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A B S T R A C T

Nowadays, the field of human activity recognition (HAR) is a remarkably hot topic within
the scientific community. Given the low cost, ease of use and high accuracy of the sensors
from different wearable devices and smartphones, more and more researchers are opting to
do their bit in this area. However, until very recently, all the work carried out in this field
was done in laboratory conditions, with very few similarities with our daily lives. This paper
will focus on this new trend of integrating all the knowledge acquired so far into a real-life
environment. Thus, a dataset already published following this philosophy was used. In this way,
this work aims to be able to identify the different actions studied there. In order to perform this
classification, this paper explores new designs and architectures for models inspired by the ones
which have yielded the best results in the literature. More specifically, different configurations
of Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) have been
tested, but on real-life conditions instead of laboratory ones. It is worth mentioning that the
hybrid models formed from these techniques yielded the best results, with a peak accuracy of
94.80% on the dataset used.

1. Introduction

Research in the field of human activity recognition (HAR) has shown stable progress in recent times. With the rise of wearable
evices (mainly bracelets) and, above all, smartphones, it is feasible to think about the possibility of transferring the work carried
ut in this area to a large part of the world’s population. To this end, sensor data from these devices are analysed in search of
he classification of actions performed by a particular individual [1–3]. In this way, the applications of the work carried out in
this field are multiple, from healthcare [4–6] to fitness [7,8], as well as more specific cases such as home automation [9]. For all
these reasons, and thanks to the high portability and accuracy of the sensors of these devices, researchers find in HAR an incredibly
tempting research opportunity [10–12].

However, there are some problems that need to be tackled. Firstly, there is the need to handle the temporality of the data,
which is especially difficult when dealing with the large amount of information these devices produce. While it is true that previous
works have made significant advances [13–15], there are still many activities whose relationship with prior data is still unclear. In
addition, most of those works are carried out in a laboratory environment, with a series of pretty specific conditions that are not
entirely feasible to transfer to real life. Although these works are helpful to get an approximate idea of the information collected and
the actions performed, their outstanding results for the cases studied are very relative. One of the main issues is that the orientation
and positioning of the device during the experimentation time can notably affect the final result [16]. Most researchers work with
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a smartphone around the waist [17] or using a wristband or bracelet [18]. Those developments could lead to remarkably reduced
performances if they are applied to other datasets, especially real-life ones. In fact, specifically for the case of smartphones in
everyday life, each person carries and uses them in a different way. That would highly affect the data provided by their sensors, as
the previously mentioned orientation and positioning would vary considerably. Even when using different models of smartphones,
differences in final measurements may occur [19]. Moreover, in addition to the latter, each individual has a series of physical
peculiarities that could also influence the final result, even when using the device in the same way and performing the same
action [20]. In fact, this problem has been studied for years, in order to personalise artificial intelligence models for large numbers
of people [21,22].

For all those reasons, this work sought to help close that gap between all the acquired knowledge in HAR and its application in
real life. To this end, a dataset already formed for this purpose was used [23]. The data was taken from the personal smartphone
sensors of 19 individuals, ensuring that the actions performed were as similar as possible to those in their daily lives. To date,
some work has been done using such a dataset, but using techniques related to traditional machine learning [24,25]. In this way,
a study was carried out on the most suitable configurations for the deep learning algorithms that are yielding the best results in
HAR: Convolutional Neural Networks (CNN) and Long-Short Term Memory models (LSTM) [26,27]. To this end, based on these
techniques, new architectures have been designed to exploit this real-life data. In such a manner, it is hoped to obtain results that,
if not ideal, are close to the optimum that is being sought.

Therefore, the key findings of this paper can be condensed into the following statements:

• An in-depth exploration of the most appropriate configurations for CNN and LSTM networks with real-world data in the HAR
domain, using smartphone sensors.

• A new architecture to exploit HAR data taken from different smartphone sensors in a daily life environment, applying deep
learning algorithms.

• The use of much more straightforward models than those used in previous real-life HAR domain work, without the need to
manually compute its features.

• The improvement of the current results and approaches applying deep learning to a real-life HAR dataset.
The rest of the paper is organised as follows: Section 2 focuses on the evolution of HAR and the most relevant and recent work

in this area, Section 3 describes the deep learning algorithms selected to perform all the related experiments, Section 4 depicts the
reparation of the data and highlights the evaluation and validation techniques used, together with the proposed architectures and
odels, Section 5 discusses the main results of the work, and finally, Section 6 contains a series of conclusions and possible lines
f future work.

. Related work

This section is divided into two distinct parts. Firstly, in Section 2.1, a detailed comparison is made between the main datasets
sed by the scientific community and the one used in this paper. Then, in Section 2.2, a series of notable recent works that made
se of those datasets are presented.

.1. Smartphone datasets

Over the past decade, there have been numerous contributions to human activity recognition (HAR), leading to continuous
dvancements in the field. These developments have been supported by various datasets used as benchmarks to validate experiments
nd expand knowledge in the domain [28]. The data within these datasets originate from distinct wearable devices, such as activity
ristbands, heart rate monitors, and more recently, smartphones. Among the latter, the UCI HAR dataset was the most widely
sed one by the scientific community [29]. It focused on activities like walking, sitting, and going upstairs, using data from
he accelerometer and gyroscope of a specific smartphone. In addition, 30 participants were involved in the study, placing the
martphone on the left side of their waist. Each activity was performed for a few seconds to collect relevant features. Finally, the
utput data were sampled at a frequency of 50 Hz, and all the data collection took place in a laboratory setting.
The WISDM dataset [30] is another widely used dataset for human activity recognition, alongside the UCI HAR dataset. The

ctivities included in this dataset are highly similar to those found in the UCI HAR one. Additionally, both datasets involve studying
ctivities performed for several seconds. However, the main difference lies in the placement of the smartphone. In the case of the
ISDM dataset, the smartphone was positioned in one of the front trouser pockets of each of the 29 participants who took part in
he study. Unlike the UCI HAR dataset, the WISDM one only uses accelerometer data, sampling them at a fixed frequency of 20 Hz.
s with the previous dataset, the data collection process for the WISDM dataset was also carried out under controlled laboratory
onditions.
Similarly, the HHAR dataset [19] gathered data from eight smartphones and four smartwatches. The smartphones included four

ifferent models, while the smartwatches consisted of two distinct types. To collect the data, each participant had the smartphones
ecurely placed in a pouch attached to their waist, and two smartwatches were worn on each wrist. The study involved only nine
ndividuals as participants. As for the activities performed in this dataset, these were basic examples like walking, cycling, or running,
ut they were recorded over a more extended period of five minutes. Unlike the previous datasets mentioned, the data collection
2

or HHAR did not take place in a laboratory setting. Instead, participants were instructed to follow specific routes within designated
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Table 1
Comparison of the main HAR datasets based on smartphone sensor data, along with the real-life one used in this paper.
Dataset Sensor(s) used Activities

recording time
Number of
subjects

Sampling
frequency

Device(s) used Device
placement

Environment

UCI HAR Acc. and gyro. Few seconds 30 50 Hz 1 smartphone Left belt Controlled
WISDM Acc. Few seconds 29 20 Hz 1 smartphone Front pants

leg pocket
Controlled

HHAR Acc. and gyro. 5 min 9 Variable 8 smartphones and
4 smartwatches

Waist and
wrist

Semi-controlled

UniMiB SHAR Acc. Fixed flow
duration

30 50 Hz 1 smartphone Trouser front
pockets

Controlled

Real-life dataset Acc., gyro.,
magn. and GPS

Free 19 Variable 19 personal
smartphones

Free Free

timeframes. Regarding the sampling rate, efforts were made to use the maximum value supported by Android. However, there was
finally some variability in the sampling rates recorded during the study.

Another noteworthy dataset is the UniMiB SHAR one [31]. For data collection, a specific smartphone was positioned in the front
rouser pocket of each of the 30 participants. Unlike some previous datasets, only accelerometer data were used, sampled at a fixed
requency of 50 Hz. Regarding the activities studied, these encompassed walking, standing up, running, jumping, and various others.
he entire data collection process was conducted under controlled laboratory conditions, with researchers guiding the participants
hrough specific activities.
As can be seen, the mentioned datasets exhibit significant differences among them. However, they all share a limitation in their

ata-gathering conditions. Specifically, the measuring devices were fixed to specific body parts, and the activities were performed
n predetermined ways for set durations. To address this limitation, the current paper employed a real-life dataset in which the
articipants carried out the specified activities in a more natural and unrestricted way. In addition, in this dataset, data were
ollected from participants’ personal smartphones, allowing them to carry out and measure the actions as they do regularly, with
he smartphone positioned in their preferred habitual manner. In this way, Table 1 presents a summary of key information from
each discussed dataset, comparing them to the one used in this work. Note that the abbreviations used in the table correspond to
accelerometer (acc.), gyroscope (gyro.), and magnetometer (magn.). There, several distinctions are evident with the real-life dataset.
Firstly, including the GPS sensor in data collection is a significant difference. This sensor’s ability to detect speed and orientation
could be beneficial for classifying the activities under study. Moreover, another noteworthy contrast is the variability in the sensors’
sampling frequencies, which deviates from most datasets found in the literature. Unlike other measurement devices that can be
set to a specific frequency value, smartphones lack this consistency throughout the data collection process, even if the highest
value supported by the smartphone’s operating system is set. This variability may not pose a problem for short and controlled
data collection, as corrupted data will be minimal. However, for longer durations, such as in the chosen dataset, that needs to be
considered, and appropriate data processing will be required. Furthermore, as for the number of participants and the use of different
device models, higher variability would be preferred to ensure a more reliable representation of real-world contexts. In this way,
the main difference lies in how the data were collected in a free environment with no specific conditions, making the proposals
using other datasets less applicable to real-life scenarios.

2.2. Latest approaches

The introduction of wearable devices and widespread smartphone usage has significantly boosted the development of HAR. Since
then, there has been a continuous rise in the diversity, improvement, and optimisation of artificial intelligence models that use this
type of data. Following a chronological order, in the first years of the last decade, many works focused mainly on the exploitation
of Support Vector Machines (SVM), as they seemed to be the models that yielded the best results for this subject [32,33]. Later,
other possibilities began to be explored, as in the case of [34]. There, a comparison was carried out between other machine learning
algorithms that also get good results in more fields, such as K-Nearest Neighbours (KNN), Multi-layer Perceptron (MLP) or the ones
based on Bayes’ Theorem. However, SVM still presented the best results to that date. In fact, later, another paper was also published
in which an analysis of the principal machine learning algorithms used globally was also carried out, together with SVM [35].
Once again, SVM proved to be the most suitable for HAR. However, they also carried out a study on the influence of smartphone
orientations on the returned data. The results showed that variations in this respect could significantly affect the final results. In
the same way, work was also carried out on selecting the most convenient features to train these models, such as [36,37]. The
results shown by these works proved that frequency-based parameters seemed to be the most suitable for HAR, having the highest
percentage of correctness in the trained classifiers.

More recently, other works have been carried out in which deep learning approaches have been applied. Some of the most
relevant ones are those of [38,39], for proving the high-grade results obtained by applying deep learning techniques, specifically
Convolutional Neural Networks (CNN), on data from the HAR domain. In this way, a detailed comparison between different machine
learning algorithms, combined with some custom features, is subsequently presented in [14]. The algorithms used were: CNN,
Random Forest (RF) and KNN. Out of all the methods tested, CNN yielded significantly superior results. As a result, they also
conducted an extensive analysis to determine the optimal architectures and configurations for this particular case. Since then,
3
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although more traditional algorithms have continued to be used, deep learning became the most chosen option by researchers to
solve this problem. In addition to the excellent results, the fact that no manual feature selection is required for some deep learning
algorithms, like CNN, makes them even more attractive. Along the same lines, in addition to CNNs, models based on the Long
Short-Term Memory (LSTM) technique began to be used to a large extent. That is due to the usual treatment of the temporality of
the data in HAR. LSTMs are known for being models capable of including information from the past in their training, which is very
positive for optimally classifying the data. Nonetheless, a drawback of these methods is their requirement for a substantial amount
of data and time to attain appropriate training, which makes them quite different from CNNs. A few instances that demonstrate the
application of this technique are represented in [26,40–42], where excellent results were obtained. In fact, in [41,42], a variant of
this technique is presented, capable of achieving even better results than in its original form. This variant is called Bidirectional
LSTM (Bi-LSTM) and can store data both from the past and the future (assuming that LSTMs usually store it unidirectionally from the
past), adding it to the learning during the training of the models that implement it. Compared to its original form, the disadvantage
is its higher complexity, as it has to study two time directions instead of one, leading to even longer training times. Given that,
work in HAR is currently focused on the use of CNN and LSTM and their variants, in search of the most suitable model, as both
techniques yield outstanding results in this field [15,43–45]. In any case, while both techniques are suitable for brief activities such
as sitting or hand raising, it seems that, in general, there is a slight bias towards CNN over LSTM, given its speed and ease of
implementation [46].

On the other hand, not all the research carried out was based primarily on the accelerometer and gyroscope sensors. Examples
uch as [47,48] prove the potential of other sensors, such as the magnetometer or GPS, with excellent results when added to their
tudies. More specifically, these sensors seem to work well with diverse types of long-themed activities, such as walking or running,
s shown in these studies.
However, although all those works served to expand the knowledge in HAR, their advances would not be sufficient to be

ransferred to an application in everyday life. They have obtained their data in very controlled environments, with pretty specific
nstructions, so it is not feasible to expect the same good results if we transfer the proposed models to real life. While there are some
orks such as [49,50] that have tackled this problem, there is still a long way to go. In these cases, they achieved good results by
ransforming the smartphone’s coordinate system into the Earth’s one. Anyhow, their performance drops when changing the device’s
rientation device. In addition, they neither take into account the possible different placements of the smartphone, resulting in the
ame problems as in the other works.
Fortunately, very recent works have been published that seek to fill that gap between the laboratory models and their real-

ife applications [23,25]. Specifically, in [23], a dataset was published expressly focused on solving this problem, which will be
sed in this paper. In [25], the same dataset was also used, with an in-depth study of different machine learning algorithms and
onfigurations, with a particularly significant improvement in the initial results. Other recent work using the same dataset, such
s [24], is also worth mentioning, with a graph-theory approach based on Random Forest. However, those works still fall in manual
eature engineering, oppositely to deep learning which pursues the automation of this part. Given the latest trends and advances
ade in HAR, algorithms such as CNN or LSTM should result in an optimisation of the final performance. In fact, there is already
paper using such algorithms on that dataset [51], but they do not mention how the data were preprocessed to feed the proposed
odels. Likewise, they also do not match the percentage of data per class they present in comparison with the original dataset. The
lass that should have the highest number of samples is presented as one of the classes with the fewest. Finally, they only use the
ccelerometer from the four original sensors. For all these reasons, it is impossible to reproduce their experiments as the specific
onditions under which they were carried out are unknown. Hence, it is not possible to compare it with the present paper. Anyhow,
t is considered that their approaches can be vastly improved, following a much more suitable methodology for such a dataset.
herefore, this paper aims to get the best model for the given dataset, in a quest to move towards that highly pursued real-life ideal.

. Deep learning

Within the field of human activity recognition, the artificial intelligence algorithms used are very diverse. However, inside the
eep learning area, two models stand out above the rest: Convolutional Neural Networks (CNN) and Long Short-Term Memory
LSTM). Therefore, these two were used to compound the proposed models of this work. All their implementation was carried out
ntirely in Python, using the Tensorflow and Keras libraries [52,53]. Additionally, for the cases that implement LSTM, the cuDNN
ibrary [54] was used to take advantage of the speed of the GPUs available to carry out the experiments of this work.

.1. Convolutional Neural Network

Convolutional Neural Networks (CNN) [55,56] are one of the most widely used models nowadays. Since the gradient modification
arried out in [57], they have become a state-of-the-art model to extract information in almost any area of knowledge. These
etworks consist of a series of layers formed by a set of neurons or filters that receive different pieces of information as input. In
his way, each filter is fed with different data from a sliding window or kernel over the initial signal or image. Unlike traditional
eural networks, the weights of each of these filters are the same [58]. Therefore, the output (𝑋(𝑙)) is the convolution of the input
eatures (𝑋(𝑙−1)) with a set of learnable filters (𝑊 (𝑙)), to which biases (𝑏(𝑙)) are added. Finally, an activation function (𝑔(𝑙)) is applied.
4

The most commonly used one in HAR research (and the one selected for this paper) is the Rectified Linear Unit (ReLU), which returns
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Fig. 1. Comparison of a traditional convolution and its equivalent Depth-wise Separable convolution.

when it receives a negative value or the value itself if it is positive. In such a way, the whole process results in the equation below
note that here the symbol ‘‘×’’ reflects a convolution):

𝑋(𝑙) = 𝑔𝑙(𝑋(𝑙−1) ×𝑊 (𝑙) + 𝑏(𝑙)) (1)

That scheme can be repeated several times, where each layer will extract more features from the information already acquired in
previous layers.

Moreover, for this paper, a MaxPooling layer was added after each convolutional layer. Such layers are used to down-sample
the spatial dimensions of the input data, retaining the most relevant features. To do that, they divide the input data into a set of
non-overlapping rectangular regions, outputting the maximum value of each one. In this case, these regions were implemented with
a size of 2, as seen in many other works in HAR [59,60]. That makes the resulting models more robust to possible changes or
distortions in the data and reduces the computational time required to train them [61].

Once the features have been extracted from the input matrix and transferred through each layer, they are fed into a fully
connected perceptron (Dense layer). As for the final prediction and the probability vector 𝑝𝑡 = [𝑝𝑡1 , 𝑝𝑡2 , . . . , 𝑝𝑡𝑘] ∈ R𝑘, the softmax
function was used, which converts the input values into a probability distribution, with values between 0 and 1. These input values
would be the output values of the previously mentioned perceptron (z), giving rise to the following operation:

𝑝𝑡𝑖 =
𝑒𝑧𝑖

∑𝑘
𝑗=1 𝑒

𝑧𝑗
(2)

hen, the results obtained would be returned directly, selecting the label with the highest probability after the softmax.
However, for this paper, it was opted to use the Depth-wise Separable Convolutional Neural Networks (DS-CNN) variant [62].

he choice of this variant is mainly due to its higher speed and efficiency compared to its original form. That is particularly appealing
5

onsidering the large number of patterns to be used in this work. Moreover, it is starting to be applied in the most recent HAR studies,
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Fig. 2. Example of a LSTM unit, as shown in [40] (weight matrices and bias not displayed).

with excellent results [63]. Nevertheless, this modification is known for drastically reducing the requirements by significantly cutting
own the number of necessary parameters [64]. To do that, the kernel is applied separately on each of the available channels of
he input signal, rather than on all of them at once. This convolution would work the same way as the traditional one but using
ewer features in each case. Then, the information obtained for each channel is combined through another convolution, projecting
he resulting data onto a new feature map. The difference here is that the latter is carried out as a point-wise convolution (i.e. 1 × 1
convolution). As shown in Fig. 1, this ensues in fewer operations by integrating the data from the different channels. In this way,
the computations are done with much less data and an equivalent outcome to traditional CNNs.

3.2. Long Short-Term Memory

Unlike their precursor, the Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks [65] are a type of
system capable of selectively remembering or forgetting data. To this end, they perform a series of slight modifications to the data
they use, based on so-called cell states. For ease of understanding, an example of an LSTM unit is shown in Fig. 2. As can be seen,
the typical LSTM network consists of a series of memory blocks called cells, between which two different states are transferred: the
cell state (c) and the hidden state (h). In order for these blocks to be able to remember data, they implement a structure consisting
of three different gates, as detailed below:

1. Forget Gate (the red one in Fig. 2). It removes all information that is no longer relevant for learning. To do that, the input
data of the current time (𝑥𝑡) and the hidden state of the previous cell (ℎ𝑡−1) are multiplied by their correspondent weight
matrix (W ). Also, a bias (b) is added to the operation to get a better fit of the data. That constructs a regulatory filter, which
is represented by the resulting sigmoidal function 𝜎 that follows:

𝑓𝑡 = 𝜎
(

𝑊𝑥𝑓 × 𝑥𝑡 +𝑊ℎ𝑓 × ℎ𝑡−1 + 𝑏𝑓
)

(3)

That would result in a value between 0 and 1. When multiplied by the cell state, it decides whether that information should
be continued or not.

2. Input Gate (the green one in Fig. 2). It is responsible for adding relevant information to the model and filtering out any that
may be redundant. To this end, another sigmoidal function is constructed, multiplied by a hyperbolic tangent one (tanh) that
outputs the data between −1 and 1. In this way, the tanh function decides which data can be added later to the model, using
a sum operation with the information of the forget gate. These functions are represented as follows:

𝑖𝑡 = 𝜎
(

𝑊𝑥𝑖 × 𝑥𝑡 +𝑊ℎ𝑖 × ℎ𝑡−1 + 𝑏𝑖
)

(4)

𝑐′𝑡 = 𝑡𝑎𝑛ℎ
(

𝑊ℎ𝑐 × ℎ𝑡−1 +𝑊𝑥𝑐 × 𝑥𝑡 + 𝑏𝑐
)

(5)

3. Output Gate (the blue one in Fig. 2). This gate decides which outcome to keep, regarding that not all information flowing
through the cell state may be adequate. In much the same way as before, sigmoidal and hyperbolic tangent functions are
multiplied to filter these data. These functions are shown below:

𝑜𝑡 = 𝜎
(

𝑊𝑥𝑜 × 𝑥𝑡 +𝑊ℎ𝑜 × ℎ𝑡−1 + 𝑏𝑜
)

(6)

𝑐′′ = 𝑡𝑎𝑛ℎ(𝑐 ) (7)
6
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Fig. 3. Example of a Bi-LSTM network.

In this way, new cell and hidden states are obtained. Then, they are transferred to the next unit, repeating the process discussed
above. These states are calculated as follows:

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐′𝑡 (8)

ℎ𝑡 = 𝑜𝑡 × 𝑐′′𝑡 (9)

s for the prediction and the probability vector 𝑝𝑡 = [𝑝𝑡1 , 𝑝𝑡2 , . . . , 𝑝𝑡𝑘] ∈ R𝑘, these are calculated from the resulting hidden state
(ℎ𝑡). This forms a softmax function (s), already commented in 3.1, which results in the following equation:

𝑝𝑡 = 𝑠(𝑊ℎ𝑘 × ℎ𝑡 + 𝑏𝑘) (10)

Finally, the class label 𝑘𝑡 is assigned to the one with the highest value in the vector of probabilities.
In the present work, in addition to traditional LSTMs, their bidirectional variant (Bi-LSTMs) was also used. This modification was

formerly presented for the predecessor RNNs [66], but it can be used in the same way in a multitude of networks. The difference
that characterises this variant is that it makes networks capable of storing data in both directions, usually by adding the future
case (assuming that LSTMs usually store data unidirectionally from the past). This peculiarity, coupled with the fact that they are
recently being used in the field with high-quality results, makes them a pretty attractive option for this work. In order to carry out
this modification, two different LSTM models are trained, one that explores the input data (x) backwards and one that does the
same but forwards, as shown in the example Bi-LSTM network in Fig. 3. During each model training, in each time step, a merging
stage (f ) is performed to mix the outputs obtained. That step can be carried out in different ways, but the most common and the one
that was implemented in this work will be that of concatenation. In such a way, the output (y) of the first model is concatenated
with the second model’s. That ensures the latter can allow for both signal directions in the following time steps.

3.2.1. Hybrid models
A hybrid model refers to a model that combines different types of machine learning or deep learning algorithms. One of the most

prominent examples in the HAR field is the combination of Convolutional Neural Networks (CNN) and Long Short-Term Memory
(LSTM) models. That is due to the peculiarities of each of them. On the one hand, CNNs try to reflect the spatial features of the
data introduced into them. On the other hand, LSTM models look for these elements in the temporal section of the data that feeds
them. Therefore, if the aim is to classify data with different signal distributions and time intervals, these algorithms combined could
significantly improve performance.

Thus, in this work, those algorithms were combined using the variants discussed in the previous sections: Depth-wise Separable
Convolutional Neural Networks (DS-CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) models. That led to the following
hybrid models: (DS-CNN)-LSTM and (DS-CNN)-(Bi-LSTM). Hence, the spatial features extracted by the CNNs can be further exploited
by the LSTMs, merging them with the temporal characteristics that can be derived by the latter. That should result in a substantial
improvement in the final performance, although the corresponding execution times also increase with higher model complexity.

The way these models are assembled differs slightly from their individual cases. For this paper, the DS-CNN layers were
always applied first, before the LSTM-based ones, to properly exploit the features as discussed in the previous paragraph. Thus, in
hybrid models with more than one layer, a (DS-CNN)-(DS-CNN)-LSTM-LSTM style structure will be followed, without interleaving
independent models. With this architecture, the outputs of the last MaxPool performed in the DS-CNNs will be the inputs of the
LSTM-based models. Similarly, the outputs of the uttermost LSTM will be the outputs of the full hybrid model.
7
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4. Methodology

This section explains in detail all the techniques and resources employed in this work. Firstly, Section 4.1 discusses how the data
as processed and prepared for input into the subsequent artificial intelligence models. Then, Section 4.2 presents the different
valuation metrics used in this work. After that, Section 4.3 outlines various techniques to validate and improve the generalisation
f the resulting models. Finally, Section 4.4 introduces the proposed models’ architecture and configurations.

.1. Data preparation

As previously mentioned, the dataset presented in [23] was used to carry out this work. Here, it is also worth noting that
he data collection aimed to include individuals with diverse characteristics, encompassing physical diversity, smartphone usage
atterns, and device models. Consequently, the study involved 19 participants, aged approximately 25 to 50 years, to ensure a wide
ange of behavioural patterns contributing to the development of future models. However, gender diversity is limited, with only two
omen among the participants. Nevertheless, participants’ physical characteristics, habits, and preferences regarding smartphone use
nd positioning display considerable variation. Hence, while there is potential for improvement in variability, significant diversity
emains present. As for the sensors used, there were four: accelerometer, gyroscope, magnetometer and GPS. Nonetheless, what
akes the dataset most remarkable is that the individuals who took part in the data gathering were given almost total freedom,
nly having to use a custom Android app to start or stop the concerned activity. These activities were the following, as discussed
n that work:

• Inactive: not carrying the smartphone on you at all.
• Active: any activity with movement, but without moving to a specific point in time. That would include activities such as:
giving a lecture, cleaning the house or being at a concert.

• Walking: any trip made on foot, whether it is a regular walk or a jog.
• Driving: all journeys made via motorised transportation, without requiring the traveller to be the driver.
Concerning data preprocessing, almost the same dynamics as in the original work were followed, carrying out the following

perations:

• Every outlier found in the GPS data was removed. That is the measurements that surpassed 0.2 decimal degrees on latitude
and longitude increments between observations or 500 m in the case of altitude. Given its sampling rate, these measures seem
unreal to accomplish for any living being.

• The first and last five seconds of each session were eliminated to avoid confusion during the training of the deep learning
models. These time intervals correspond to the stages in which individuals picked up or put away the smartphone at the start
or end of the action. Therefore, they were not relevant to the activity in question. Note that each session corresponds to an
independent data gathering, from the moment when an individual begins an action until they finish it.

• The GPS data are largely sparse in each session, mainly because of the long waiting time between observations (>10 s). In
the original paper, if there is more than one second between samples, the first one is replicated second by second, with a
different timestamp, until this time difference does not prevail, in both directions. However, in the present work, since the
sliding windows will move 10 s at a time, such replication was done every ten seconds instead of only one. Anyhow, every
session without any GPS observations was discarded.

• Any session with substantial time gaps without observations (>5 s) was considered corrupt and, therefore, was ignored. Note
that this does not include GPS data.

To prove the importance of this preprocessing, an example of how the different sensors behave in each of the specified activities
an be seen in Fig. 4. Those examples correspond to the first 15 s of different sessions taken by one specific individual in the study.
he selection of this time interval is due to the fact that it allows each activity and sensor behaviour to be illustrated easily on a
ingle figure. Note that each subfigure displayed there corresponds to data taken while performing one of the four studied activities:
nactive (a), active (b), walking (c) and driving (d). Also, to represent all the values on the same scale, the values corresponding
o the GPS were divided by 10. Similarly, the values for the magnetometer and accelerometer were also divided by a value of 5
nd 2, respectively. In this way, it is possible to easily observe the changes occurring in each sensor, for each specified action. For
he accelerometer, gyroscope and magnetometer, those data are displayed for each of its three axes: Acc_x, Acc_y and Acc_z, Gyro_x,
yro_y and Gyro_z and Magn_x, Magn_y and Magn_z, respectively. As can be seen in each subfigure, there are evident irregularities for
he first seconds of each session, which only add noise to their interpretation. Concerning GPS, the increments in latitude, longitude
nd altitude from the last observation are displayed (GPS_lat, GPS_long and GPS_alt ), together with speed, bearing and accuracy of the
urrent measurement (GPS_sp, GPS_bear and GPS_acc). For this particular case, it is possible to see the small number of observations
ecorded, compared to the other sensors ones represented, highlighting the need to replicate them. Anyhow, distinct patterns can be
iscerned for each sensor, contingent on the executed activity. However, it is worth noting that, although considering those evident
ifferences, this may not be the case with other types of actions. After all, although four activities are being studied, all of them
ncompass a variety of diverse actions, except for the ‘‘inactive’’ activity. For instance, washing dishes or teaching a class could
xhibit significantly different signals despite both falling under the ‘‘active’’ activity category. Similarly, the same could apply to
8

‘walking’’ and ‘‘driving’’ activities. In the former case, differences might arise within the same activity if the session involves going
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Fig. 4. Raw (scaled) data captured by a single individual’s smartphone sensors, within the first 15 s of various example sessions, for each designated activity,
being: (a) Inactive activity. (b) Active activity. (c) Walking activity. (d) Driving activity.

Table 2
Sensor’s average sampling frequency and their respective standard deviation values for each activity measured
(in Hz), after data preprocessing.

Activity

Inactive Active Walking Driving

Accelerometer 9.51
±13.92

32.30
±23.49

28.29
±24.29

37.04
±20.94

Gyroscope 4.67
±0.72

4.45
±1.45

6.34
±12.13

4.70
±2.62

Magnetometer 7.66
±11.28

8.23
±12.38

6.41
±8.66

7.00
±9.94

GPS 0.01
±0.09

0.03
±0.16

0.07
±0.26

0.13
±0.34

for a walk or jogging. As for the latter, substantial differences could appear depending on whether the individual is driving their
own car or taking public transportation. In this way, although it is believed that these trends could also be present in other data
sessions, they should be approached with a measure of caution.

Following prior data preprocessing, it was decided to apply 30, 60 and 90-s sliding windows, with an overlap of 20, 50 and 80 s,
espectively (moving the window 10 s at a time). The selection of these time intervals and no others is due to the performances
bserved in other works using the same dataset, such as [25]. It is considered that, with this selection, it is possible to see the general
ehaviour of the proposed models to see if there is any trend in the results towards larger or smaller window sizes. Furthermore,
t can be considered a reasonable amount of time given the long-themed nature of the activities included in this dataset, without
eing too broad or limited. In fact, if it were, it would not be possible to separate and identify the actions correctly, and there could
e periods of inactivity in an activity that is supposed to be entirely associated with ‘‘walking’’, for example, by going for a random
alk and stopping at a traffic light.
9
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Table 3
Number of available patterns and their distribution among the above-mentioned activities, for an overlap of 10 s
less than each full window size.
Window size Activity

Inactive Active Walking Driving Overall

30 21,152
43%

13,778
28%

7823
16%

6109
13%

48,862

60 20,836
44%

13,487
29%

7204
15%

5716
12%

47,243

90 20,486
44%

13,223
29%

6732
15%

5439
12%

45,880

However, in order to feed the prepared data into the deep learning models, it was necessary to perform another series of
perations. With the considerable differences observed in the frequency of each sensor for each activity studied, it is unattainable to
ransfer the data directly to the model. Table 2 shows the values of this frequency for each sensor and activity performed after
reparing the data as detailed above. As can be seen, there are very abrupt cases, especially with the accelerometer, since it
rastically changes its sampling frequency when any movement or vibration is detected. For that reason, for example, the frequency
s much higher for the case of ‘‘walking’’ compared to ‘‘inactive’’. Likewise, there is a substantial change in the gyroscope’s frequency
or the ‘‘walking’’ activity, compared to the rest. Anyhow, the differences are slighter than with the accelerometer, as it focuses on
hanges in the smartphone’s orientation and not on any movement or vibration that may exist. As for the magnetometer and GPS,
heir variations are more arbitrary, although there is a tendency to get more GPS measurements as the travelling speed increases.
n addition, each smartphone may have slight differences for the same observation [19], which may also affect this sampling rate.
n fact, some of these differences were thought to be mainly due to the behaviour of some sensors in moments of high or low
ovement [23].
Nonetheless, upon further exploration, those changes seem to be also somewhat arbitrary. Indeed, a peculiar behaviour was

bserved for the accelerometer, gyroscope and magnetometer. The data provided by these sensors are generally given either every
0 ms or every 200 ms. In the few cases in which this is not the case, it is by a slight difference, with a frequency closer to 10 ms,
r approximately 180 ms, depending on the case. Moreover, these differences do not seem to correspond to any specific individual
r activity, as they may be noted even during the same data collection session from a specific one. Therefore, the hypothesis is,
part from the movements and vibrations commented on before, that there could be some settings on the individuals’ smartphones
ffecting these sampling rates. For example, the trigger of automatic battery saving when reaching a certain threshold, even if all
ermissions were activated for the data collection Android app used for such work.
For all those reasons, it was necessary to transform the data so that each sensor had the same sampling rate across all associated

bservations. For that purpose, one possibility could be to apply linear interpolations, as they were the most commonly used
peration in the field when the context required it [15,67,68]. Only in [19] was some exploration with other more complex
nterpolations like the quadratic or cubic ones, but without an in-depth investigation. Regarding the values of this sampling rate, no
lear consensus has been found in the scientific community for smartphone sensors. Some researchers say that around 2–3 Hz is the
ost appropriate [69]. Others prefer to set it between 0–15 Hz [11], or even up to 50 Hz in some situations [70]. Anyhow, they all
ere studies carried out in controlled laboratory environments and without handling sensors with frequencies as different as GPS’s.
herefore, given the distinct and scarce approaches in the HAR literature, an experimental solution was chosen. The present work
eals with a singular case in which sampling rates stabilise around a value every 20 ms or 200 ms (50 Hz and 5 Hz, respectively).
iven that, it was considered that the most appropriate approach would be to fix this frequency at 5 Hz, always selecting the closest
eal value to each time instant, every 200 ms. In this way, the observations to be introduced later in the proposed models would be
ompletely real, without the modification they could suffer when going through a traditional interpolation. In addition, the temporal
rror that could be accumulated for cases that do not strictly follow these dynamics would be small, given the little and unusual
hanges that occur at these frequencies. Thus, when data are given every 20 ms, only those observations that correspond to the
ime instants that occur every 200 ms would be selected, ignoring the rest. When the data are given every 200 ms, it would be only
ecessary to pick those observations that correspond to each 200 ms advance in time. Although it is true that with this approach a
onsiderable amount of existing patterns from the original dataset are eliminated, it is considered the most appropriate choice for
he problem to be solved, given the circumstances. Concerning GPS, although it is not particularly affected by that problem, it does
ave a very high and irregular frequency, compared to the rest of the sensors used. Hence, following the same idea as before, it was
ecided to set the frequency at 0.1 Hz (one value every 10 s). That is possible thanks to the replication carried out before, detailed
t the beginning of this section.
After carrying out all the steps discussed above, the total number of patterns is shown in Table 3 for each proposed window size.

s can be seen, there is a clear imbalance towards the ‘‘inactive’’ activity, probably due to the ease of collecting this type of data
ompared to the rest. Even so, it is considered that the overall number of patterns in each class is sufficient to perform a satisfactory
lassification, as seen already in other works using the same dataset [23,25].

.2. Evaluation metrics

In order to easily view and evaluate each model classification, the most widely used option by the scientific community is the
onfusion matrix. From this matrix, many metrics can be extracted. Since this paper deals with a multi-class case, a one-versus-all
10
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strategy was followed to reduce them to a binary type. Thus, each class is analysed separately comparing it with the rest together.
From there, some of the most elementary metrics that can be extracted are the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), for a given class. In addition, from these values, other representative metrics can also
be calculated, such as precision, recall, accuracy, and 𝐹1-score [71]. Among those metrics, the most commonly used one to measure
the performance of a test model is accuracy. For its calculus, the percentage of correctly identified cases out of the total is measured
using the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(11)

However, there are cases where the latter metric can lead to some bias, especially on an imbalanced dataset. For this very reason,
when there is a considerable imbalance in the data, the 𝐹1-score [72] metric is usually also shown. To measure it, precision and
recall are combined in a harmonic mean, with precision being the ratio of the TP to all cases labelled as positive by the model (TP
+ FP), while recall refers to the division of the same TP by the total number of positives in the ground truth (TP + FN). Given that,
ts formula would be as follows:

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(12)

For this paper, the results will always be evaluated based on the accuracy metric to be able to compare it properly with the
rest of the works carried out on the same dataset. Anyhow, given the clear imbalance present in the data, the 𝐹1-score will also be
shown for the most representative cases to get a closer look at the actual performance of the models. Since this paper presents a
multi-class problem, an averaging process is necessary to get the overall value of this metric. Given that, the macro strategy, which
returns the mean value obtained by computing the metric for each label individually, was followed.

4.3. Validation techniques

Cross-validation [73] is regarded as one of the most reliable methods for validation. Before data is fed directly into the model, it
undergoes a process of division into training and testing. In such a way, the model will be able to use one subset of the data only
for training and another for testing, the latter a priori unknown to the model. The most prevalent way to carry out this division is
through k-fold cross-validation. This technique consists of partitioning the original dataset into a number k of subsets of equal size. One
of these partitions will form the test set of the model, while the rest will be used for training. Then, the procedure will be reiterated
k times, ensuring that each subset has been designated as a test set once. Finally, after feeding the models with each partition, the
outcomes are averaged, and the pertinent metrics are computed. In such a manner, the random component of splitting the original
set in training and testing only once, which could lead to unreliable results, is largely avoided. For this paper, a modified version
of this approach, known as stratified k-fold cross-validation, was employed. This alternative aims to ensure the same percentages
of class representativeness in all the partitions carried out. Hence, it can mitigate the influences of the present imbalance in the
initial dataset. All things considered, in this work, a stratified 10-fold was applied, splitting the data into training and test, with a
distribution of 90%, and 10% for each subset formed, respectively.

Nonetheless, with that approach, one of the most common issues in any work related to machine learning may arise. That is
the overfitting problem [74,75]. A model is said to be overfitting a dataset when instead of extracting information from patterns,
it mainly memorises them. This problem is even bigger in deep learning because of the increase in the number of weight drives,
which considerably expands the memorising capacity of the network. To alleviate this issue as much as possible, for each training
set, 11.11% of the data included therein has been assigned to a validation set. Thus, the general distribution for each fold would
be 80% training, 10% validation and 10% test. In this way, during training phase, the model’s performance is tested against the
validation set. That yields a loss value that evaluates the classification at that point, based on the sum of the errors obtained for each
sample. The lower the value, the better the classification, a priori. However, this value may reach a point where the improvements
are almost imperceptible, leading the model to a clear case of overfitting. To avoid that, an early-stopping function was applied to
each model [76]. This kind of function seeks to interrupt training when that point is reached, returning the best weights obtained
by the model so far. For this work, training will be interrupted when the model has not improved the last best loss value for 20
iterations (out of a fixed total of 100 iterations). In this way, although it is impossible to guarantee that training does not stop at a
local minimum, the generalisation capacity of the model may be improved.

In addition to the above, a Dropout layer was also set up for each proposed model. This layer dumps part of the outputs, forcing
the model to rely on other connections. In this way, the generalisability of the model increases considerably. This layer was applied
for 50% of the input units and placed just before the final output. Both the quantity and the placement selected for these layers are
those commonly used in the literature [77].

4.4. Proposed approach

As discussed before, the algorithms selected for this work were Convolutional Neural Networks (CNN) and Long Short-
Term Memory (LSTM) models, given their outstanding results in the field. Specifically, for the CNN case, Depth-wise Separable
Convolutional Neural Networks (DS-CNN) were used, to speed up the experiments without affecting performance. On the other
hand, in the case of LSTM, its bidirectional variant (Bi-LSTM) was also used, as it was considered that it could provide good results
11

for the problem to be solved, given its recent applications.
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Table 4
Training hyperparameters.
Hyperparameter Value

Batch size 32
Layers [1, 2]
Neurons (or CNN filters) [16, 32, 64]
Kernel (CNN only) [3, 5, 7]
Padding (CNN only) Same
Activation ReLU
Optimiser ADAM
Loss Cross-entropy
Iterations ≤100
Early stopping 20

Fig. 5. Implementation of each individual algorithm used, for the case of having a number of layers equal to two, being: (a) DS-CNN model. (b) LSTM model.
(c) Bi-LSTM model. (d) (DS-CNN)-LSTM model. (e) (DS-CNN)-(Bi-LSTM) model.

Nonetheless, given the prominent use of those algorithms simultaneously in the literature, it was also decided to do the same
or this paper. In addition to using those algorithms individually, they were also combined, resulting in (DS-CNN)-LSTM and (DS-
NN)-(Bi-LSTM) hybrid models, as discussed in Section 3.2.1. In this way, it is possible to make a comparison between all proposed
models, observing in detail the advantages and disadvantages of each one.

Concerning the hyperparameters used for each of those models, they are shown in Table 4. The batch size was set to 32. After a
few preliminary explorations with higher values (64, 128, 256, 512 and even 1024), this was the best trade-off between efficiency
and accuracy. Consequently, considering that the changes in classification accuracy were negligible between 32 and the rest, it was
decided to discard them. Regarding the rest of the hyperparameters, note that in the hybrid models, a layer number of one would
correspond to a total of two layers (one per individual network). Likewise, two layers would result in a total of four layers. For
example, when we join a DS-CNN with an LSTM with a layer number of 2, it would look like this: (DS-CNN)-(DS-CNN)-LSTM-LSTM.
That is two layers for DS-CNN and two for LSTM, with the DS-CNN layers always going before the LSTM ones, as said in Section 3.2.1.
Therefore, it was not considered to explore with more layers, as this would remarkably increase the complexity of the models. As
for the neurons, a similar combination as in [59] was used, but without going that further. Concerning kernel size, once again, the
variety used in [59], with fewer options, was the one applied. In addition, the padding of the DS-CNNs was set to ‘‘same’’ to be
ble to perform convolutions of the desired size. This parameter allows the algorithm to fill with zeros evenly around the signal,
12
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Fig. 6. General architecture of the whole model used to carry out the experiments.

allowing the input dimensions to match the output dimensions. As for the activation, optimiser and loss functions, the most widely
used in the literature were the ones applied: Rectified Linear Unit (ReLU), Adaptive Moment Estimation (ADAM) and cross-entropy,
respectively. Finally, a number of 100 iterations was set, with an early stop of 20 if the validation loss did not improve. Thus, the
model gets enough time to recognise the patterns while avoiding overfitting. Any other parameters that might be present were kept
by default.

With respect to the architecture followed to implement those models, you may see the implementation followed for each
algorithm individually in Fig. 5. Note that, in the case represented there, all models are shown with two layers to visualise the
most complex versions of each kind. There, each subfigure shows a different algorithm, from top (input layer) to bottom (output
layer). In the case of DS-CNN (a), each model is formed by a convolutional layer (SeparableConv), followed by a MaxPooling layer,
as seen in the rest of CNN works in HAR. Also, in the end, regardless of the previous number of layers, a Flatten layer is added. That
is to format the resulting feature map to allow for being consumed by subsequent layers. To do that, the input data is converted
into a one-dimensional array. Concerning LSTMs (b), they are formed only by the layer that implements this algorithm, in this
case following cuDNN’s implementation to accelerate its training time. For its bidirectional variant (c), this layer is enclosed by the
wrapper that adds this functionality (Bidirectional()). Finally, for the hybrid models, (DS-CNN)-LSTM (d) and (DS-CNN)-(Bi-LSTM)
(e), the previous cases are combined. In this way, the layers corresponding to DS-CNN are added first, which will subsequently feed
those based on LSTM. As the resulting DS-CNN feature maps can already be consumed directly by LSTM, it is not necessary to add
a Flatten layer for these hybrid cases.

In such wise, the entire final model consists of four different inputs, one for each sensor used in the dataset, as shown in Fig. 6.
In this manner, it is possible to use each sensor’s data, while avoiding dealing with the peculiarities of each one by focusing on
one particular sensor at a time. Thus, the data measured by each sensor is transferred through the CNN and LSTM networks, as
appropriate. As for the model layers represented there, the same one is always applied for each of the four branches. For example,
if a DS-CNN model is used for the accelerometer data, the same is implemented for the rest of the sensors. Note that each of those
networks would correspond to the models shown in Fig. 5. That results in different outputs for each sensor, depending on the
particularities encountered in each case. Then, in order to be able to combine everything in the same model, the outputs of each
of these branches are concatenated in a single layer. After that, to avoid overfitting and increase the generalisation capacity of the
implemented models, a Dropout layer was added, affecting 50% of the input units, as commented in Section 4.3. Finally, a Softmax
ayer was set to obtain the desired output with the four activities to be studied.

. Results and discussion

This section shows all the results obtained from the proposed experiments. On the one hand, Section 5.1 indicates the performance
f each experiment, with its corresponding outcomes. Then, Section 5.2 introduces a series of comments and observations on the
btained results.

.1. Results

With the models discussed in Section 4.4, the results shown in Tables 5, 6 and 7 were obtained. There, the values corresponding
o the average accuracy of every possible combination of hyperparameters are represented, with their standard deviation below.
hose hyperparameter combinations correspond to the number of layers (L), the number of neurons in each layer (N) and the kernel
13

ize (K). Moreover, each table corresponds to a specific sliding window size: 30, 60 and 90 s, respectively, as pointed out previously.
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Table 5
Accuracy results obtained detailed for a window size of 30 s.

N = 16 N = 32 N = 64

L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

DS-CNN

K = 3 89.21%
±8.17%

88.02%
±10.37%

87.95%
±9.26%

88.30%
±9.66%

89.10%
±7.06%

89.15%
±8.95%

K = 5 88.64%
±7.80%

88.39%
±9.22%

87.59%
±8.66%

88.68%
±8.95%

88.73%
±7.85%

88.08%
±9.54%

K = 7 88.33%
±8.01%

87.95%
±8.70%

89.23%
±7.36%

88.57%
±9.52%

88.00%
±8.68%

87.50%
±11.53%

LSTM 90.99%
±6.99%

91.07%
±5.88%

93.15%
± 4.52%

91.49%
±5.58%

91.91%
±6.63%

90.06%
±7.36%

Bi-LSTM 91.91%
±4.76%

90.33%
±8.21%

89.46%
±8.72%

90.99%
±6.73%

91.22%
±5.86%

90.09%
±8.85%

DS-CNN-LSTM

K = 3 92.15%
±7.09%

90.47%
±7.71%

91.15%
±7.54%

90.38%
±8.91%

91.85%
±6.34%

91.20%
±7.88%

K = 5 91.58%
±7.22%

90.04%
±8.2%

91.07%
±7.79%

88.96%
±10.05%

91.64%
±6.73%

92.46%
±5.61%

K = 7 91.75%
±5.62%

90.84%
±7.04%

91.76%
±6.21%

91.23%
±6.89%

90.36%
±8.39%

89.05%
±9.43%

DS-CNN-Bi-LSTM

K = 3 91.88%
±7.24%

90.40%
±7.29%

91.64%
±7.10%

90.47%
±8.26%

91.49%
±7.26%

90.64%
±8.70%

K = 5 92.56%
±5.84%

90.31%
±9.21%

90.92%
±7.20%

89.87%
±8.20%

91.77%
±6.94%

91.24%
±8.48%

K = 7 90.63%
±8.16%

91.63%
±6.48%

90.99%
±7.47%

90.45%
±7.35%

91.32%
±7.42%

90.51%
±8.02%

Table 6
Accuracy results obtained detailed for a window size of 60 s.

N = 16 N = 32 N = 64

L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

DS-CNN

K = 3 89.64%
±7.67%

89.38%
±9.00%

88.35%
±8.74%

89.86%
±9.51%

89.13%
±8.00%

88.74%
±9.39%

K = 5 89.18%
±7.99%

89.62%
±8.72%

89.38%
±8.00%

88.94%
±9.57%

88.31%
±8.88%

89.98%
±8.74%

K = 7 89.64%
±8.25%

89.10%
±10.22%

88.31%
±8.77%

89.80%
±8.56%

88.29%
±8.38%

89.38%
±9.08%

LSTM 91.14%
±8.36%

92.89%
±5.07%

92.15%
±7.26%

93.11%
±6.50%

92.39%
±7.21%

92.99%
±5.04%

Bi-LSTM 91.70%
±8.02%

92.02%
±7.22%

92.75%
±6.58%

92.17%
±7.07%

92.61%
±6.04%

91.89%
±7.30%

DS-CNN-LSTM

K = 3 92.64%
±6.42%

92.71%
±6.87%

93.14%
±6.71%

92.83%
±6.04%

93.09%
±6.14%

92.89%
±5.97%

K = 5 93.04%
±5.65%

91.55%
±8.37%

93.01%
±7.30%

91.57%
±9.27%

92.55%
±6.47%

91.72%
±7.66%

K = 7 93.49%
± 5.34%

92.09%
±7.71%

93.24%
±6.39%

92.33%
±7.67%

92.42%
±9.11%

92.54%
±7.08%

DS-CNN-Bi-LSTM

K = 3 92.63%
±7.25%

91.68%
±7.50%

92.81%
±6.95%

91.66%
±8.16%

91.64%
±9.05%

90.80%
±8.98%

K = 5 92.37%
±7.17%

92.32%
±7.08%

92.69%
±5.72%

91.91%
±6.57%

92.38%
±7.67%

91.37%
±8.09%

K = 7 92.93%
±7.11%

92.48%
±6.57%

92.69%
±7.59%

90.95%
±8.73%

91.89%
±7.18%

90.39%
±8.99%

As can be seen, the accuracies obtained, in general, are higher than those obtained in other works on the same dataset [23,25].
iven the results, the use of deep learning algorithms can be considered one of the best options to exploit such data, especially
hose based on CNN and LSTM, as proved in recent works in the literature. As for the performance of the models depending on
he particular algorithm selected and a specific set of hyperparameters, there do not seem to be very noticeable differences. Their
esults are objectively constant for each algorithm in the three tables. However, some contrasts are worth noting. Firstly, there are
ome differences if we look at the values obtained by each algorithm independently. In general, the best results are obtained by
he hybrid algorithms mentioned above, closely followed by those based on LSTM, but worsening slightly when only DS-CNN is
sed. Considering these results, for the dataset used, it appears that the LSTM-based algorithms perform better than the CNN-based
lgorithms. That seems to indicate that the time component of the signals is more important than the features themselves. To validate
hese differences, a Tukey test was performed between each group of results, for each algorithm and window size indicated. The
14
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Table 7
Accuracy results obtained detailed for a window size of 90 s.

N = 16 N = 32 N = 64

L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

DS-CNN

K = 3 90.27%
±7.74%

90.32%
±8.54%

89.73%
±7.99%

90.31%
±8.48%

89.76%
±8.09%

89.33%
±9.88%

K = 5 89.54%
±7.99%

89.51%
±10.5%

89.65%
±8.54%

89.27%
±9.47%

89.28%
±10.09%

89.78%
±9.56%

K = 7 90.70%
±7.29%

89.25%
±9.40%

88.43%
±10.38%

89.50%
±9.38%

89.89%
±8.17%

89.17%
±8.86%

LSTM 91.88%
±7.14%

91.92%
±6.81%

91.69%
±8.82%

93.52%
±5.59%

92.15%
±7.07%

91.28%
±8.55%

Bi-LSTM 93.09%
±5.10%

92.35%
±6.62%

91.60%
±8.25%

92.12%
±8.23%

91.82%
±8.07%

92.47%
±8.67%

DS-CNN-LSTM

K = 3 93.20%
±5.31%

92.65%
±8.44%

93.60%
±5.96%

92.68%
±7.84%

93.34%
±5.67%

92.77%
±8.30%

K = 5 93.57%
±5.14%

92.86%
±8.10%

94.78%
±4.64%

92.62%
±9.16%

92.93%
±6.91%

91.48%
±9.28%

K = 7 93.62%
±7.10%

91.56%
±10.29%

94.19%
±5.72%

92.72%
±7.80%

94.80%
±4.09%

90.88%
±9.79%

DS-CNN- Bi-LSTM

K = 3 93.68%
±6.63%

93.37%
±7.39%

92.72%
±7.36%

91.26%
±8.81%

93.98%
±5.31%

90.73%
±9.33%

K = 5 92.93%
±7.07%

93.10%
±6.59%

92.05%
±8.90%

93.32%
±7.50%

92.80%
±7.55%

93.04%
±6.71%

K = 7 92.80%
±8.09%

94.16%
±5.06%

93.51%
±6.28%

93.37%
±7.68%

93.26%
±6.67%

92.58%
±7.99%

Table 8
Overall accuracy results obtained for each window size.

Window size

30 60 90

DS-CNN 88.41%
±8.93%

89.17%
±8.79%

89.65%
±8.97%

LSTM 91.44%
±6.31%

92.44%
±6.72%

92.07%
±7.44%

Bi-LSTM 90.67%
±7.39%

92.19%
±7.07%

92.24%
±7.61%

(DS-CNN)-LSTM 91.00%
±7.63%

92.60%
±7.12%

93.01%
± 7.49%

(DS-CNN)-(Bi-LSTM) 91.04%
±7.66%

91.98%
±7.66%

92.93%
±7.40%

outcomes of these tests are shown in Fig. 7. Note that the widths of the confidence intervals are plotted at 95%, calculated from
Tukey’s Q value, by default. As previously mentioned, every table showed significant differences in the performance of the DS-CNN
algorithm and any of the other four models. However, between the hybrid models and those based solely on LSTM, there appears
to be statistical equivalence. Similarly, for the groups of results concerning each individual hyperparameter, after applying another
Tukey test, no statistical differences were observed between them.

Moreover, it is also possible to observe how those values change notably depending on the selected window size. Table 8 shows
he mean values of the accuracy obtained for each selected algorithm and window size, in a general way, showing in small, below
ach value, its standard deviation. Likewise, Table 9 shows the mean 𝐹1-score values. As can be seen, these values are higher when
he window size is larger (60 and 90 s) compared to those corresponding to a window size of 30 s. In the same way as before,
nother Tukey test was performed for the selected window sizes (30 and 90, 30 and 60 and 60 and 90), with their corresponding
etailed performances from the tables above. The results of this test can be seen in Fig. 8. Only in the case of 60 and 90 s was the
-value greater than 0.1, so no statistically significant difference was found between both sets. However, for the 30-s case, there
s a statistical difference with either of the other two values. That reaffirms the hypothesis already shown in previous works such
s [25], where larger window sizes obtained superior results. In fact, if we go at the very nature of the activities studied in the
ataset used, they have a long-themed character, so it is logical to think that longer time intervals positively affect the classification
f their corresponding data.
All things considered, a peak performance of 94.80% accuracy and 94.27% 𝐹1-score is achieved, corresponding to the (DS-

NN)-(LSTM) model, with a window size of 90 s, a single layer, 64 neurons and a kernel size of 7. The average confusion matrix
orresponding to this case can be seen in Table 10, along with its particular metrics (recall, precision and accuracy). As can be seen,
he model is able to classify any of the four activities with great accuracy, although there are slight problems with the correct
dentification of the ‘‘active’’ class. This activity is quite fuzzy, as it can accommodate actions where there may be periods of
15
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Fig. 7. Tukey test results for each group of accuracy values referring to each implemented algorithm, for each selected window size: (a) 30 s. (b) 60 s. (c) 90 s.

inactivity or where the individual is walking, which could lead to misclassification into these classes. An example of an action
that could fall into this class and could be easily confused would be giving a lecture. This action alternates between times when
the person may be walking (moving around the classroom) or sitting at the computer. In the first case, that walking moment could
result in classifying samples of ‘‘active’’ as ‘‘walking’’. In the second case, sitting without moving at all is very similar to not having
a cell phone on you, which could lead to misclassifying this action as ‘‘inactive’’. Even with the ‘‘driving’’ activity there could be
confusion, since sitting in the car waiting at a red light, without moving, could also be difficult to classify correctly, even taking into
16

account the vibrations of motor vehicles. Therefore, it is considered that, despite the discrepancies observed, the model is capable
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Table 9
Overall 𝐹1-score results obtained for each window size.

Window size

30 60 90

DS-CNN 88.05%
±7.68%

88.25%
±8.95%

88.84%
±8.93%

LSTM 91.17%
±5.12%

92.52%
±5.70%

92.38%
±5.83%

Bi-LSTM 90.61%
±5.78%

92.28%
±5.77%

92.21%
±6.67%

(DS-CNN)-LSTM 90.60%
±6.64%

92.43%
±6.03%

92.95%
± 6.22%

(DS-CNN)-(Bi-LSTM) 90.67%
±6.71%

91.82%
±6.92%

92.87%
±6.25%

Fig. 8. Tukey test results for each group of accuracy values referring to each selected window size.

Table 10
Average confusion matrix for the best combination found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 1993.4 42.2 3.8 3.4 97.58%
Active 40.6 1226.8 51.2 20.3 91.63%
Walking 2.9 45.8 613.7 4.9 91.97%
Driving 11.7 7.5 4.5 515.3 95.60%

Recall 97.31% 92.78% 91.16% 94.74% 94.80%

of classifying the data exceptionally well, improving the results obtained with the most traditional machine learning techniques,
going from 92.97% accuracy to 94.80%.

In any case, given the statistical equivalences observed previously, any model, except the DS-CNN, with a window size of 60 or
0 s, could be chosen as the preferred solution to the required classification. Thus, if the least complex option were sought, among
ll the statistically equivalent ones, an LSTM model with a single layer and 16 neurons could be sufficient for the problem to be
olved. Likewise, a window size of 60 s could be chosen, since it would enable a more fitting classification of the activities under
xamination by permitting their segregation into 60-s intervals. Table 11 depicts the average confusion matrix for this particular
ption. As can be seen, the classification is similar to that of the best case obtained, but the confusion with the ‘‘active’’ class is
ore accentuated. In light of that, it is possible to select this choice as preferred.
Furthermore, in addition to all the experiments conducted with the proposed approach, it was decided to perform an ablation

tudy. In this case, this investigation involved isolating each of the initial branches of the general model. Thus, the outputs of
ach one go directly to the subsequent layers of Dropout and Softmax, bypassing the concatenation layer. The aim is to observe
he approximate influence of each sensor on the final classification based on their individual results. In this way, experimentation
as done only with the best-case scenario found previously, corresponding to the confusion matrix in Table 10. As a result, more
pecific results are obtained while avoiding overloading the paper with extensive tables. With this configuration, the results shown
n Table 12 were obtained. As can be seen, the accelerometer and gyroscope were by far the most accurate sensors. It is worth noting
17
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Table 11
Average confusion matrix for the least complex case and statistically equivalent to the best one found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 1927.6 41.6 63.7 2.2 94.72%
Active 139.6 1231.6 38.2 26.6 85.77%
Walking 10.3 55.3 612.3 8.7 89.18%
Driving 6.1 20.2 6.2 534.1 94.26%

Recall 92.51% 91.32% 84.99% 93.44% 91.14%

Table 12
Results from the ablation study, for each individual sensor and with the best configuration found
in prior experiments.

Accuracy 𝐹1-score

Accelerometer 91.70% ±6.77 90.55% ±6.34

Gyroscope 90.55% ±6.93 87.56% ±9.42

Magnetometer 80.69% ±14.30 80.69% ±14.30

GPS 81.96% ±14.09 83.70% ±11.77

that even on their own, they can surpass accuracies of 90%. However, both the magnetometer and GPS yielded considerably lower
results. Nevertheless, they manage to secure 80% accuracy. This is quite acceptable considering the nature of these sensors, which,
while beneficial for HAR, do not adapt as well to this field as the accelerometer or gyroscope. All in all, although the individual
results exhibit notable disparities, it is crucial to acknowledge that the measurements from each sensor could hold considerable
value contingent upon the specific context. Significantly, some sensors might prove more suitable than others, depending on the
movement type to be analysed. As a result, given the inherent variability present in the used dataset, the combination of all the
sensors yields the best outcomes achieved to date for this particular dataset.

5.2. Discussion

The outcomes of this paper proved that deep learning algorithms are one of the best options in HAR, even in real-life
nvironments such as the one discussed here. The accuracy obtained with the best combination of hyperparameters improves on
hat obtained with the most traditional machine learning algorithms, from 92.97% to 94.80%. Table 13 shows the comparison of
the best results obtained with the methods used in the present paper, with respect to those of other papers that also used the same
dataset. As can be observed, the resulting hybrid model of combining DS-CNN and LSTM yielded the most exceptional outcomes,
using a window size of 90 s. The superiority of the proposed method over previous approaches may be attributed to several factors.
Firstly, it could be due to the choice of feature set. In earlier machine learning endeavours, this process was manually conducted, and
the selection of features might not have been the most suitable for the problem at hand. In contrast, the deep learning algorithms
presented here automatically perform feature selection, which could ultimately lead to improved results. In addition, combining
the chosen sensors and enabling them to analyse data individually, before concatenating their evaluations, proved advantageous for
this dataset. It should be noted that, in previous works, this evaluation was performed jointly, assessing all sensors simultaneously.
Finally, the intrinsic nature of LSTM, capable of retaining information from the past, also appears highly suitable for HAR, given
the obtained results. In this way, considering the window size as well, it could be concluded that this combination of peculiarities
presents, to date, the optimal model for the used dataset.

In the previous section, it was possible to observe how the models based solely on DS-CNN had a lower performance than the
rest of the models used. Nonetheless, it should be noted that the running times of this case are much lower than those of the other
algorithms implemented. To highlight that, Fig. 9 shows a comparison of the average execution time (in seconds) of each algorithm
over all the experiments carried out. All these operations were performed on NVIDIA A100 40 GB GPUs. Hence, although the results
are objectively worse, it could be a good option when the available time is much more limited. However, it is curious to observe
how these times are longer for the individual cases based on LSTM, compared to the hybrid models that have higher complexity.
Probably, the feature extraction carried out by DS-CNNs, in addition to improving the final classification in these models, may also
be helping to reach a convergence point more quickly.

As already observed in other works on the same dataset like [25], there seems to be a certain tendency to improve classification
with larger window sizes. That is confirmed by the results obtained in this paper, where window sizes of 60 and 90 s performed
objectively better than the 30-s case. However, there did not appear to be any fundamental difference in the other hyperparameters
(number of layers, number of neurons and kernel size). Therefore, as discussed in the previous section, the less complex 60-s case
could be used preferably instead of the best combination one.

Moreover, it is meaningful to highlight the findings from the ablation study. As expected, the accelerometer and gyroscope
outperformed the magnetometer and GPS. Nevertheless, it is significant to see these results validated in a real-life dataset, as this
18
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Table 13
Comparison of the best results obtained with the methods used in the present paper, with respect to those of other papers that
worked with the same dataset.
Work Algorithm Window size (s) Eval. method Accuracy

[23] Support Vector Machine 20 10-fold 69.28% ±15.10%

[25]

Support Vector Machine 80 10-fold 86.56% ±11.30%

Decision Tree 20 10-fold 89.99% ±6.13%

Multilayer Perceptron 40 10-fold 86.85% ±6.12%

Naïve Bayes 80 10-fold 83.27% ±7.78%

K-Nearest Neighbour 80 10-fold 89.02% ±8.00%

Random Forest 80 10-fold 92.97% ±6.23%

Extreme Gradient Boosting 70 10-fold 92.23% ±7.30%

This work

DS-CNN 90 10-fold 90.70% ±7.29%

LSTM 90 10-fold 93.52% ±5.59%

Bi-LSTM 90 10-fold 93.09% ±5.10%

(DS-CNN)-LSTM 90 10-fold 94.80% ± 4.09%
(DS-CNN)-(Bi-LSTM) 90 10-fold 94.16% ±5.06%

Fig. 9. Average execution time (in seconds) required to complete each of the experiments carried out by each of the implemented models.

onfirmation had not been previously conducted. Additionally, the experiments with the comprehensive model demonstrated how
ombining these sensors, each with its unique characteristics and measurements, positively influenced the overall results.
Furthermore, it is also worth noting that there is still confusion with the ‘‘active’’ class. As previously mentioned, this class

ncompasses a multitude of actions that could be pretty fuzzy for the classification carried out by the model. Within an ‘‘active’’
ession, there may be periods of inactivity or when the individual is walking, which may be detected by the model and marked as
n incorrect activity. In any case, these confusions are minor, and they may be simply limitations in the dataset itself. Anyhow, it
s feasible to think that these results could be improved, perhaps with other ways of preprocessing the data or with algorithms that
ay arise in the following years.

. Conclusions and future work

This paper presents a brand-new set of experiments in human activity recognition (HAR) from smartphone sensor data from
ctivities performed in a real-life environment. To carry them out, the deep learning algorithms that are yielding the best results in
his area were applied: Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models. By comparing their
ariants, combining them and making an exhaustive study of the different hyperparameters to be used, it was possible to improve
he results previously achieved with the same dataset and more traditional machine learning techniques.
The results show that the most suitable models to exploit such data are those based on LSTMs, especially in conjunction with

NNs. However, at the hyperparameter level, no notable differences were observed concerning performance with different numbers
f layers, neurons or kernel size. Nonetheless, improvements were detected when the window sizes were wider. When these window
izes were presented in time intervals of 60 or 90 s, the results improved substantially, compared to those obtained with window
19
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sizes of 30 s. The activities studied in the used dataset have a long-themed nature, so it is plausible to think that longer time intervals
may ease the classification of the samples fed to the implemented models.

Furthermore, it is also worth acknowledging the results of the ablation study. The accelerometer and gyroscope have indeed
hown more robust performance in HAR, yielding high-grade results. That might lead to anticipate that their accuracies would
urpass those of the magnetometer and GPS. However, this had not been confirmed until now on a real-life dataset. Additionally,
he combination of all four sensors, each with its own distinctive characteristics that could influence the outcomes more or less
ositively depending on the study context, resulted in the best performance achieved to date for this dataset.
Moreover, it is also worth noting that the ‘‘active’’ class remains the most difficult to classify. Anyhow, in this case, the confusions

re significantly lower than in other works. Given the fuzzy nature with which this activity was defined, it is possible that the results
annot be improved much further and that this is a restriction of the dataset used. Perhaps it is time to sharpen the focus and tackle
uch more specific activities, allowing the transfer of the acquired knowledge to everyday environments with better precision.
In any case, different data treatments could lead to better results. After all, in order to balance the sampling rates of the sensors

sed to collect the data, an experimental solution had to be implemented, discussed in detail in Section 4.1. A much more thorough
exploration of how to address this issue, perhaps with the application of different types of interpolations or specific treatments for
each kind of signal, could further refine the proposed models for the dataset used.

On the contrary, while following the same approach, the stratified 10-fold cross-validation applied to the data could have been
conducted differently. As a result, data from the same individual could potentially appear in both the training and test sets using
this methodology. However, it is worth noting that the data exhibit considerable variability in the different actions to be performed,
as mentioned in Section 4.1. As a consequence, the impact of this separation may not be substantial, and the results could be
reasonably consistent with those achieved in this paper. Nevertheless, the outcome of implementing a system that guarantees such
differentiation remains uncertain. Therefore, even though the performance of the proposed models is considered outstanding, further
studies could be conducted to explore and identify the best model and treatment for real-life datasets.
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