as 
the one proposed by Meza Martínez et al. (2019) may be the solution in the future.

Another drawback that arises in IML and that it also shares with other interactive mod-
els is the dependence on the presence of human experts. The revolution and paradigm 
shift brought about by the development of techniques such as deep learning (LeCun et al. 
2015) was largely based on taking humans out of the equation in exchange for substantially 
increasing computational requirements. IML systems promise to lower these computational 
requirements and make learning more efficient, in exchange for bringing humans back into 
the equation with the problems associated to them (availability, attention, interactivity, dif-
ferent expertise, etc.).

4 � Machine teaching (MT)

Machine Teaching (MT) is another approach to transferring knowledge from (initially) 
humans to computers. If the approaches discussed in the previous sections have been 
differentiated by who is in control of the learning process, the MT paradigm places the 
responsibility firmly on the teacher.

Even though the MT paradigm is quite different in nature to the other paradigms 
described in this paper—and represents an alternative to them—there are many common 
factors. Over time, the process has become iterative and incremental; occasionally, it has 
sought inspiration in other approaches, such as active learning; and at times it has ended 
up obtaining results that are comparable to other techniques, such as curriculum learning 
(which is defined in the next chapter).

The term Machine Teaching has meant different things at different times, but today it is 
mainly used in the field of machine learning to describe the idea of a teacher who teaches 
an ML model to an ML algorithm. The teacher is meant to be a human, although algo-
rithms simulating teachers have become more common lately.

In Fig. 6 we can see a mind map of MT in which we try to distinguish between a more 
classical interpretation of the term (used in intelligent systems designed to teach humans) 
to a more current conception of it where we have humans acting as teachers of machines, 
or even machines themselves being teachers of other machines.
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4.1 � Antecedents of machine teaching

The idea of learning algorithms who are taught by humans was introduced several decades 
ago. An important author is Angluin (1987), who theorizes about human experts trying to 
communicate their method to an expert system. Ideally, the examples should be “central” 
or “crucial”, in order to help the system converge to a correct hypothesis. She notes that 
the source for learning general rules from examples had historically been arbitrary or ran-
dom, and aims instead for learning methods in which the source of examples is helpful. She 
also uses the terms learner and teacher in the same way they have been used by the other 
approaches discussed in previous sections of this paper. In her case, the learning algorithm 
is the learner, and the source of examples the teacher. This leads to the concept of the Min-
imally Adequate Teacher, who is expected to answer questions from the learner correctly. 
Angluin (1987) uses context-free languages as her field of application and the questions are 
related to sets and membership. The answers can be yes, no, or a counterexample, depend-
ing on the type of question.

Two tangentially related terms that should be mentioned in a prehistory of Machine 
Teaching are Intelligent Computer-Aided Instruction (ICAI) and Intelligent Tutoring 
Systems (ITSs), which are considered synonymous to all intents and purposes. An over-
view was written in Nwana (1990). The goal is to use artificial intelligence techniques to 
improve education (e.g., learning mathematics). In these paradigms, the roles are typically 
reversed, so the teacher is a computer and the learner is a human. In fact, since the term 
“Machine Teaching” is such an ordinary combination of words, some of the early uses 
of the term that can be found refer precisely to machines teaching humans [e.g., Weimer 
(2010) or Johns et al. (2015)]. In the rest of this section, however, we will focus primarily 
on the question of transferring knowledge to machine learning models.

Fig. 6   Machine Teaching (MT) mind map
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4.2 � Humans as teachers

One of the first authors to use the term Machine Teaching specifically as a related but 
alternative approach to machine learning is Diamant (2006), who criticized the attempts 
of conventional image-processing paradigms to extract high-level semantics from low-
level processing stages. Instead, he argues that semantics is not an inherent property 
of an image but a property of a human observer watching it. Diamant uses the term 
world ontology to describe this knowledge about the outer world, suggesting that a 
vision machine can be provided with a replica of the ontology, which does not have to 
be entirely full.

He also objects to describing knowledge transfer (in the human and animal world) 
as a “learning process” (which could be considered the original inspiration for machine 
learning). Rather, Diamant (2009) notes that teaching in the natural world (e.g., in ani-
mal herds) does not mean human-like mentoring but can involve a specific semantic 
transference of knowledge, a quasi-mechanistic transmission of information from a 
teacher to a pupil, or from one community member to another. In this interpretation, 
machine learning and Machine Teaching are not simply two techniques for arriving at 
the same goal but two radically different approaches.

Machine teaching has recently attracted the attention of big multinational corpora-
tions, such as Microsoft. A team of Microsoft researchers (Simard et  al. 2017) con-
sidered that the current processes for building machine learning systems require prac-
titioners with deep knowledge of machine learning, and in order to meet the growing 
demand for ML systems it is necessary to significantly increase the number of individu-
als that can teach machines. This means that building ML systems should be available to 
domain experts with little or no ML expertise.

This team of researchers considers machine teaching a discipline in its own right, 
which they describe as living at the intersection of the human-computer interaction, 
machine learning, visualization, systems and engineering fields. In fact, machine teach-
ing is considered such a big paradigm shift away from machine learning as to treat algo-
rithms as swappable pieces. Whereas machine learning aims to create new algorithms 
to improve the accuracy of the learners, Machine Teaching is focused on the efficacy of 
the teachers. The metrics for measuring performance would include productivity, inter-
pretability, robustness, and scaling with the complexity of the problem or the number of 
contributors (Simard et al. 2017). The latter is key, as machine learning can be costly in 
terms of time and expertise, whereas Machine Teaching proponents want to open up and 
democratize the field. We can emphasize two ways in which this is manifested:

•	 Involving domain experts who do not necessarily have a background in machine 
learning.

•	 Helping to address problems in which labeled data is hard to find.

How is information delivered? Zhu et  al. (2018) define two dimensions of Machine 
Teaching, as follows:

•	 Batch teaching, in which the teacher gives the learner a training set, the order is 
unimportant and elements may or may not be duplicated.

•	 Sequential teaching, in which the student learns in a sequence and the order matters 
and should be optimized by the teacher.
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Here it should be noted that the terms batch and sequential are used with a slightly different 
meaning than when talking about active learning (Sect. 2). In that chapter a typical descrip-
tion of the batch process vs. the sequential ML process was given. In batch the process runs 
in batches to be more efficient, while the sequential model is less computationally efficient 
but tries to get immediate feedback on the results. Zhu et al. (2018) adds a new dimension 
here that has to do not only with the number of cases presented to the model but also with 
their ordering. Thus, in this case, batch means that the cases are not ordered, and sequential 
means that the cases are ordered and are supplied one by one according to the established 
order.

In terms of actual implementation, Machine Teaching began as a batch process in which 
the learner was fed examples in one shot, which inevitably placed the focus on the size of 
the data set, as we have discussed previously. Later, Simard et al. (2017) implemented the 
Machine Teaching process as a “never-ending loop”, which was used by Wall et al. (2019) 
in what is perhaps the first study of actual end-users engaging in this type of process. Wall 
et al. (2019) establish a loop involving a human teacher, a machine learning model, and a 
large set of unlabeled data called the sampling set.

The teacher begins by exploring the sampling set and then adds or edits labels or fea-
tures. These are used to train the ML model. If it becomes necessary to fix errors (such as 
mislabeling errors, learner errors, or representation errors), the teacher goes back to adding 
or editing labels or features. Otherwise, we go back to the beginning of the loop and start a 
new iteration until it is decided that we are done for now.

The teacher should be able to articulate the relevant concepts that explain why a docu-
ment is labeled as a member of a specific class, and the learner should have a consist-
ent underlying learning algorithm. There is no predetermined test or ground-truth set that 
assesses the quality of the model. Evaluation can be judged based on the number of correct 
predictions in a dynamically-generated set of positively predicted documents (Wall et al. 
2019).

Ramos et  al. (2020) go a step further and talk about a human-centered approach to 
building machine-learned models which they call Interactive Machine Teaching (IMT). 
They choose that name because they see IMT as an IML process in which the human-in-
the-loop takes the role of a teacher, and their goal is to create a machine-learned model, 
so the name is therefore analogous to IML. But this term is arguably confusing (as Ramos 
et al. themselves acknowledge in their paper) with other acronyms that use the term IMT 
to stand for different things. In the next section of this paper we cite Iterative Machine 
Teaching (not interactive), where machines teach other machines and the term Interactive 
Machine Teaching is also mixed up, as we have expressed before, with machines teaching 
humans. For this reason we have titled this section “Humans as teachers” in order to avoid 
this confusion.

Ramos et al. (2020) is a good summary of the state of the art of MT in which humans 
act as teachers of machines. They argue that this technique enable people to leverage intrin-
sic human capabilities related to teaching making machine learning methods accessible to 
subject-matter experts and allowing the creation of semantic and debuggable ML models. 
A schematic representation of this process can be shown in Fig.  7 in which we can see 
a teaching loop in which the human expert prepares a curriculum of cases, explains the 
knowledge contained in it to the learner and, afterwards, reviews the model predictions and 
its reasoning.

This possibility of giving non-ML experts access to ML construction has already been 
explored in a number of ways. For example, Automated machine learning tools (AutoML) 
provide methods and processes to make ML model creation and evaluation easier, and 
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ultimately, available for non-machine learning experts. This set of tools seeks to automate 
the decision on what learning algorithms to use, what hyper-parameters to select or which 
features are more relevant for a certain model. Furthermore, they provide a means of model 
evaluation and optimization. Many cloud platforms (e.g., AWS, Azure, Google) are includ-
ing AutoML tools as part of their ML stacks. The problem with the AutoML approach is 
that it produces black-box models that are inadequate for scenarios requiring transparency, 
and also can be impractical to use in cases where there are not significant labeled data 
available.

4.3 � Machines as teachers

Zhu (2015) draws on the pioneering work of Angluin (1987) and, like Diamant (2009), 
explicitly uses the term Machine Teaching, which he similarly describes as an inverse (in 
an almost mathematical sense) problem to machine learning. But the focus is quite differ-
ent in this case, as Zhu is deliberately uninterested in “hard wiring” the knowledge into the 
learner. Instead, he chooses to give a very specific definition to the term Machine Teach-
ing, defining it as “the problem of finding an optimal training set given a machine learning 
algorithm and a target model” (Zhu 2015).

In this version of Machine Teaching, the teacher knows the target model in advance, 
and also the student’s algorithm, and must “teach” the former to the latter somehow. In 
practice, this means designing the optimal training set (typically the smallest one, but not 
always). This type of Machine Teaching also differs from related approaches, such as active 
learning. The main difference is that the teacher knows the target model upfront and does 
not need to explore.

Liu et al. (2017) coined the term Iterative Machine Teaching as an evolution of MT in 
which the learner’s model is continuously updated by an iterative algorithm. That is, the 
process consists of iterations and the teacher is not a human but an algorithm. Again, this 
is very easily confused with the term Interactive Machine Teaching seen above, that is why 
we have preferred to call this section “Machines as teachers”.

Essentially, the learner remains passive and the teacher observes, influences, and com-
municates with the learner, choosing an example and feeding it to the learner, who runs a 
fixed iterative algorithm using that example. Rather than focusing on the size of the entire 
data set, Iterative Machine Teaching focuses on questions of sequence [sometimes obtain-
ing results that are similar to curriculum learning, explained in Sect. 5, as discovered by 

Fig. 7   Schematic representation 
of the MT process
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Liu et al. (2017)], convergence, and the so-called iterative teaching dimension, which is the 
smallest number of examples (or rounds) necessary for learning.

The literature offers several implementations of non-human teachers for the Iterative 
Machine Teaching paradigm. A non-exhaustive list of examples would include Liu et al. 
(2017) (classified according to the information the teacher has about the learner), Liu et al. 
(2018c) (inspired by active learning), and Chen et al. (2018) (based on adaptivity). A sum-
mary of these implementations would be as follows:

•	 Omniscient teacher (Liu et al. 2017), which has total access to the characteristics of 
the learner, namely, feature space, model, loss function and optimization algorithm. 
Here, an example’s difficulty is calculated using the learner’s loss function (as the norm 
of the gradient of the squared loss function) and usefulness is calculated using the dis-
crepancies between the learner’s weights and those of the teacher while considering the 
difficulty of the example.

•	 Surrogate teacher (Liu et  al. 2017), which has access just to the loss function. An 
example’s difficulty is calculated as in the omniscient teacher, but an example’s useful-
ness must be calculated in a different way, because only the loss function is available. 
Here, the usefulness is calculated as the learner’s loss minus the teacher’s loss (consid-
ering again the difficulty of the example).

•	 Imitation teacher (Liu et al. 2017), which does not have access to the performance of 
the learner. Thus, the teacher needs a copy of the learner to be used as a reference for 
the selection of examples. In this copy, the teacher would have access to the learning 
parameters as if it were an omniscient teacher.

•	 Active teacher (Liu et  al. 2018c), which is inspired by human teaching, real-world 
exams and active learning. The teacher is not directly observing the student, but can 
actively make queries with a few samples in each iteration. The student will return its 
predictions and the teacher will estimate the student’s status based on this feedback, 
and also determine which example must be provided next.

•	 Adaptive teacher (Chen et al. 2018), which uses adaptivity and observes the learner’s 
hypothesis at every time step. It would be the opposite of a non-adaptive teacher who 
does not receive any feedback during teaching and only knows the initial hypothesis of 
the learner. Chen et al. (2018) propose this model as an improvement over the omnisci-
ent, surrogate and imitation teachers above, finding that adaptivity plays a key role and 
the learner’s transitions are smooth and interpretable, with the learner transitioning to 
the next hypothesis according to some local preference (i.e., dependent on the current 
hypothesis).

4.4 � Applications of MT

As mentioned above, the current conception of Machine Teaching typically consists in 
humans acting as teachers of machines, who are usually the learners. The main useful-
ness of this approach is to take advantage of the inherent abilities of humans for teaching, 
in order to allow people without a machine learning background to transfer knowledge to 
a computer system similarly to how they would teach another human. An example of this 
approach is PICL (Ramos et al. 2020).

Continuing this approach of humans teaching machines, MT can be used in fields such 
as robotics. For example, Sena et al. (2018) and Sena and Howard (2020) use MT to teach 
robot manipulators by example, rather than by programming them, which would also have 
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the benefit of helping humans become better teachers. In a software context, we can find 
the work of Peng et al. (2021) in which task bots (task-oriented dialog systems) commu-
nicate with users through natural language and are trained by humans via MT, which, 
according to the authors, reduces the cost of fine-tuning. The idea is to use human teach-
ers to make these bots more convincing because ultimately they are going to interact with 
other human users.

As can be seen, the field of education and training is a natural fit for this approach. 
When we discussed the antecedents of MT, we briefly mentioned Intelligent Tutoring Sys-
tems (ITSs), in which the machine acted as the teacher and the human was the learner. 
Machine Teaching now lets us add a layer to this process, in which a human teacher will 
first train the computer system in order to make it a better teacher. After it has been trained, 
this system will be used to train other humans. For example, Weitekamp et al. (2020) have 
used this approach to help develop and evolve AI tutors who teach humans. Taken to a 
workplace setting, but inspired by challenges in data-driven online education, Singla et al. 
(2014) focus on teaching workers how to classify in crowdsourcing services, with the goal 
of improving their accuracy.

We have also previously discussed the possibility of machines teaching machines. In 
this case, the target model is known in advance by the teacher, so the practical applications 
must necessarily be different. For example, Zhu (2015) uses it to deal with malicious uses, 
such as training-set attacks (Mei and Zhu 2015) or training-set poisoning (Zhu et al. 2018). 
Here, attackers pollute the training data so that a specific learning algorithm produces a 
model that is beneficial to them (e.g. manipulating spam filters to avoid the detection of 
malicious emails). Other applications of machines teaching machines are more methodo-
logical in nature. Mosqueira-Rey et al. (2021) suggest using this technique for obtaining 
the “Minimum Viable Data (MVD)” for training a learning model. MVD is a term coined 
by van Allen (2018) that refers to the minimum data needed to train machine learning mod-
els. The name is borrowed from the agile world, in which we have the idea of a “Minimum 
Viable Product (MVP)”, a product with just enough features to satisfy early customers, and 
to provide feedback for future product development.

4.5 � MT shortcomings

In light of the typical applications of Machine Teaching that were outlined above, it should 
be obvious that MT has very specific purposes and should only be used for particular types 
of tasks. For example, if the target model is already known in advance, there must be other 
reasons for using MT, such as making the learner more human-like, or improving the 
teaching abilities of human teachers.

Even when MT is the most promising approach to solving a problem, some basic con-
ditions must still be met. For example, Devidze et  al. (2020) discuss the limitations of 
teaching with imperfect knowledge, explaining some assumptions that are generally made, 
which may or may not be actually true. For example, it is often assumed that the teacher 
has perfect knowledge of:

•	 The learner (e.g., a computational model of the dynamics of learning, and parameters 
representing the initial knowledge and rate of learning).

•	 The task specification (e.g., a comprehensive representation of the task and ground-
truth data).
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In fact, the teacher’s knowledge is often incomplete or flawed, and the resulting curricu-
lum is often far for optimal. Devidze et al. (2020) have analyzed this type of situation and 
conducted an experimental evaluation of teaching with imperfect knowledge. One of their 
most interesting conclusions is that assessing the learning rate correctly is significantly 
more important than the prior knowledge of the learner.

5 � Curriculum learning (CL)

As we have seen in previous sections, in order to teach complex tasks, teachers are often 
required to organize the concepts that constitute the final task, taking into account its com-
plexity. This organization leads to what is known as a curriculum. The student is gradually 
introduced to the concepts in the curriculum by increasing complexity, in order to take 
advantage of previously learned concepts and ease the abstraction of new ones.

In many traditional machine learning paradigms, the learner (the student) estimates an 
objective function using a set of training label examples (supplied by the teacher). These 
examples are randomly presented to the model, ignoring the complexities of data sam-
ples and the learning status of the current model. So the following question arises: could 
the curriculum-like training strategy benefit machine learning? According to Wang et al. 
(2021), the power of introducing curriculum into machine learning depends on how the 
curriculum is designed for specific applications and data sets. Its advantages can be sum-
marized as improving the model performance and accelerating the training process, which 
cover the two most significant requirements in major machine learning research.

The idea of training a learning machine with a curriculum can be traced back at least to 
Elman (1993). The basic insight is to start small, learn easier aspects of the task, and then 
gradually increase the difficulty level. With this idea in mind, Bengio et al. (2009) confirm 
that machine learning algorithms can benefit from a curriculum strategy and that a well 
chosen curriculum strategy can help to find better local minima of a non-convex training 
criterion. Bengio proposes the term curriculum learning (CL) as the training strategy that 
trains a machine learning model with a curriculum. With experiments on supervised visual 
and language learning tasks, the author showed that some curriculum strategies work better 
than others, that some are useless for some tasks, and that better results could be obtained 
on specific data sets with more appropriate curriculum strategies.

In Fig. 8 we can see a mind map with the aspects related to curriculum learning that we 
will detail below.

5.1 � CL perspectives and motivations

To explain the CL advantages, two perspectives should be analyzed: optimization problem 
and data distribution. The results of this analysis allow to establish two motivations for 
applying CL: to guide and to denoise. From the optimization problem point of view, Ben-
gio et al. (2009) bring up that CL can be seen as a particular continuation method, an opti-
mization strategy for non-convex criteria which first optimizes a smoother (and also eas-
ier) version of the problem to reveal the “global picture”, and then gradually consider less 
smoothing versions, until the target objective of interest. In this way, continuation methods 
guide the training towards better regions in parameter space.

On the other hand, from the perspective of data distribution and due to the big data 
collection which brings noisy data that is less cognizable or wrongly annotated, the CL 
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strategy considers this noisy data as harder examples in the data sets and the cleaner 
data as the easier ones. Since this strategy motivates training on easier examples, an 
intuitive hypothesis that reveals the denoising efficacy of CL on noisy data is estab-
lished: CL learner wastes less time with the harder and noisier examples (Bengio et al. 
2009).

Two are the motivations for applying CL, that is, to guide, regularizing the training 
towards better regions in parameter space, as from the perspective of the optimization 
problem; and to denoise, focusing on high-confidence easier area to mitigate the inter-
ference of noisy data as from the perspective of data distribution. In this sense, most of 
the applications of CL can be classified into these two groups (Wang et  al. 2021). The 
guide motivation group involves difficult tasks where direct training on them results in 
poor performance or slow convergence. CL strategies guide the training from easier tasks 
to the target ones, being examples sparse-reward Reinforcement Learning (Florensa et al. 
2017) or training Generative Adversarial Networks (Soviany et al. 2020). It also concerns 
tasks where the target distribution is quite different from the training distribution, and a 
good curriculum helps to guide the training to adapt to the target distribution. In this case, 
domain adaptation setting (Zhang et al. 2019b) and imbalanced classification (Wang et al. 
2019) are representative settings. The denoise motivation group involves noisy or hetero-
geneous training data sets and CL strategies could help making the training faster, more 
robust, and more generalizable, being a popular application the neural machine translation 
field (Kumar et al. 2019).

The way curriculum strategies have been defined leaves a lot of work to the teacher. To 
minimize the amount of teacher effort involved keeping the advantages of a curriculum 
strategy, it is natural to consider a form of active selection of examples similar to what 
humans do. Curriculum learning endeavors to impose some structure on the training set. 
This structure basically relies on identifying hard and easy examples, and trust in this dis-
tinction in order to teach the learner. It would be advantageous for a learner to focus on 
interesting examples, which would be standing near the frontier of the learner’s knowledge 

Fig. 8   Curriculum learning (CL) mind map
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and abilities, neither too easy nor too hard. This approach could be used to at least auto-
mate the pace at which a learner would move along a predefined curriculum.

5.2 � Curriculum design

To organize a curriculum for students, teachers need to deal with two challenging tasks:

•	 Arrange the material taking into account its complexity or difficulty, a knowledge that 
is not available in the training set in most of machine learning paradigms. This task is 
referred to as scoring function or difficulty measurer (Wang et al. 2021).

•	 Guide the pace at which the material is presented, known as pacing function or train-
ing scheduler (Wang et al. 2021).

Therefore, a general framework for curriculum design consists of these two main compo-
nents. The nature of the difficulty measurer and the training scheduler lead us to two differ-
ent CL categories:

•	 Specifically, when both the difficulty measurer and the training scheduler are designed 
by human prior knowledge with no data-driven algorithms involved, the CL method is 
called predefined CL.

•	 If any (or both) of the two components are learned by data-driven models or algorithms, 
then the CL method is known as automatic CL.

5.2.1 � Difficulty measurers

Researchers have manually designed various difficulty measurers mainly based on the data 
characteristics of specific tasks and most of them designed for image in Computer Vision 
(CV) and text data in Natural Language Processing (NLP). Among data characteristics, 
complexity, diversity and noise estimation are considered. Complexity represents the 
structural complexity of a particular example, such that examples with higher complex-
ity have more dimensions and are thus harder to be captured by the models (e.g. sentence 
length in NLP tasks). Diversity stands for the distributional diversity of a group of exam-
ples (e.g. regular or irregular shapes in CV tasks) where a larger value of diversity means 
the data is more diverse and is more difficult for model learning. Larger diversity some-
times also makes the data noisier. So, another characteristic to be studied is noise estima-
tion which estimates the noise level of examples and defines cleaner data as easier.

Other interesting difficulty measurers include human-annotation based Image Difficulty 
Scores (Soviany et al. 2020; Ionescu et al. 2016) which are proposed to measure the dif-
ficulty of an image by collecting the response times of human annotators answering “Yes” 
or “No” at identifying objects in images. Intuitively, longer response time corresponds to 
harder image examples. These measures can be considered separately but also correlated. 
For example, high complexity and high diversity bring more degrees of freedom to the 
data, which needs a model with larger capacity and bigger effort of training.

5.2.2 � Training schedulers

While predefined difficulty measurers differ among diverse data types and tasks, the exist-
ing predefined training schedulers are usually data/task agnostic and can be divided into 
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discrete and continuous schedulers. The difference lies in the method of adjustment of the 
training data subset.

Discrete schedulers adjust the training data subset after every fixed number ( > 1 ) of 
epochs or convergence on the current data subset and are commonly used due to their sim-
plicity and effectiveness (Bengio et al. 2009; Spitkovsky et al. 2010; Ionescu et al. 2016).

Continuous schedulers adjust the training data subset at every epoch by mapping train-
ing epoch number to a proportion of the easiest examples available at each epoch. This 
mapping function can be a linear function (Hacohen and Weinshall 2019), a root function 
(Platanios et al. 2019), or even a geometric progression function (Penha and Hauff 2020). 
There is also a special group of continuous schedulers, referred to as distribution shift, that 
start on an initial distribution and gradually move to a target distribution (Liu et al. 2018a).

5.2.3 � Automatic CL

Despite the simplicity and effectiveness of predefined CL, some limitations appear (Wang 
et al. 2021): (a) it is difficult to find the best combination of difficulty measurers and train-
ing scheduler for a specific task and its data set; (b) both of them stay fixed during train-
ing process ignoring the feedback of the current model; (c) expert domain knowledge is 
needed for designing a predefined difficulty measurer; (d) easy examples for humans are 
not always easy for models, since their decision boundaries are basically different; (e) the 
best hyperparameters of training schedulers are hard to find; and, (f) the performance of 
several predefined difficulty measurers is sensitive to the initial learning rate.

The limitations of predefined CL have prevented CL from being explored in more 
diverse applications, so automatic CL methods were introduced to overcome these limi-
tations and to reduce the need of human teachers in the curriculum design. Three major 
methodologies exist: self-paced learning (SPL), transfer teacher, and Reinforcement Learn-
ing (RL) Teacher.

Self-paced learning (SPL) methods let the model (student) act as a teacher and meas-
ure the difficulty of training examples according to its losses on them. This method, ini-
tially proposed by Kumar et  al. (2010), automates the difficulty measurer by taking the 
example-wise training loss of the current model as criteria and training the model at each 
iteration with the proportion of data with the lowest training losses. This proportion gradu-
ally grows to the whole training set. The SPL method embeds the curriculum design into 
the learning objective of the original machine learning tasks (Liu et al. 2021).

Transfer teacher methods let a stronger teacher model act as the teacher and meas-
ure the difficulty of training examples according to the teacher’s performance on them. It 
comes up from the idea of human education where the student finds it hard to measure the 
difficulty of the materials if he understands a little about them. So, it is advantageous to 
ask a mature teacher to help the student organizing an easy-to-hard curriculum. The trans-
fer teacher method is a semi-automatic CL method introduced by Weinshall et al. (2018). 
In particular, the training examples are sorted based on the performance of a pre-trained 
network on a larger data set, adjusted to the data set at hand, and then its knowledge is 
transferred applying a predefined training scheduler to finish the CL design. Most of these 
methods are loss-based ones which do not need domain knowledge and are closely related 
to SPL (Xu et  al. 2020). Nevertheless, in the NLP literature, there exist some methods 
which used transfer teacher based on cross-entropy (Zhou et al. 2020). Hacohen and Wein-
shall (2019) include the idea of curriculum learning by bootstrapping based on self-tutor-
ing as a different scoring function. Here, the network is trained without curriculum and the 



3032	 E. Mosqueira‑Rey et al.

1 3

resulting classifier is used to rank the training data in order to train the same network again 
from scratch.

Reinforcement Learning (RL) Teacher methods adopt reinforcement learning mod-
els as the teacher to play dynamic data selection according to the feedback from the stu-
dent. These methods are based on the idea of an ideal teaching strategy where both the 
teacher and the student are involved and improve together: the student provides feedback 
to the teacher, who adjusts the teaching action accordingly. At each training epoch, the RL 
Teacher dynamically selects examples for training (action in the RL schemes) according 
to the student’s feedback (state and reward in the RL schemes). From the RL Teacher sets, 
the teacher model as both the difficulty measurer and training scheduler by dynamically 
considering the student’s feedback. Both traditional RL and Deep RL models are leveraged 
in these designs (Kumar et al. 2019; Matiisen et al. 2020), where the Deep RL models are 
stronger in performance but more time-consuming and harder to train.

5.3 � How to select a CL method

There is no guidance for the selection of a CL methodology in real-world applications, so 
Wang et  al. (2021) offer some conclusions from empirical studies that although scarce, 
compare and analyze different CL methods. Cirik et al. (2016) showed that predefined CL 
benefits more when smaller models are applied and the size of the training set is limited. 
Zhang et al. (2018) concluded that predefined CL is highly sensitive to the choices of dif-
ficult measurer and the hyperparameters. Hacohen and Weinshall (2019) demonstrated that 
transfer teacher is the most robust automatic CL, and that the advantage of CL is more 
effective when the task is difficult.

As it can be seen, the best selection among different CL categories needs further empiri-
cal studies. This selection could be guided by the knowledge about the data set and the task 
goal. If expert domain knowledge is available, then predefined CL methods are more suita-
ble to design a knowledge-driven curriculum. On the contrary, if we have no prior assump-
tions on the data, then automatic CL methods are more suitable to learn a data-driven cur-
riculum adaptive to the data set and task goal. Nevertheless, some hybrid CL methods are 
designed which adopt different CL methods making them complement to each other (Jiang 
et al. 2015; Zhang et al. 2019a). Wang et al. (2021) present as an interesting idea for future 
research to embed human prior on sample importance into the fully data-driven CL meth-
ods which has been explored in Wang et al. (2020).

As it has been shown, CL is related to Transfer Learning and Multi-task Learning but is 
also connected to active learning (AL) (Cohn et al. 1996). Both of them involve dynamic 
data selection but their goals are quite different, as it can be seen. In AL, an active learner 
improves performance with fewer labeled data through questions to an expert to annotate 
unlabeled instances for further training. CL improves performance and accelerates conver-
gence in supervised, weakly-supervised, and unsupervised settings, while AL is designed 
for label-saving training in the semi-supervised setting.

6 � Explainable AI (XAI)

As stated previously, humans can carry out the learning process of machine learning sys-
tems as teachers and this fact can affect the performance of these systems. Nevertheless, 
when decisions derived from sophisticated AI-powered systems affect humans’ lives (as in 
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e.g. medicine, law or defense), there is an emerging need for understanding how such deci-
sions are furnished by AI methods (Goodman and Flaxman 2017).

While at very first AI systems were easily interpretable, the rise of opaque models, such 
as Deep Neural Networks (DNNs), has raised questions about how trustworthy these sys-
tems are, preventing users from tracing the logic behind predictions. The danger is in cre-
ating and using decisions that are not justifiable, legitimate, or that simply do not allow 
obtaining detailed explanations of their behavior.

In order to avoid limiting the effectiveness of the current generation of AI systems, 
eXplainable AI (XAI) (Gunning 2017) proposes creating a suite of machine learning tech-
niques that (1) produce more explainable models while maintaining a high level of learn-
ing performance, and (2) enable humans to understand, appropriately trust, and effectively 
manage the emerging generation of artificially intelligent partners.

In this section we will try to define the concept of Explainable AI (XAI) and the differ-
ent techniques that exist, focusing on deep learning. A mind map of XAI can be found at 
Fig. 9.

6.1 � What is explainable artificial intelligence?

The most commonly used nomenclature used in XAI communities includes terms such as 
understandability, comprehensibility, interpretability, explainability and transparency. In 
all the above terms, understandability comes up as the most important concept in XAI and 
it has to be considered on the one hand as model understandability and on the other, human 
understandability. This is the reason why the definition of XAI refers to the concept of audi-
ence, defined as the users of the model, as the cognitive skills and pursued goal of those 
users have to be taken into account jointly with the intelligibility and comprehensibility 

Fig. 9   Explainable AI (XAI) mind map
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of the model in use. This prominent role taken by understandability makes the concept of 
audience the cornerstone of XAI (Barredo Arrieta et al. 2020).

Let’s take as a starting point the definition of the term XAI given by Gunning (2017): 
“XAI will create a suite of machine learning techniques that enables human users to under-
stand, appropriately trust, and effectively manage the emerging generation of artificially 
intelligent partners”.

A model can be explained, but the interpretability of the model is something that comes 
from the design of the model itself. Bearing this in mind, explainable AI can be defined 
as follows: “Given an audience, an explainable Artificial Intelligence is one that produces 
details or reasons to make its functioning clear or easy to understand”.

This definition, a first contribution of Barredo Arrieta et al. (2020), implicitly assumes 
that the ease of understanding and clarity targeted by XAI techniques for the model at 
hand, results in different application purposes, such as a better trustworthiness of the mod-
el’s output by the audience.

The research activity around XAI has exposed different goals to draw from the achieve-
ment of an explainable model. In Barredo Arrieta et al. (2020), authors synthesize and enu-
merate definitions for these XAI goals, so as to settle a first classification criteria:

•	 Trustworthiness: it might be considered as the confidence of whether a model will act 
as intended when facing a given problem. Although it should most certainly be a prop-
erty of any explainable model, it does not imply that every trustworthy model can be 
considered explainable on its own.

•	 Causality: considered as the inference of causal relationships from observational data. 
An explainable ML model could validate the results provided by causality inference 
techniques, or provide a first intuition of possible causal relationships within the avail-
able data.

•	 Transferability: the mere understanding of the inner relations taking place within a 
model facilitates the ability of a user to reuse this knowledge in another problem. Trans-
ferability should also fall between the resulting properties of an explainable model, but 
again, not every transferable model should be considered as explainable.

•	 Informativeness: as ML models are used with the ultimate intention of supporting 
decision making, a great deal of information is needed in order to be able to relate the 
user’s decision to the solution given by the model, and to avoid falling in misconcep-
tion pitfalls.

•	 Confidence: as a generalization of robustness and stability, confidence should always 
be assessed on a model in which reliability is expected.

•	 Fairness: from a social standpoint, explainability can be considered as the capacity to 
reach and guarantee fairness in ML models, and it should be considered as a bridge to 
avoid the unfair or unethical use of algorithm’s outputs.

•	 Accessibility: explainable models will ease the burden felt by non-technical or non-
expert users when having to deal with algorithms that seem incomprehensible at first 
sight.

•	 Interactivity: this goal is related to fields in which the end users are of great impor-
tance, and their ability to tweak and interact with the models is what ensures success.

•	 Privacy awareness: the ability to explain the inner relations of a trained model by non-
authorized third parties may also compromise the differential privacy of the data origin.

Nevertheless, there exists more recent reviews with another criteria (Minh et al. 2021; 
Meske et al. 2022; Das and Rad 2020). For example, Minh et al. (2021) mentions as the 
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XAI nomenclature: understandability that is linked to informativeness, causality, trans-
ferability, fairness and confidence; comprehensibility, as dependent on the users’ ability 
to perceive the knowledge that is learned by a model and is linked to informativeness 
and accessibility; and interpretability, as estimating the level that the users can compre-
hend the outputs of the AI models and is linked to trustworthiness, causality, transfer-
ability, informativeness, fairness and privacy awareness. In this work, the absence of 
transparency in the XAI nomenclature is noteworthy but it can be explained as Minh 
et al use transparency and explainability indistinctly.

As we can see, the terms and classification criteria are similar but there is no unified 
definition nor specific goals of XAI, because it is usually associated with the efforts and 
initiatives to establish transparent AI and solve the trust concerns instead of being a 
standard concept.

6.2 � XAI techniques

Taking the previous classification criteria into account, XAI techniques can be organ-
ized as follows. The first distinction made in the literature is among models that are 
interpretable by design—transparent models—and those that can be explained by means 
of external XAI techniques—post-hoc explainability—.

Transparency can be considered at the level of the entire model, at the level of indi-
vidual components such as parameters, and at the level of the training algorithm, result-
ing in the following categorization:

•	 Simulatability denotes the ability of a model of being simulated or thought about 
strictly by a human. Rule based systems do not fulfill this characteristic whereas a 
single perceptron neural network does. This aspect aligns with the fact that sparse 
linear models are more interpretable than dense ones. Providing a decomposable 
model with simulatability requires that the model has to be self-contained enough 
for a human to think and reason about it as a whole.

•	 Decomposability is the ability to explain each of the parts of a model (input, param-
eter and calculation). It requires every input to be readily interpretable. For an algo-
rithmically transparent model to be decomposable, every part of the model must be 
understandable by a human without the need for additional tools.

•	 Algorithmic transparency deals with the ability of the user to understand the pro-
cess followed by the model to produce any given output from its input data. The 
main constraint for algorithmically transparent models is that the model has to be 
fully explorable by means of mathematical analysis and methods.

These levels of transparency were introduced by Lipton (2018) but they are a real state-
ment in XAI surveys (Barredo Arrieta et al. 2020; Minh et al. 2021).

Post-hoc explainability focuses on models that are not easily interpretable by design 
and have to enhance their interpretability turning to methods such as:

•	 Text explanations which also include methods generating symbols that represent 
the functioning of the model. These symbols may describe the logic of the algorithm 
using a semantic mapping from model to symbols.
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•	 Visual explanation techniques that visualize the model’s behavior. Many of these 
techniques rely on dimensionality reduction techniques for a human interpretable visu-
alization.

•	 Local explanations which segment the solution space and give explanations to less 
complex solution subspaces that are relevant for the whole model.

•	 Explanations by example that extract representative data examples which relate to the 
result generated by a certain model that reflect the inner relationships and correlations 
found by the model.

•	 Explanations by simplification in which a new system is rebuilt based on the trained 
model to be explained. This new model tries to optimize its resemblance to its ante-
cedent functioning, while reducing its complexity, and keeping a similar performance 
score.

•	 Feature relevance explanation that clarifies the inner functioning of a model by com-
puting a relevance score for its variables. These scores quantify the sensitivity a feature 
has upon the output of the model.

Among transparent machine learning models are linear/logistic regression, decision trees, 
k-nearest neighbors, rule-based learning (every model that generates rules to characterize 
the data it is intended to learn from), general additive models and Bayesian models.

When ML models do not meet any of the criteria imposed to declare them transparent, 
an independent method must be developed and applied to the model to explain its deci-
sions. These methods are divided between (1) those that are designed to be applied to ML 
models of any kind, and (2) those that are designed for a specific ML model.

The first class are called model-agnostic techniques and are conceived to be joined to 
any model to obtain some information from its prediction procedure. Taking into account 
the techniques referenced above, model-agnostic techniques rely on explanation by simpli-
fication, feature relevance explanation and visualization techniques. As creating visualiza-
tions from just inputs and outputs from an opaque model is a complex task, all visualiza-
tion methods falling into this category work along with feature relevance techniques, which 
provide information that is exhibited to the end user.

The second class – model-specific techniques –, is divided into two main branches: 
those dealing with shallow models which refers to all ML models that do not depend on 
layered structures of neural processing units; and those developed for deep learning models 
such as convolutional neural networks, recurrent neural networks, and hybrid schemes of 
deep neural networks and transparent models. Within shallow ML models, there are strictly 
interpretable (transparent) approaches as k-nearest neighbors and decision trees, and mod-
els that rely on more sophisticated learning algorithms that require additional layers of 
explanation, as tree ensembles, random forests and Support Vector Machines (SVMs). For 
tree ensembles, the additional layers of explanation found in the literature are explanation 
by simplification and feature relevance techniques (Hara and Hayashi 2018). For SVMs, 
post-hoc explainability techniques applied are explanation by simplification, local explana-
tions, visualizations and explanations by example (Barakat and Bradley 2007; Chen et al. 
2007; Gaonkar et al. 2015).

6.3 � Explainability in deep learning

It is out of the scope of this revision to describe in detail explainability in all ML models. 
For this reason, the focus will be on the most complex ML model: deep learning.
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Explainability in deep learning is specified through post-hoc local explanations and 
feature relevance techniques. This section reviews explainability methods proposed 
for the most used deep learning models, namely multi-layer neural networks, Convo-
lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). For multi-
layer neural networks, the adopted methods seen in the literature are model simplifica-
tion approaches, feature relevance estimators, text explanations, local explanations and 
model visualizations (Che et  al. 2017; R. Traoré and Caselles-Dupré 2019; Montavon 
et al. 2017).

CNNs constitute the main models in all computer vision tasks. Their structure entails 
extremely complex internal relations that are very difficult to explain. Fortunately, includ-
ing explainability in CNNs is easier than in other types of models, as the human cognitive 
skills favors the understanding of visual data. Recent works that include explainability in 
CNNs can be divided into: (1) those that try to understand the decision process by map-
ping back the output in the input space to see which parts of the input were discriminative 
for the output; and (2) those that try to delve inside the network and interpret how the 
intermediate layers see the external world, not necessarily related to any specific input, but 
in general. The most adopted approach to explainability in CNNs are visualization mixed 
with feature relevance methods.

For the first class, the most salient techniques are reconstruction of the layers activa-
tions occluding regions of an image, or modification of the network architecture (Zeiler 
et al. 2011; Zeiler and Fergus 2014; Zhou et al. 2016; Selvaraju et al. 2017). For the second 
class, authors proposed the reconstruction of images from the internal CNN representa-
tions (Mahendran and Vedaldi 2015; Nguyen et al. 2016; Bau et al. 2017).

As occurs with CNNs in the visual domain, RNNs have lately been used extensively 
for predictive problems over inherently sequential data, emphasizing natural language pro-
cessing and time series analysis. These types of data exhibit long-term dependencies that 
are too complex to be captured by an ML model. RNNs are able to retrieve such time-
dependent relationships by formulating the retention of knowledge in the neuron as another 
parametric characteristic that can be learned from data. The few contributions made for 
explaining RNN models can be divided into two groups: (1) explainability by understand-
ing what an RNN model has learned, mainly via feature relevance methods (Arras et al. 
2017; Che et al. 2015); and (2) explainability by modifying RNN architectures to provide 
insights about the decisions they make via local explanations (Krakovna and Doshi-Velez 
2016; Choi et al. 2016).

Finally, it is worth mentioning that the use of background knowledge in the form of 
logical statements or constraints in Knowledge Bases (KBs) has shown to not only improve 
explainability but also performance with respect to purely data-driven approaches (d’Avila 
Garcez et al. 2019). This hybrid approach provides robustness to the learning system when 
errors are present in the training data labels. Other approaches have shown to be able to 
jointly learn and reason with both symbolic and sub-symbolic representations and infer-
ence. The interesting aspect is that this blend allows for expressive probabilistic-logical 
reasoning in an end-to-end fashion. A successful use case is on dietary recommendations, 
where explanations are extracted from the reasoning behind (non-deep but KB-based) 
models (Donadello et al. 2019).

A remarkable perspective on hybrid XAI models consists of enriching black-box models 
knowledge with that one of transparent ones. In particular, this can be done by constrain-
ing the neural network thanks to a semantic KB and bias-prone concepts (Bennetot et al. 
2019), or by stacking ensembles jointly encompassing white and black-box models (Loy-
ola-González 2019).
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6.4 � Guidelines for ensuring interpretable AI models

It is very important to take into account the interests, demands and requirements of the 
users interacting with a system to be explained, from the designers of the system to the deci-
sion makers using its outputs and users going through the consequences of decisions made 
therefrom.

Given the need for having the human in the loop, some attempts at determining the proce-
dural guidelines to implement and explain AI systems have been recently published. Among 
them, the study in Leslie (2019) determines that the incorporation and consideration of 
explainability in practical AI design and deployment workflows should comprise four major 
methodological steps: 

1.	 Contextual factors, potential impacts and domain-specific needs must be taken into 
account when devising an approach to interpretability. These include a thorough 
understanding of the purpose for which the AI model is built, the complexity of explana-
tions that are required by the audience, and the performance and interpretability levels 
of existing technology, models and methods.

2.	 Interpretable techniques should be preferred when possible. When considering 
explainability in the development of an AI system, the decision of which XAI approach 
should be chosen should measure domain-specific risks and needs, the available data 
resources and existing domain knowledge, and the suitability of the ML model to meet 
the requirements of the computational task to be addressed. It is in the confluence of 
these three design drivers where the authors in Leslie (2019) recommend first the consid-
eration of standard interpretable models rather than sophisticated yet opaque modeling 
methods.

3.	 If a black-box model has been chosen, the third guideline establishes that ethics-, fair-
ness- and safety-related impacts should be weighted. Specifically, responsibility in 
the design and implementation of the AI system should be ensured by checking whether 
such identified impacts can be mitigated and counteracted by supplementing the system 
with XAI tools that provide the level of explainability required by the domain in which it 
is deployed. To this end, the third guideline suggests (1) a detailed articulation, examina-
tion and evaluation of the applicable explanatory strategies, (2) the analysis of whether 
the coverage and scope of the available explanatory approaches match the requirements 
of the domain and application context where the model is to be deployed; and (3) the 
formulation of an interpretability action plan that sets forth the explanation delivery 
strategy, including a detailed time frame for the execution of the plan, and a clearance 
of the roles and responsibilities of the team involved in the workflow.

4.	 Finally, the fourth guideline encourages to rethink interpretability in terms of the 
cognitive skills, capacities and limitations of the individual human. This fact is one 
of the objectives of studies on measures of explainability that consider human mental 
models, the accesibility of the audience to vocabularies of explanatory outcomes, and 
other means to involve the expertise of the audience into the decision of what explana-
tions should provide.
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7 � Usable and useful AI

When we talk about including humans in the machine learning loop, we basically mean 
including them as part of the learning process. We have seen that this can be done at 
several levels, humans can be oracles who are responsible for labeling data unknown 
to the model (AL), they can interact with the model in an active way in the learning 
process (IML) or they can act as teachers of the model, trying to transfer their domain 
expertise to the model (MT). Finally, explainable AI, although not part of the learning 
process itself, is about AI models being able to explain learning outcomes to humans, 
justifying their conclusions.

But this interactivity with humans should not be limited only to the learning process, 
if we go further we can see that the relationship of humans with AI continues. Humans 
become users of AI systems, so they are not only looking for proper technical perfor-
mance, but also for the system to be easy to use and useful to achieve the objectives they 
have set.

This leads us to the definition of two new terms related to the relationship between 
humans and AI models that go beyond cooperation in learning, called “usable AI” and 
“useful AI”, and which are fundamental to ensure that an AI model is successful.

7.1 � Usable AI

Usable AI can be defined as an AI solution that is easy to learn and use via optimal user 
experience (UX) created by effective Human-Computer Interaction (HCI) design (Xu 
2019). We can therefore speak of usability in the learning process and usability in the 
use of the system itself.

7.1.1 � Usable in its learning process

Usability in the learning process starts with data usability. Just because the data is 
available does not mean that the data is suitable for use in a machine learning process. 
To do so, they must comply with a series of characteristics, among which we mention 
(Koesten and Simperl 2021):

•	 Usable: usability in the most limited context, i.e., that we can use them because they 
are the right size, we have the right permissions, their license allows it, they do not 
contain sensitive information, etc.

•	 Relevant: that cover the topic of interest at the right level of detail.
•	 Quality: here we would include concepts such as completeness, provenance, accu-

racy, cleanliness, consistency of formatting, etc.
•	 Reusable: so that they can be used in different studies. Here we would incorporate 

aspects such as that they are easily understandable, that there are different ways of 
accessing them, that there is a management of the changes produced in the data, as 
well as a collaborative nature in the data work processes.

Then we have to take usability into account in the learning process itself. Usability 
is always context-dependent, and within the context we can highlight the roles that 
humans play in the learning process, because the tools or interfaces that we design for 
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them must be appropriate to their level of experience and knowledge. This way we can 
identify several types of experts that can be required at various positions in the loop of 
the machine learning process:

•	 ML experts: They are experts with extensive knowledge in ML techniques. In super-
vised learning they select the data, label the data, classify them into training data and 
testing data, extract the features needed to feed the machine learning algorithm, create 
the model and refine it if the performance obtained is not optimal, etc. In unsupervised 
learning, machine learning experts are required to interpret the clusters identified by 
the model so data can be converted into knowledge.

•	 Domain experts: In many domains, the designers of machine-learning-based systems 
do not themselves hold the expertise required to create training data. In such projects, 
the collaboration of domain experts is necessary.

•	 Data experts: A data expert or data scientist is a multi-disciplinary scientist that uses 
methods, processes and algorithms to extract knowledge from data.

As learning processes become more and more interactive, usability within them becomes 
more and more important.

7.1.2 � Usable in its functioning

We have seen in recent years that the performance of AI systems in general, and ML and 
Deep Learning (DL) algorithms in particular, is achieving (and surpassing in some fields) 
human level performance. As these systems become more reliable and easier to work with, 
designers can embed them into products as AI modules allowing the interaction with peo-
ple (e.g. such as voice recognition or object detection systems).

Due to this adoption of artificial intelligence and machine learning techniques in user-
facing products, some authors highlight the interest of the HCI field to discuss the implica-
tions of such adoption from different points of view (Churchill et al. 2018).

In previous sections we described how intelligent systems can learn better and deal with 
unknown situations if they work closely with humans during the learning process. But 
when the system is deployed in its production environment, the learning process ends and 
the system is not able to improve anymore its performance, and moreover, it could degrade 
being no longer valid if the context changes and new information is available. This situa-
tion is neglecting one important source of knowledge, the final users.

More and more researchers are realizing the importance of studying users of intelligent 
systems and how these systems can benefit and learn interactively from their end-users. 
Once the systems are deployed they can receive from their users corrections that can be 
used to generate additional training data, enabling an incremental improvement of the AI 
performance (Lindvall et al. 2018).

A curious approach of learning from users is a system created by von Ahn and Dabbish 
(2004). In this case the authors developed a two-player guessing game that created labeled 
training data as a side effect of playing. That is, the users are generating data but to another 
aim different from the game that they are playing. In this case, the users determined the 
contents of images by providing meaningful labels for them. This allowed the authors to 
have proper labels associated with each image that can be later used to perform more accu-
rate image search, improve the accessibility of sites, and help users block inappropriate 
images.
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This is similar to the use of CAPTCHAs when we are asked to identify objects in cer-
tain images. CAPTCHA (an acronym of “Completely Automated Public Turing test to tell 
Computers and Humans Apart”) is a type of challenge-response test used in computing 
to determine whether or not the user is human (von Ahn et  al. 2004). O’Malley (2018) 
stated that “Google has been training AI using the users’ responses to CAPTCHAS for 
years without them knowing that they were doing so”.

In all these techniques, the design of HCI plays a key role in achieving intelligent sys-
tems that continuously improve through use (Lindvall et al. 2018) and in which the design-
er’s goal is to develop the interaction between the user and the product.

7.2 � Useful AI

Other authors have gone beyond the concept of “usability” of AI. For example, van Allen 
(2018) indicates that we have to take into account not only the development of artificial 
intelligence or machine learning models but also the design of the interactions and behav-
iors that compose the human experience around the AI models. Wong (2018) stated that the 
role of the designer is to contribute a humanist perspective that takes into account social, 
political, ethical, cultural, and environmental aspects that are not normally associated with 
AI development but are necessary to include AI into daily human-to-computer interactions.

In this way we can say that AI not only has to be usable, but also has to be useful. Xu 
(2019) define Useful AI as an AI solution that can provide the functions required to satisfy 
target users’ needs in the valid usage scenarios of their work and life.

Useful AI is part of a broader movement known as Human-centered AI (HAI) which 
refers to approaching AI from a human perspective by considering human conditions and 
contexts (Yang et al. 2021; Shneiderman 2020).

At the core of useful AI lies the concept of trust, a user of an AI system will always ask 
himself the question: “Can I trust you?”, and this reflexive skepticism directly affects users’ 
trust and decision-making efficiency, thus also affecting the adoption of AI solutions (Xu 
2019). This lead us to the concept of “Trustworthy AI”.

7.2.1 � Trustworthy AI

Because of the black-box effect, some of the AI solutions are not explainable and com-
prehensible to users. Although we have already introduced Explainable AI (XAI) in this 
paper, the XAI version created for data scientists is incomprehensible to most non-expert 
users. The ultimate goal of XAI should be to ensure that target users can understand the 
outputs, thus helping them improve their decision making efficiency (Xu 2019).

Furthermore, the AI model can be developed with the aim of being self-explanatory so 
that users can understand why certain decisions are being made. This quality would help 
to create a trustworthy model for those scenarios where the transparency should be present 
(e.g.: finance, health, etc.).

Trust is a critical concept in system design because an imperfect AI is likely to be 
rejected unless a reasonable level of trust is generated between humans and the system. 
When trust is not generated, people do not accept decisions made by the system. In other 
words, it is important to design trustworthy interactions between humans and AI to provide 
a positive user experience. Incorrect or not, users of a system form their trust based on their 
own sense-making process. By providing an explanation of an AI process, the gap between 
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users’ own sense-making and the actual AI algorithm is reduced and users’ understanding 
increases accordingly, which leads them to trust the AI (Muir 1987).

Related with this issue is the principle of trust by privacy. When creating AI systems, 
which are fueled by data, privacy and security aspects are an inherent part of the system’s 
life cycle. This maximizes respecting people’s right to privacy and their personal data.

In short, we can say that an AI system is trustworthy if it meets the following properties, 
which come from the world of trustworthy computing and which is open to new additions 
that may be necessary in the future (Wing 2021):

•	 Accuracy: How well does the AI system do on new (unseen) data compared to data on 
which it was trained and tested?

•	 Robustness: How sensitive is the system’s outcome to a change in the input?
•	 Fairness: Are the system outcomes unbiased?
•	 Accountability: Who or what is responsible for the system’s outcome?
•	 Transparency: Is it clear to an external observer how the system’s outcome was pro-

duced?
•	 Explainability: Can the system’s outcome be justified with an explanation that a 

human can understand and/or that is meaningful to the end user?
•	 Ethical: Was the data collected in an ethical manner? Will the system’s outcome be 

used in an ethical manner?

8 � Discussion and conclusions

We have divided the discussion and conclusions into two sections. In the first, we analyze 
the relationships between the different techniques by analyzing their similarities, differ-
ences and mutual influences. In the second section we will analyze the current and future 
trends in the field of human-in-the-loop machine learning.

8.1 � Relationships between the different techniques

In any learning process, two fundamental roles must be considered: the teacher, who 
wants to teach and provides a set of training examples, and the learner, who wants to learn 
and estimates an objective function using the set of examples provided by the teacher. 
In this paper, we have described how humans act as teachers of an ML model in differ-
ent approaches (i.e., AL, IML, MT) carrying out tasks such as identifying elements and 
decomposing concepts/features in order to build up more complex ones.

The main difference between these approaches is the behavior of teachers and learners: 
Does the learner ask questions about what he or she does not know? or is the teacher the 
one who takes the initiative and provides the most appropriate example at a given time? In 
other words, the difference lies in who is in control of the learning process.

In the case of active learning (AL), humans act as a teacher who is requested by the 
learner (i.e., the model) to label examples that are not clear and that will provide rele-
vant information. Therefore, in AL the model remains in control and uses the human as an 
oracle.

In interactive machine learning (IML) there is a closer interaction between users 
and the learning system, so the control is shared. In this case humans can be assigned 
to tasks in the ML loop at which they are more efficient than machines, so that they 
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can play different roles—ML experts, data scientists, crowd-source workers or domain 
experts—that affect the form and function of the IML systems. Also different method-
ologies can be established according to the position humans have within the workflow: 
humans can go to the end of the flow, correcting the results of a machine learning sys-
tem—e.g., using humans to validate, clean and correct the results—, or humans can act 
first, performing identification and annotation tasks that are simple for them but com-
plicated for machines—e.g., interactive image segmentation, in which humans provide 
input with basic annotation tools—.

Finally, in Machine Teaching (MT) the control of the learning process relies on human 
experts that have the aim to transfer their expertise to an intelligent system. Therefore they 
have to carefully choose the examples they want to transfer to the learner so that the learn-
ing process runs smoothly and progresses towards its final goal.

Interactivity is important in AL, IML and MT, but what distinguishes these techniques 
is not the degree of interactivity, but the intended use of it. In AL the communication is 
from the learner to the teacher, the system has to be able to display the data in a way that is 
easy to understand for the teacher and has to follow a questioning strategy that avoids user 
boredom and frustration, for example, trying not to deliver poor quality or unrepresentative 
data that would make them lose interest in the system (Mosqueira-Rey et al. 2021). In IML, 
interactivity depends very much on the type of strategy followed and the objectives to be 
achieved. As we have seen in the section on IML applications, many of the developments 
are about using humans to help give structure to unstructured data, such as images, vid-
eos, and time-series data. In the case of MT, interactivity is used so that teachers, who are 
domain experts, do not necessarily have to have ML knowledge. Therefore, they can trans-
fer their domain knowledge to an ML model following an educational strategy similar to 
the one they would follow if the student were a human (using examples at increasing levels 
of difficulty, correcting errors and responding proactively to what the student is learning).

This process of sorting the examples by difficulty in MT to make the learning technique 
more efficient leads us to the so-called curriculum learning (CL). CL is a technique for 
tidying up the curriculum, and is related to Transfer Learning and Multi-task Learning but 
is also connected to AL. Both of them involve dynamic data selection but their goals are 
quite different. AL is designed for a semi-supervised setting in which an active learner 
improves its performance with fewer labeled data through questions to an expert that anno-
tates unlabeled instances for further training. Therefore, in AL the process focuses on the 
examples that the teacher could potentially label for gradually adding new examples near 
the decision border. On the other hand, CL improves performance and accelerates conver-
gence in supervised, weakly-supervised, and unsupervised settings, taking the examples 
near the decision surface.

This preparation of the curriculum can be seen also in MT in no-batch approaches, first 
with human teachers because they usually organize the examples in increasing order of dif-
ficulty in order to improve the learner’s learning, and obviously with non-human teachers 
that follow an iterative and incremental process preparing the materials in a very similar 
way to CL but in this case, focusing on identifying the smallest number of examples (or 
rounds) necessary for learning.

A logical consequence of studying the role of humans in learning tasks is that it should 
be noted that, in addition to being included in the loop, they can also be at the end of it try-
ing to interpret what the models have learned. This circumstance implies using Explaina-
ble AI (XAI) methods which propose creating a suite of ML techniques that produce more 
explainable models and enable humans to understand, appropriately trust, and effectively 
manage the emerging generation of artificially intelligent partners.
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Moreover, as we have also mentioned, adding experts to the learning loop helps to con-
nect some techniques with XAI, since including experts, in principle, favors knowledge 
improvement. This is especially useful in critical areas such as healthcare, where we seek 
to avoid the black-box effect of most ML systems (e.g. Deep Learning).

Another logical consequence of the study of the role of humans is that it must be taken 
into account that to make ML more efficient it is not enough just to include experts in 
the learning tasks. It also has to be kept in mind that an AI software has to be usable and 
useful. Usable in the sense that it is easy to use, not only during the learning process but 
also by its end users when interacting with the system. Useful in a broad sense, meaning 
not only offering adequate results, but also reliable ones, taking into consideration features 
such as robustness, fairness, accountability, transparency, explainability, ethical, etc.

These relationships between the different techniques are summarized in the following 
Fig. 10, which is nothing more than an adaptation of Fig. 1 to which connections have been 
added to show graphically how some techniques influence or relate to others.

8.2 � Trends and future developments

After analyzing the different approaches to human-in-the-loop machine learning (HITL-
ML) together we have identified some trends (Mosqueira-Rey et al. 2022) and future devel-
opments in the field.

The first trend is that interactivity has increasing importance in the development 
of ML models, because as we move towards more human control we also move towards 
to more interactivity. For example, when in AL a learner requests a human oracle to label 
examples, the questions must be presented in a way that the human understands them. This 
implies that the characteristics of usability in the learning process (clarity, consistency, effi-
ciency, etc.) is particularly relevant. As interactivity increases, these aspects become more 
important to the point that, in the case of MT, the measurement of metrics, such as produc-
tivity, interpretability, robustness, and scaling is considered essential to check whether a 
system is successful.

Fig. 10   Human-in-the-loop machine learning (HITL-ML-relations) mind map
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Another trend that can be seen in the integration of humans into the ML learning 
loop is a trend toward the automation of the majority of the tasks carried out. The 
idea pursued here is that an ML model can be created by someone without (or with lit-
tle) knowledge of ML. We can see this idea behind the concept of AutoML (He et al. 
2021), a set of tools that seek to automate the decision on what learning algorithms to 
use, what hyper-parameters to select, or which features are more relevant for a certain 
model, providing means of model evaluation and optimization. These tools are often 
based on cloud developments, offered through a “Software as a service” (SaaS) model, 
in this case renamed as “machine learning as a Service (MLaaS)” (Ribeiro et al. 2015). 
The main advantage of the cloud is that it provides a platform allowing users to focus 
on the problem itself, without having to worry about the infrastructure. The concept of 
MLaaS evolved to MLOps (Treveil et al. 2020), that is, applying the same principles of 
DevOps to machine learning, which led to the emergence of automated data manage-
ment, model training/deployment, and monitoring. As we can see, the tools available 
to researchers are moving away from the ad-hoc and experimental approach to a more 
engineering perspective (Mosqueira-Rey et al. 2022).

The final trend identified is to put the focus of attention on the domain-specific 
problem and not so much on the technique needed to implement it. The MLaaS and 
MLOps approaches require ML expertise, and if you are offering ML-specific infor-
mation you are not really acting as a teacher, because you are not transferring knowl-
edge about the topic but about the technique. MT aims to go a step further, the idea 
is to follow an human-centered approach, where the teacher is a domain expert that 
designs an ML model without ML knowledge. In this way, expert knowledge can be 
transferred directly to the machine. The rationale here is that a teacher gives information 
about labels but also semantic information about why these labels are used, as well as 
assessing performance. In other words, the goal is to take advantage of the abilities we 
humans have when it comes to sharing knowledge among us, and using them to transfer 
knowledge to a machine.

As a final thought we consider that the inclusion of humans in the loop of ML, and 
the concepts of usability and usefulness in AI software has led to the emergence of 
a broader movement known as Human-centered AI (HAI) (Xu 2019) which refers to 
approaching AI from a human perspective by considering human conditions and con-
texts. In this context, it should be considered that the first two waves of AI failed not 
only due to the lack of mature technologies, but also because they left human needs 
unsatisfied. AI is starting to satisfy them and provide a positive user experience (UX) 
for a variety of application scenarios in the third wave. It is also starting to deliver 
mature business models with useful AI in which people started to consider the inclu-
sion of human aspects such as ethics, interpretability, fairness, etc. Thus, the third wave 
of AI can be characterized by its technological improvement but also by its human-
centered approach.

In short, we can say that the next frontier of AI is not only technological but also 
humanistic and ethical, which opens up a wide range of research lines in this field, such 
as those exploring the concept of Trustworthy AI.
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