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A B S T R A C T

Harmful algal blooms (HABs) are episodes of high concentrations of algae that are potentially toxic for human
consumption. Mollusc farming can be affected by HABs because, as filter feeders, they can accumulate high
concentrations of marine biotoxins in their tissues. To avoid the risk to human consumption, harvesting is
prohibited when toxicity is detected. At present, the closure of production areas is based on expert knowledge
and the existence of a predictive model would help when conditions are complex and sampling is not possible.
Although the concentration of toxin in meat is the method most commonly used by experts in the control of
shellfish production areas, it is rarely used as a target by automatic prediction models. This is largely due to
the irregularity of the data due to the established sampling programs. As an alternative, the activity status of
production areas has been proposed as a target variable based on whether mollusc meat has a toxicity level
below or above the legal limit. This new option is the most similar to the actual functioning of the control
of shellfish production areas. For this purpose, we have made a comparison between hybrid machine learning
models like Neural-Network-Adding Bootstrap (BAGNET) and Discriminative Nearest Neighbor Classification
(SVM-KNN) when estimating the state of production areas. The study has been carried out in several estuaries
with different levels of complexity in the episodes of algal blooms to demonstrate the generalization capacity
of the models in bloom detection. As a result, we could observe that, with an average recall value of 93.41%
and without dropping below 90% in any of the estuaries, BAGNET outperforms the other models both in terms
of results and robustness.
1. Introduction

Bivalve molluscs find their own food source in the microalgae
(phytoplankton) present in the aquatic environment. Some of these
microalgae belong to species which can highly increase their num-
bers in a given location. These phenomena are called ‘‘algal blooms’’.
They are known as ‘‘harmful algal blooms’’ (HABs) when caused by
microalgal species with harmful effects on human health, the environ-
ment, tourism and aquaculture (Burkholder, 1998). These microalgae
roduce toxins which can be classified into three types depending
n the type of poisoning they produce: Paralytic Shellfish Poisoning
PSP), Amestic Shellfish Poisoning (ASP) or Diarrhoeic Shellfish Poisoning
DSP). The latter being the most common in galician coast (northwest
pain) (Vilas et al., 2008). This region is of great importance due
o its high production of molluscs (Galicia generates around 40%

∗ Corresponding author.
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of the European mussel production (Apromar, 2022)). Although it is
possible to detect them practically all year round, their abundance
varies seasonally, as well as depending on certain external factors (Vilas
et al., 2008). Although these events correspond to natural phenomena
known for centuries (Hallegraeff, 2003), in the last decades these
events seem to have increased in frequency, intensity and geograph-
ical distribution (Hallegraeff, 2003). There is currently an important
scientific interest in understanding the causes and effects of the spa-
tial and temporal distribution of algal species that make up HABs,
as their potential effects include ecosystem alterations, public health
problems, reduced tourism and social problems, among others, which
imply important economic losses (Corlett and Jones, 2007; Maranda
et al., 2007). For this reason, constant monitoring of these phenomena
is necessary to take preventive action when they appear. HABs are
a natural phenomenon, and their occurrence cannot be deliberately
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prevented. Therefore, an active surveillance plan must be maintained
to monitor their occurrence and to determine the geographic location
of the upwelling.

Within the European Union, the management of openings and clo-
sures of production areas is carried out by analyzing the presence of
toxicity in mollusc meat (Reg, 2004; UE7, 2013) and UE6 (2019).
here such analyses are not possible, the legislation allows the au-
horities responsible for such monitoring to make decisions based on
ndogenous and exogenous factors that favor the proliferation of toxic
hytoplankton. At present, the closing of the production areas is based
n expert knowledge and lacks predictive models to support it. The oc-
urrence of these events represents serious disruptions and sometimes
conomic losses for the industry. This drawbacks could be reduced
ith the existence of predictive models that allow for the creation
f contingency plans (Jin and Hoagland, 2008). The use of machine
earning techniques is the option that offers the best results (Cruz et al.,
021). There are two main approaches to the creation of these models.
his approach depends on the prediction goal of the ML models. On the
ne hand, we have models that focus on predicting the concentration
f very specific cells such as the Dinophysis acuminata (Velo-Suárez
nd Gutiérrez-Estrada, 2007; Calderon, 2017), or species of the genus
seudo-nitzschia (Vilas et al., 2014) or Karlodinium (Guallar et al., 2016).
his approach is more specific but maybe insufficient when predict-
ng HABs composed simultaneously of several species. On the other
and, we have the more generalist approach, which seeks to predict
iomarkers that are highly related to HABs, such as chlorophyll-a
oncentration (Rahman and Shahriar, 2013) or the toxin concentration
tself (Molares et al., 2020; Molares-Ulloa et al., 2022). Prediction based
n the presence of toxin is the least common method, although this
nformation is used by experts in the control of shellfish production
reas. This is largely due to the irregularity of the data due to the
stablished sampling programs. As an alternative, the activity status of
he production areas has been proposed in this study as an objective
ariable, depending on whether the meat of cultured molluscs has a
oxicity level below or above the legal limit.
From a machine learning perspective, there is a trend towards in-

reasing model complexity. Algorithms such as Support Vector Machine
SVM) have offered good results thanks to their ability to work with a
mall amount of data and their good generalization capacity (Ribeiro
nd Torgo, 2008; Li et al., 2014). However, it has a high computational
ost and tends to overfit when applied to high-dimensional multivariate
ime series. The most recent approaches are based on Random Forest
RF) and Artificial Neural Network (ANN), both for predicting HABs
nd toxins in molluscs meat. On one hand, RFs provide explicit rules
hat can be easily interpreted by humans, but present difficulties when
ealing with high-dimensional multivariate data (Derot et al., 2020;
arley et al., 2020). On the other hand, ANNs are better suited to
his type of data although they are difficult to interpret (Shamshirband
t al., 2019; Guo et al., 2020). In general, other studies work with
ata sampled at regular time intervals, which allows the creation of
omplete time series data sets. This is a clear advantage when training
L models that enables the use of methods such as Autoregressive
ntegrated Moving Average (ARIMA) (Chen et al., 2015) or Convolution
eural Network (CNN) (Lai et al., 2018). In cases such as the one we
re studying, where the sampling intervals are irregular and the data
as large imbalances, the results are worse. The unbalance between
ositive and negative cases is the reason for this behavior. In addition,
AB episodes correspond to the minority class, making their detection
great challenge. Therefore, the aim of this work is to alleviate these
roblems and improve the results in the prediction of HABs. According
o the current state of the art concerning this type of problem, the
est results obtained are based on ensemble techniques such as XG-
oost (Izadi et al., 2021). Due to the recent boom of hybrid techniques
ithin the field of artificial intelligence (AI) and its high adaptability
apacity (Ruiz et al., 1983), it has been decided to study the feasibility
2

f applying this type of techniques. r
In order to support the HABs related opening and closing of pro-
uction areas, we propose the creation of a predictive model based on
ybrid AI techniques. The techniques implemented in this study are:
eural-Network-Adding Bootstrap (BAGNET) (Zhang, 1999) and Dis-
riminative Nearest Neighbor Classification (SVM-KNN) (Zhang et al.,
006). These two methods have not been previously tested in the pre-
iction of HABs. To test the performance of these techniques we have
sed as a benchmark a set of techniques already applied in other studies
elated to HAB prediction. In this control group we have used: Random
orest, Artificial Neural Networks (ANN), k-Nearest Neighbour (kNN),
upport Vector Machines (SVMs), XGBoost, and Naïve Bayes (Molares-
lloa et al., 2022). These models were tested in the literature to support
ery localized mussel production areas. These regions do not cover all
ossible situations present in the production areas. This resulted in the
reation of local models with low generalization capacity. In contrast,
n this work we aim to create models capable of good generalization.
or this purpose, the models are trained with data collected from
everal production areas located in different estuaries. This allows us
o test the performance of the models over regions with heterogeneous
ABs behavior.
The structure of this article is defined as follows: It starts with the

efinition of the HAB problem and how it affects the seafood industry,
s well as the proposed solution. Section 2 contains a brief explanation
f the hybrid techniques used as well as the collection and processing of
he dataset is given. The results obtained after the application of these
echniques are presented in Section 3 and evaluated in Section 4 by
omparing them with the existing literature. Finally, in Section 5, we
resent the conclusions drawn from this work and the possible lines of
uture work that the advances made leave open.

. Materials and methods

.1. Dataset and its construction

Galician coast was chosen for this study because it is one of the main
ollusc producing regions in Spain and has a base study to compare
he results obtained (Vilas et al., 2014; Calderon, 2017; Molares et al.,
020). For the creation of the dataset, we used a series of metrics re-
ated to HABs and their proliferation collected between the years 2004
nd 2019. These data were obtained from oceanographic sampling
arried out by the Instituto Tecnolóxico para o Control do Medio Mariño
e Galicia (INTECMAR) (INTECMAR, 2022b) in the 42 oceanographic
tations distributed along the 5 Galician estuaries (INTECMAR, 2022a),
eciding to eliminate stations recently installed that offer less historical
ecords. Additional data was also collected from Instituto Español de
ceanografía (IEO) marnaraia project (IEO, 2022).
The distribution of these 42 oceanographic stations can be seen

n Table 1. In addition, the production areas where the toxicity is
nalyzed are shown for each estuary, being this information the one
sed to label the samples. The location of these production areas can
e seen in Fig. 1. Working with several estuaries separately allows us to
reate study sets with different levels of complexity. The Ares-Betanzos
stuary is the simplest with only 4 stations and 2 production zones,
hile Arousa is the most challenging one with a total of 10 and 22,
espectively.
The initial intention was to treat the data as a time series, but after
thorough analysis we found that this was not possible. Most of the
ata are collected thanks to the INTECMAR monitoring program. In
his program, oceanographic stations are sampled on a weekly basis.
herefore, the decision was made to create the dataset samples with the
nformation collected during each week and to label them according to
he presence of toxicity on Monday of the following week. This labeling
as considered of great interest because the decision to open and close
he production areas on Mondays is taken without recent analytical

esults (the sampling program stops on weekends).
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Fig. 1. Map of Galicia and the location of the production areas studied marked in yellow.
Table 1
Distribution of oceanographic stations, production areas and openings and closures in each estuary.

Ares-Betanzos Muros-Noia Arousa Pontevedra Vigo

No. oceanographic stations 4 8 10 11 9
No. production areas 2 4 24 8 12
No. of samples 1,564 3,128 18,768 6,256 9,384
No. of samples without null values 558 1,440 12,168 3,760 5,112
Closures without null values 193 (35%) 508 (35%) 1903 (16%) 1858 (49%) 1168 (23%)
Openings without null values 365 (65%) 932 (65%) 10265 (84%) 1902 (51%) 3944 (77%)
It was decided to create independent predictive models for each
stuary in order to test the robustness of the models when applied to
eterogeneous environments. Taking into account that each Galician
stuary has its own oceanographic stations, the number of input fea-
ures will depend on the estuary where the model will be applied. Each
f the 42 oceanographic stations can record the following variables:
hlorophyll ‘‘a’’, ‘‘b’’ and ‘‘c’’, Dinophysis acuminata, Dinophysis acuta,
inophysis caudata, Dinophysis spp., Alexandrium spp., Gymnodinium
atenatum, Pseudonitzschia spp., nutrients (phosphate, nitrate, nitrite
nd ammonium), temperature, salinity and oxygen. Other variables
uch as the upwelling index and the opening and closing of the pro-
uction areas were used. These features were processed and adapted
o create the datasets in the following way:

• The maximum values of chlorophyll concentration ‘‘a’’, ‘‘b’’ and
‘‘c’’ have been used.

• The count of the different phytoplankton cells that produce DSP
toxin (Dinophysis acuminata, Dinophysis acuta, Dinophysis caudata
and Dinophysis spp.) was used.

• The concentration value of dissolved nutrients (phosphate, ni-
trate, nitrite and ammonium) was used.
3

• The average values of temperature, salinity and oxygen have been
used. In addition, with the temperature and salinity values, the
absolute difference between the mean of the first 6 meters and the
next 6 meters was calculated to detect the presence of thermocline
and halocline stratification.

• We have used the weekly mean value of the upwelling index.
• Production areas are classified as open or closed depending on
whether they have a toxicity level below or above the legal limit,
respectively. This classification was used both for the creation
of the output parameters and one of the input parameters. The
output parameter is composed of the Monday value of the week
following the week studied, while the input parameter is com-
posed of the Friday value as this is the day with information
sampling closest to the day of the prediction.

• The production area to which each sample belongs was coded by
one hot encoding (Rodríguez et al., 2018).

• The sampling date was transformed only into the number of the
week of the year.

After data processing, 5 datasets were obtained (one for each estu-
ary) consisting of the variables reflected in Table 2. This table is made
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Table 2
Input values of computational models for DSP toxicity event prediction.

Ares- Muros- Ares- Muros-Features Betanzos Arousa Noia Pontevedra Vigo Features Betanzos Arousa Noia Pontevedra Vigo

Dinophysis acuta
Weekly index concentration (𝐶𝑒𝑙 ∗ 𝑙−1)

No. of sampling areas 1 1 1 1 1 No. of sampling areas 4 10 8 11 9
No. of samples 1,566 18,768 3,128 6,264 9,396 No. of samples 1,526 17,352 2,432 5,888 8,952
Average value 26.54 26.57 26.57 26.54 26.54 Average value 7.71 47.36 49.61 15.49 40.32
Maximum value 53 53 53 53 53 Maximum value 1,040 11,120 18,000 3,120 11,360
Minimum value 1 1 1 1 1 Minimum value 0 0 0 0 0

Average Dinophysis caudata
temperature (𝑜C) concentration (𝐶𝑒𝑙 ∗ 𝑙−1)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 4 10 8 11 9
No. of samples 1,308 15,408 2,096 5,192 7,896 No. of samples 1,526 17,352 2,432 5,888 8,952
Average value 14.66 14.16 14.59 15.45 14.73 Average value 5.71 19.97 12.83 5.49 19.73
Maximum value 19.34 20.10 20.00 22.68 20.18 Maximum value 400 1,600 760 360 1,440
Minimum value 10.63 11.42 11.37 10.87 11.34 Minimum value 0 0 0 0 0

Dinophysis spp.
Average salinity concentration (𝐶𝑒𝑙 ∗ 𝑙−1)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 4 10 8 11 9
No. of samples 1,302 14,856 2,024 5,032 7,608 No. of samples 1,526 17,352 2,432 5,888 8,952
Average value 35.12 34.98 34.73 34.13 34.74 Average value 36.74 5.81 4.93 4.24 9.18
Maximum value 36.78 36.34 36.14 36.04 37.12 Maximum value 19,305 200 280 440 1,485
Minimum value 21.12 22.46 28.08 12.51 0.56 Minimum value 0 0 0 0 0

Average Ammonium
oxygen (𝑚𝑙 ∗ 𝑙−1) dissolved (𝜇𝑚𝑜𝑙 ∗ 𝑙−1)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 4 10 8 11 9
No. of samples 970 15,360 2,088 5,040 7,872 No. of samples 1,524 17,304 2,428 5,888 8,952
Average value 4.73 4.83 5.03 4.86 5.05 Average value 1.18 0.97 1.17 2.57 1.22
Maximum value 7.31 9.11 7.58 8.02 7.92 Maximum value 5.95 5.12 4.94 11.67 5.42
Minimum value 0.16 0.07 0.07 0.08 0.08 Minimum value 0.14 0.05 0.20 0.03 0.05

Thermocline Phosphate
stratification index dissolved (𝜇𝑚𝑜𝑙 ∗ 𝑙−1)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 4 10 8 11 9
No. of samples 1,258 15,336 2,076 4,736 7,812 No. of samples 1,524 17,328 2,428 5,888 8,952
Average value 0.59 0.44 0.73 0.80 0.64 Average value 0.37 0.35 0.32 0.52 0.41
Maximum value 4.44 3.32 3.03 6.63 4.32 Maximum value 1.22 1.40 1.01 1.54 1.43
Minimum value 0.00 0.00 0.01 0.00 0.00 Minimum value 0.06 0.02 0.04 0.04 0.03

Halocline Nitrate
stratification index dissolved (𝜇𝑚𝑜𝑙 ∗ 𝑙−1)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 4 10 8 11 9
No. of samples 1,222 14,832 2,012 4,576 7,560 No. of samples 1,524 17,328 2,428 5,888 8,952
Average value 0.71 1.26 1.12 1.21 0.49 Average value 3.88 3.60 3.80 4.23 3.82
Maximum value 7.53 15.01 12.69 30.67 11.26 Maximum value 14.85 18.36 27.51 38.12 18.39
Minimum value 0.00 0.00 0.00 0.00 0.00 Minimum value 0.02 0.00 0.01 0.00 0.01

Chlorophyll-a Nitrite
concentration (𝑚𝑔 ∗ 𝑙−1) dissolved (𝜇𝑚𝑜𝑙 ∗ 𝑙−1)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 4 10 8 11 9
No. of samples 1,500 17,184 2,404 5,768 8,868 No. of samples 1,524 17,328 2,428 5,888 8,952
Average value 2.56 2.98 3.58 2.80 3.46 Average value 0.33 0.31 0.29 0.41 0.33
Maximum value 61.56 23.32 46.28 24.96 42.76 Maximum value 1.20 1.44 1.44 2.03 1.69
Minimum value 0.04 0.04 0.06 0.02 0.07 Minimum value 0.03 0.01 0.02 0.01 0.01

Chlorophyll-b Production area
concentration (𝑚𝑔 ∗ 𝑙−1) (One-hot-encoding)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 2 24 4 8 12
No. of samples 1,500 17,184 2,404 5,768 8,868 No. of samples 1,566 18,792 3,132 6,264 9,396
Average value 0.00 −0.03 −0.03 −0.13 −0.00 Average value 0.50 0.04 0.25 0.13 0.08
Maximum value 3.98 0.70 2.11 0.69 5.28 Maximum value 1 1 1 1 1
Minimum value −1.24 −1.35 −1.73 −4.91 −1.37 Minimum value 0 0 0 0 0

Chlorophyll-c State of
concentration (𝑚𝑔 ∗ 𝑙−1) production areas

No. of sampling areas 4 10 8 11 9 No. of sampling areas 1 1 1 1 1
No. of samples 1,500 17,184 2,404 5,768 8,868 No. of samples 1,564 18,768 3,128 6,256 9,384
Average value 0.65 0.77 0.86 0.63 0.83 Average value 0.30 0.17 0.35 0.50 0.27
Maximum value 23.12 7.70 9.05 11.73 9.78 Maximum value 1 1 1 1 1
Minimum value −0.00 0.01 −0.00 0.00 0.02 Minimum value 0 0 0 0 0

Dinophysis acuminata Average upwelling
concentration (𝐶𝑒𝑙 ∗ 𝑙−1) index (𝑚3 ∗ 𝑠−1 ∗ 𝑘𝑚−1)

No. of sampling areas 4 10 8 11 9 No. of sampling areas 1 1 1 1 1
No. of samples 1,526 17,352 2,432 5,888 8,952 No. of samples 1,548 18,576 3,096 6,192 9,288
Average value 217.98 260.47 236.45 312.23 283.65 Average value 50.59 50.59 50.59 50.59 50.59
Maximum value 8,280 23,880 8,720 43,680 12,040 Maximum value 2,575.74 2,575.74 2,575.74 2,575.74 2,575.74
Minimum value 0 0 0 0 0 Minimum value - 4,663.04 - 4,663.04 - 4,663.04 - 4,663.04 - 4,663.04
up of different statistical values like average, maximum or minimum
value. In the table we can see how the maximum concentration values
of D. acuminata vary greatly depending on the estuary. Since this
variable is one of the most decisive when estimating closures caused by
the presence of DSP toxin, we can foresee that the estuaries with the
greatest variability between maximum and minimum values (Arousa
and Pontevedra) will be the hardest to make predictions for. These
datasets had a large number of inconsistencies in the feature values.
This may be due to technical failures, the impossibility to sample or
the late creation of certain stations. Since the models only admit that
samples with the same dimension, it was necessary to eliminate those
that had null values in any of their features. After this filtering, the
distribution of openings and closings of the production zones present
in each estuary can be seen in Table 1.
4

2.2. Machine learning models

Within the field of machine learning, one of the active areas of study
has been the development of hybrid methods that improve classifica-
tion/prediction performance over approaches based on single learning
methods. In general, such methods focus on combining two differ-
ent machine learning techniques. Based on this idea and previous
literature, 2 hybrid machine learning methods such as BAGNET and
KNN-SVM have been selected. We have chosen BAGNET inspired by
the good performance of bootstrapping based ensemble techniques and
the power of Artificial Neural Networks (ANNs). In the case of SVM-
KNN, its choice is based on the assumption that the datasets are made
up of local data regions with their own distributions. If this were the
case, and under the assumption that these local regions were linearly



Computers and Electronics in Agriculture 211 (2023) 107988A. Molares-Ulloa et al.

B
w
n
1
n
b
a
n
m
o
t
a

Fig. 2. A bootstrap aggregated neural network. This method is based on resampling with replacement of the available dataset and training an individual network on each resampled
instance of the original dataset.
n

𝐴

separable, this method could fit the problem very well. These two
methods are briefly defined below.

2.2.1. Neural-network-adding bootstrap
The Bagging aggregation method seeks to combine multiple predic-

tors using bootstrap replicates of the training data (Breiman, 1994).
When this technique is combined with Artificial Neural Networks
(White et al., 1992), the model known as Neural-Network-Adding
ootstrap (BAGNET) emerges. This method is based on resampling
ith replacement of the available dataset and training an individual
etwork on each resampled instance of the original dataset (Zhang,
999). The Fig. 2 shows a diagram of a BAGNET, in which several
eural network models developed to model the same relationship
etween inputs and outputs are combined together. Instead of selecting
single neural network model, a BAGNET model combines several
eural network models to improve the accuracy and robustness of the
odel. The overall output of a BAGNET is a weighted combination
f the individual neural network outputs. Proper determination of
he aggregation weights is essential for good modeling performance
s is the variant 0.632 bootstrap (Tibshirani and Efron, 1993). Since
the dataset is sampled with replacement, the probability that a given
instance is not chosen after 𝑛 samples is (1 − 1∕𝑛)𝑛 ≈ 0.368 as 𝑛 goes to
infinity. On the other hand, the probability of being chosen is calculated
as 1 − (1 − 1∕𝑛)𝑛 ≈ 𝑒−1 ≈ 0.632. This implies that approximately
0.632 ∗ 𝑛 unique samples are selected as bootstrap training sets and we
would reserve 0.368 ∗ 𝑛 out-of-bag samples for testing at each iteration.
Therefore, this weighting is calculated by Eq. (1). Where 𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛 is
the accuracy computed on the whole training set, and 𝐴𝐶𝐶ℎ,𝑖 is the
accuracy on the out-of-bag sample.

𝐴𝐶𝐶𝑏𝑜𝑜𝑡 =
1
𝑏

𝑏
∑

𝑖=1
(0.632 ⋅ 𝐴𝐶𝐶ℎ,𝑖 + 0.368 ⋅ 𝐴𝐶𝐶𝑡𝑟𝑎𝑖𝑛) (1)

2.2.2. Discriminative nearest neighbor classification
This system, called SVM-KNN, is based on the hypothesis that a

complex separation region can be decomposed into different separated
regions that behave linearly locally. To verify or reject this hypothesis,
we propose the development of a hybrid model that combines the
techniques kNN (Zhang, 2016) and SVM (Cortes and Vapnik, 1995).
Training an SVM on the entire dataset is slow. However, in the neigh-
borhood of a small number of examples and a small number of classes,
SVMs usually perform better than other classification methods (Zhang
et al., 2006). The philosophy of this method is similar to that of Bottou
5

and Vapnik’s ‘‘Local Learning’’ (Bottou and Vapnik, 1992), in which
they pursued the same general idea using kNN followed by a linear
classifier with ridge regularizer. However, by using only an L2 distance,
their work was not driven by the constraint of fitting a complex distance
function. A diagram of a SVM-KNN is shown in Fig. 3, The model would
be as follows: to classify an instance, the kNN algorithm is applied
to select the 𝑘 instances from the training set of closest resemblance.
Once these are available, a linear SVM is trained with them, and the
instance to be classified is applied to this SVM. Once this is done, the
SVM is discarded, since it is of local use and is only valid for that
instance (Zhang et al., 2006).

2.3. Performance measures

When analyzing the trained models and for subsequent comparison,
five statistics were taken into account that were considered relevant for
evaluating the results: accuracy, recall, F1-score and kappa coefficient.
In the confusion matrix used to calculate the statistics, the closures of
the production zones were defined as positive and the openings of the
production zones as negative. Thus, True Positives (𝑇𝑃 ) correspond to
closures correctly classified as closures, True Negatives (𝑇𝑁) identify
openings classified as openings, False Positives (𝐹𝑃 ) represent openings
misclassified as closures and, finally, False Negatives (𝐹𝑁) are closures
that have been classified as openings.

Calculated according to Eq. (2) the accuracy estimates the correct-
ess of a binary classification test that identifies or excludes a condition.

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

(2)

Due to the risk to the health of the population of introducing
molluscs with toxins into the market, we have decided to prioritize a
more conservative model in terms of opening production areas. This is
reflected in the system by the number of false negatives. A high recall
(Eq. (3)) is related to a lower value of false negatives. For this reason,
recall is the reference metric in this study.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

The precision or positive predictive value (Eq. (4)) denotes the
variance of a set of values obtained from repeated measurements of
a variable. The smaller the variance, the higher the precision. It is
expressed as the ratio of the positive cases well classified by the model
to the total number of positive predictions.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (4)

𝑇𝑃 + 𝐹𝑃
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Fig. 3. A discriminative nearest neighbor classification. To classify an instance, the kNN algorithm is applied to select the 𝑘 instances from the training set of closest resemblance.
Once these are available, a linear SVM is trained with them, and the instance to be classified is applied to this SVM. Once this is done, the SVM is discarded, since it is of local
use and is only valid for that instance.
The F1-score (Eq. (5)) is a widely used metric because it summarizes
recall and precision in a single metric. Therefore, it is a very useful
metric for this study because of the inequality present in the data of
closures versus openings.

𝐹1 =
2 ⋅ (𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(5)

Cohen’s kappa coefficient, calculated according to Eq. (6), is a sta-
istical measure that adjusts for the effect of chance on the proportion
f observed agreement between two experts. In this equation, 𝑃𝑟(𝑎)
epresents the observed relative agreement between observers, while
𝑟(𝑒) is the hypothesized probability of agreement by chance.

=
𝑃𝑟(𝑎) − 𝑃𝑟(𝑒)
1 − 𝑃𝑟(𝑒)

(6)

Once calculated, it is analyzed based on the scale of values proposed
by Landis and Koch (1977) (see Table 3).

Due to the heterogeneous distribution of the data, metrics such as
accuracy are not representative of the goodness of fit of the models.
Therefore, the combination of the metrics accuracy, F1-score, Kappa
index and especially recall will be taken into account due to the
importance of avoiding false negatives. This is because classifying a
potential closure as an opening of the production area could pose a
risk to public health.

2.4. Experimentation setup

To ensure the robustness of the models, we have applied the K-
fold cross-validation strategy (Wong, 2015). In this particular study,
the K-fold cross-validation strategy selected will be the 10-fold strategy,
where 𝑘 takes value 10. Taking into account the imbalance present in
the data, we have used a stratified k-fold. This method ensures that
each of the folds will have a balanced amount of data.

The following models have been used as benchmarks for compar-
ison: Random Forest, Artificial Neural Networks (ANNs), k-Nearest
Neighbour (kNN), Support Vector Machines (SVMs), XGBoost, and
Naïve Bayes. Their hyperparameters have been obtained by replicating
the experimentation process established in previous studies (Molares-
Ulloa et al., 2022) to the new datasets.

In the case of the models proposed in this paper, the attributes
f the models used were adjusted by a grid search. Grid search is
tuning technique that attempts to compute the optimum values of
yperparameters. It is an exhaustive search that tests all combinations
ithin the values given to the hyperparameters of a model. As de-
cribed above, BAGNET is an ensemble model composed of a set of
6

etworks of neurons. In our particular case, we have worked with an
Table 3
The scale of values proposed by Landis and Koch for interpreting Kappa index values.

Kappa statistic Magnitude of agreement

<0.00 No agreement
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost perfect

ensemble composed of 50 networks. When testing the operation of
BAGNET we have tried different configurations of the networks that
compose it, both in the number of layers and in the number of neurons
that compose them. The number of neurons used is based on the use
of multiples of 2 and combinations of them. The configuration of the
individual networks that compose the ensemble is based on the ANNs
used in previous studies (Molares-Ulloa et al., 2022). On these values
we have followed an empirical experimentation in order to determine
the values used in the grid search. The specific configuration of this
model is shown in Table 4.

In the case of the SVM-KNN model, we have tested various values
of the parameter 𝑘, in order to check whether the problem can be
effectively decomposed into linearly separable regions. For the choice
of the parameter 𝑘 we have applied the greed search method on the
values proposed in the work of Zhang et al. (2006). We have limited
the maximum value of 𝑘 to 45 as we did not obtain any improvement
by increasing the complexity of the subspaces. In addition to what was
proposed in said work, we have decided to test the behavior of the
model by varying the values of 𝐶. The parameters used in the SVM-KNN
model can be found in Table 5.

3. Results

Using the k-fold cross-validation strategy with 𝑘 = 10 yields 10
values for each statistic. To avoid choosing models with good means,
but with high variability and low robustness, it was decided to add the
standard deviation of each statistic studied as a parameter to be taken
into account. The implemented models obtained results that will be
shown in Table 6, consisting of: the estuary where the models have been
applied, the trained algorithm, the value of the adjustment parameters
(values of 𝑘 and 𝐶 for SVM-KNN and the number of neurons per layer
for BAGNET), the mean and standard deviation of the metrics studied.
As one of the main objectives of this study is to study the generalization

capacity of the implemented algorithms, Table 7 shows a summary
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Table 4
BAGNET model configuration parameters.

Neural-Network-Adding Bootstrap

Number of networks 50
Number of neurons in a one hidden layer network 2, 4, 8, 10, 16, 24 and 32

Number of neurons in a two hidden layers network (4, 2), (8, 4), (16, 8), (24, 16), (32, 16), (32, 24), (64, 32),
(128, 32), (128,64), (192, 128) and (256, 192)

Activation function Sigmoid
Optimizer Adagrad
Learning rate 0,05
Class weight Balanced
Table 5
SVM-KNN model configuration parameters.

Discriminative Nearest Neighbor Classification

𝑘 value 3, 5, 7, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50
Minkowski metric Manhattan distance
Kernel type Linear
𝐶 value 0.1, 0.5, 1 and 10
t
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of the average behavior of the models in the 5 different estuaries.
In turn, the metrics associated with each estuary are determined by
the averaged value resulting from applying 10-fold cross-validation.
The metrics shown for the SVM-KNN and BAGNET models are those
obtained with the hyperparameter configuration that provided the best
F1-score values. The best configuration for SVM-KNN was 𝑘 = 5 and

= 1 and for BAGNET was two layers with 192 and 128 neurons
espectively (these specific configurations will be noted as SVM-KNN*
nd BAGNET* respectively). In Table 7 we can see how the accuracy
alues hardly vary depending on the model. If we look at the recall
alues we can see that BAGNET offers the best results, followed by the
odels based on ANN, Random Forest and SVM-KNN. If we consider
he F1-score values, the best models are those based on Random forest,
VM-KNN and BAGNET, the first one standing out for its low standard
eviation. With the exception of the Naïve Bayes-based model, the rest
f the models have obtained Kappa values above 0.80. The study of the
odels applied to each estuary independently allows us to understand
ow the models behave according to its complexity. These performance
llows us to understand why the models have such a high standard
eviation, reaching values of more than ±15% in the recall of the SVM,
GBoost and Naïve Bayes models. This is because the behavior of the
odels varies a lot between folds depending on the estuary where they
re applied, but vary little between folds in the same estuary. So it can
e seen that the models give robust results.
In Fig. 4 we can see how the models perform depending on the

stuary where they are applied. When separating the metrics obtained
ccording to the production area where they are applied, we can see
ow the models have less difficulty in making predictions in estuaries
uch as Ares-Betanzos, Muros-Noia and Vigo. The worst results are
btained in the Pontevedra estuary and the Arousa estuary.

. Discussion

As we can see in Table 7, very good results of around 92% of
ccuracy are obtained. These values are very similar regardless of the
odel applied. This is due to the fact that the datasets present a large
mbalance between positive and negative cases (Table 1). Because of
his, our comparison focuses on the recall value obtained. Taking this
etric into account, BAGNET is positioned in first place, reaching recall
alues of 93.41%, followed by ANN, SVM-KNN and Random Forest,
ll with a recall rate of around 89% and a higher standard deviation
n their results. These models, with the exception of ANN, reached
Kappa index value above 0.8 when compared to the real values.
his is an ‘‘almost perfect’’ agreement according to the scale of values
roposed by (Landis and Koch, 1977). It should be noted that although
AGNET is the model that offers the best recall values, it is a model
7

hat offers somewhat lower F1-score values than its alternatives. This
s because, like the ANN model, they are configured to weight the loss
unction (during training only). This can be useful to tell the model
o ‘‘pay more attention’’ to samples from an under-represented class.
his results in an increase in false positives in exchange for being the
odels with the lowest number of false negatives, the latter being of
reat importance as explained above.
It should be noted that there is no reference dataset on which to

est the effectiveness of the models. This is due to the fact that the data
sed for their construction is provided ad-hoc for the respective studies.
urthermore, it is noteworthy that there are very few studies that aim to
redict the presence of toxin in mussel meat (biomarker used by the EU
or the management of shellfish production areas). As mentioned earlier
n the introduction to this study, most studies determine bloom/no
oom based on the concentration of certain phytoplankton species
resent in the environment. This situation increases the complexity
hen making comparisons within this field of study. In order to make
s fair a comparison as possible between our models and the most
ommon state-of-the-art models, they have all been applied to the same
ataset defined in this study (Table 7).
Among the studies that do work with the presence of toxin in
ussels, those applied to very localized areas stand out (Molares-Ulloa
t al., 2022). In this situation, the kNN technique was the most effec-
ive, with recall values of 97%. But when we applied this technique to
ur data, which were collected over larger regions and contained more
ariability, we found that the effectiveness of this model decreased in
avor of ensemble-based alternatives. kNN offers recall values of 86%
ompared to 93% for the BAGNET model. The proposed BAGNET and
VM-KNN models are a better options for larger environments. Other
orks, such as Harley et al. (2020), also work on the prediction of

toxins present in mussels. Although in their case the type of toxin
studied is PSP, it has been considered relevant to highlight this due
to the small number of papers presenting this approach. They have
achieved recall values of 81% using Random Forest for PSP prediction.
As can be seen in Table 7, applying Random Forest in the prediction of
DSP blooms improves the results compared to the other type of toxin,
with a recall of 88%. Although these results are still lower than those
obtained with BAGNET and SVM-KNN.

One of our goals is to obtain a model that is extrapolable to other re-
gions with the same problems and that can also be adjusted and provide
good results. For this reason, we have applied the predictive models to
several estuaries composed of multiple production areas. In doing so,
we have found that the models do not behave the same regardless of
the region in which they are applied (Fig. 4). If we analyze the reason
why the models offer worse results in estuaries such as Arousa, this
is mainly due to two factors. We have to take into account that this
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Table 6
Table with metrics for each model itemized by estuary.

ESTUARY MODEL ACCURACY RECALL F1-SCORE KAPPA

AR
ES
-B
ET
AN

ZO
S

RF 92.67 ±1.36 86.43 ±4.31 87.96 ±2.29 82.70 ±3.23
ANN 94.56 ±1.54 93.32 ±4.23 91.40 ±2.47 85.77 ±3.69
kNN 93.27 ±1.95 87.98 ±6.97 88.90 ±3.59 84.08 ±4.89
SVM 94.83 ±1.21 93.82 ±3.51 91.84 ±1.86 88.07 ±2.75
XGBoost 93.87 ±2.44 91.09 ±5.71 90.18 ±4.02 85.73 ±5.76
Naïve Bayes 86.41 ±4.36 86.77 ±8.93 79.80 ±6.41 69.67 ±9.63
SVM-KNN* 93.75 ±1.69 89.94 ±6.46 89.83 ±3.03 85.33 ±4.17
BAGNET* 94.35 ±1.86 93.82 ±3.90 91.19 ±2.85 87.04 ±4.22

M
U
RO

S-
N
O
IA

RF 94.80 ±1.43 93.09 ±3.32 92.46 ±2.05 88.49 ±3.14
ANN 96.28 ±0.97 96.53 ±1.40 94.70 ±1.30 91.45 ±2.31
kNN 90.78 ±0.91 87.65 ±4.55 86.67 ±1.46 79.63 ±2.08
SVM 96.45 ±1.03 96.67 ±1.24 94.93 ±1.38 92.20 ±2.19
XGBoost 96.23 ±0.98 96.42 ±1.60 94.63 ±1.32 91.73 ±2.09
Naïve Bayes 80.80 ±1.32 56.67 ±4.40 66.84 ±2.79 53.97 ±3.34
SVM-KNN* 94.75 ±1.19 91.36 ±1.91 92.29 ±1.64 88.32 ±2.57
BAGNET* 95.98 ±0.95 96.54 ±1.64 94.30 ±1.26 91.20 ±2.01

AR
O
U
SA

RF 93.62 ±0.51 76.78 ±2.43 79.28 ±1.78 75.52 ±2.07
ANN 85.09 ±0.88 84.31 ±2.64 64.29 ±1.81 55.31 ±2.27
kNN 93.11 ±0.46 79.58 ±1.89 78.61 ±1.48 74.51 ±1.74
SVM 91.09 ±0.56 49.71 ±2.94 63.94 ±2.67 59.34 ±2.89
XGBoost 90.71 ±0.65 54.52 ±2.75 65.12 ±2.46 60.00 ±2.78
Naïve Bayes 85.62 ±0.66 47.40 ±2.35 51.20 ±2.11 42.83 ±2.46
SVM-KNN* 92.23 ±0.47 79.62 ±2.31 76.54 ±1.57 71.89 ±1.84
BAGNET* 91.12 ±0.76 90.46 ±2.61 76.45 ±1.74 71.14 ±2.18

PO
N
TE
VE
DR
A

RF 92.35 ±0.98 93.56 ±0.99 92.35 ±0.96 84.69 ±1.96
ANN 83.43 ±1.58 80.51 ±2.20 82.74 ±1.68 66.50 ±3.07
kNN 91.36 ±1.02 91.38 ±1.51 91.26 ±1.04 82.72 ±2.04
SVM 85.12 ±1.49 85.25 ±2.50 84.97 ±1.59 70.24 ±2.99
XGBoost 83.56 ±1.33 78.06 ±1.67 82.42 ±1.38 67.07 ±2.67
Naïve Bayes 72.36 ±0.99 52.05 ±1.50 65.02 ±1.13 44.43 ±1.97
SVM-KNN* 90.30 ±1.21 91.68 ±1.34 90.33 ±1.16 80.61 ±2.42
BAGNET* 89.67 ±1.39 90.33 ±1.89 89.62 ±1.36 79.34 ±2.78

VI
GO

RF 97.31 ±0.66 93.87 ±2.23 94.10 ±1.50 92.36 ±1.93
ANN 97.42 ±0.63 94.97 ±1.69 94.41 ±1.37 92.24 ±1.83
kNN 95.37 ±1.10 87.41 ±3.90 89.60 ±2.62 86.62 ±3.31
SVM 97.35 ±0.66 94.55 ±1.65 94.23 ±1.44 92.51 ±1.87
XGBoost 97.33 ±0.59 93.96 ±1.71 94.16 ±1.30 92.43 ±1.68
Naïve Bayes 89.71 ±0.98 92.54 ±2.93 80.46 ±1.72 73.64 ±2.35
SVM-KNN* 96.72 ±0.68 91.36 ±2.64 92.70 ±1.58 90.59 ±2.01
BAGNET* 97.60 ±0.67 95.89 ±1.62 94.82 ±1.44 93.25 ±1.87
Table 7
Summary table with the metrics of each model averaged in the 5 estuaries.

MODEL ACCURACY RECALL F1-SCORE KAPPA SOURCE

RF 94.15 ±2.08 88.75 ±7.19 89.23 ±5.66 84.75 ±6.22 Harley et al. (2020)
ANN 91.36 ±6.01 89.93 ±6.86 85.51 ±11.59 78.26 ±15.02 Guo et al. (2020)
kNN 92.78 ±2.01 86.80 ±5.76 87.01 ±4.98 81.51 ±5.16 Molares-Ulloa et al. (2022)
SVM 92.97 ±4.59 84.00 ±17.76 85.98 ±11.72 80.47 ±13.60 Li et al. (2014)
XGBoost 92.34 ±5.13 82.81 ±15.81 85.30 ±11.25 79.39 ±13.75 Izadi et al. (2021)
Naïve Bayes 82.98 ±6.40 67.09 ±19.35 68.66 ±11.33 56.91 ±13.60 Molares-Ulloa et al. (2022)

SVM-KNN* 93.55 ±2.46 88.79 ±5.77 88.34 ±6.30 83.35 ±7.17
BAGNET* 93.75 ±3.20 93.41 ±3.61 89.27 ±6.94 84.40 ±8.61 Proposed here
is the estuary studied with the greatest imbalance in the labels of its
dataset (16% positives–84% negatives), which makes it a challenge for
the models to be able to generalize with a smaller number of cases.
Moreover, this estuary is the largest we have studied. Composed of a
total of 24 mussel production areas in floating hatcheries located along
the entire estuary, it represents a greater variability of events that the
models have to deal with. Despite these setbacks, we can see that the
BAGNET model still offers recall values of around 90.46% in the Ría
de Arousa. The other model that obtains recall values higher than 80%
in this estuary is ANN with 84.31%, but this model achieves 10% less
F1-score and 15% less Kappa index than BAGNET.
8

5. Conclusions

Hybrid techniques of machine learning algorithms obtain better
results than the simple techniques studied in the literature. We also
verified how the BAGNET method, with an average recall value of
93.41% and without falling below 90% in any of the estuaries, exceeds
the results obtained by other hybrid methods proposed in the literature,
such as XGBoost or Random Forest. This positions BAGNET as the
best algorithm for DSP control of HABs when sampling conditions are

unfavorable.
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To make this comparison, we have had to implement the models
proposed in other studies. This is due to the fact that, to date, there is
no reference data set in the prediction of HAB that allows an objective
comparison of the models studied in other works. This is because the
data sets used are provided ad-hoc for each study. For this reason, the
creation of a complete and public data set that can be used for future
comparisons has been considered of great importance.

In order to create more complex test environments and increase
the generalization capacity of the system, we have created data sets
grouping all the production areas of each estuary. Although this process
carries the risk of increasing the complexity of the system, the use of
ensemble-based techniques and bootstrapping, such as BAGNET, has
allowed us to address this problem with very good results.

In the course of this study, one of the main problems we faced was
the large number of gaps in the time series data. This is an important
limitation when working with the data and interpreting it. Being able
to create a data set consisting of a complete time series would allow
new approaches to HAB prediction.

The importance of having a system capable of monitoring and
predicting the appearance of HAB phenomena is well known. Poor
planning before the formation of these natural phenomena can cause
significant economic losses in the fishing and shellfish businesses.
In addition, and more importantly, there is the risk of introducing
toxin-containing shellfish onto the market due to failure to close the
production areas on time due to poor planning. This risk poses a
significant danger to the health of the population. For all these reasons,
we believe that models such as the one proposed can be of great
help in addressing this problem. In particular, it is worth highlighting
factors such as the creation of models focused on the control of shellfish
production areas and the creation of models with greater generalization
capacity, capable of being applied in multiple regions. These last factors
are where our work stands out, improving the results obtained in
previous studies.
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