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A B S T R A C T

Proactive Maintenance practices are becoming more standard in industrial environments, with a direct and
profound impact on the competitivity within the sector. These practices demand the continuous monitorization
of industrial equipment, which generates extensive amounts of data. This information can be processed into
useful knowledge with the use of machine learning algorithms. However, before the algorithms can effectively
be applied, the data must go through an exploratory phase: assessing the meaning of the features and to which
degree they are redundant. In this paper, we present the findings of the analysis conducted on a real-world
dataset from a metallurgic company. A number of data analysis and feature selection methods are employed,
uncovering several relationships, which are systematized in a rule-based model, and reducing the feature space
from an initial 47-feature dataset to a 32-feature dataset.

1. Introduction

The competitiveness of a company is more crucial than ever in the
current economic panorama, being immensely influential to the com-
pany’s ability to provide quality products at low prices. Machine
maintenance, with its direct impact in machine downtime and pro-
duction costs, is directly related to a manufacturing companies’ ability
to be competitive in terms of cost, quality and performance
(Aboelmaged, 2014; Holmberg et al., 2010). Modern maintenance ap-
proaches intend to lower failure rates and improve production times but
aren’t widely applied yet (Holmberg et al., 2010), with smaller com-
panies demonstrating a lower level of e-maintenance readiness
(Aboelmaged, 2014). These modern techniques reflect a transition from
corrective maintenance practices to more proactive ones: proactive
maintenance has the advantage of fixing problems before they come
into place, replacing parts after a certain level of deterioration has been
identified, as opposed to fixing the fault after the fact (Muller, Marquez,
& Iung, 2008). Proactive maintenance includes preventive maintenance
and predictive maintenance.

Preventive maintenance consists in performing periodic inspections
and other operations according to a predetermined schedule, usually
based on time in service. However, this type of maintenance is im-
perfect, unreliable and costly (Hashemian & Bean, 2011; Selcuk, 2017).

To achieve a fully proactive approach, preventive maintenance must be
complemented with predictive maintenance. Moreover, companies
would benefit from using predictive maintenance throughout the
equipment’s life cycle to detect the onset of degradation and equipment
failure (Hashemian & Bean, 2011; Selcuk, 2017). Predictive main-
tenance indicates the correct time to perform maintenance; as a result,
machines spend less time offline and components are changed only and
when needed. Predictive maintenance performs both prediction and
diagnosis of an equipment's condition, providing information about the
nature of the problem, where it is occurring and why, and when an
equipment failure is likely to happen (Selcuk, 2017).

Predictive maintenance techniques can be implemented through the
monitorization of equipment combined with intelligent decision
methods. Machine Learning and Data Mining techniques can be used to
draw insights from the data and accurately predict outcomes to support
decision-making and help organizations improve their operations and
competitiveness (O’Donovan, Leahy, Bruton, & O’Sullivan, 2015;
Selcuk, 2017; Wang, 2013). Machine Learning approaches commonly
used for fault detection and diagnosis include Artificial Neural Net-
works (Tian, 2012; Zhang, Wang, & Wang, 2013), Support Vector Ma-
chines (Li et al., 2014; Susto, Schirru, Pampuri, McLoone, & Beghi,
2015) and Decision Trees (He, He, & Wang, 2013), among others.
However, these approaches tend to focus on vibration and sound
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analysis (Banerjee & Das, 2012; Zhang et al., 2013), but the collection
and analysis of other parameters, such as event data, should also be
considered (Lee, Lapira, Bagheri, & Kao, 2013).

Due to the current trend of automation and data exchange in in-
dustrial environments, assisted by the rise of the Internet of Things
(IoT), a large quantity of operational data is now either available, or
can be acquired with relative ease. This can be done by interfacing with
legacy systems and sensor networks and applying principles of IoT and
Cyber Physical Systems (Al-Fuqaha, Guizani, Mohammadi, Aledhari, &
Ayyash, 2015; Lee, Jin, & Bagheri, 2017). One of the big challenges of
Predictive Maintenance is the need to deal with the large quantities of
heterogeneous data now available, the so-called Big Data.

The use of Big Data technologies in the manufacturing industry is a
relatively new, but fast-growing research area, encompassing dis-
ciplines such as automation, information technology and data analytics

(O’Donovan et al., 2015; Santos et al., 2017). Big Data technologies can
help improve employee productivity, reduce operating costs, refine
companies’ internal processes and improve data management, among
other benefits (Raguseo, 2018). Deriving knowledge from large vo-
lumes of data is unfeasible with traditional data analysis techniques,
therefore, the use of new technologies and processes to gain insights
from datasets that are diverse, complex, and of a massive scale is es-
sential to go beyond the state-of-the-art in predictive maintenance
(Hashem et al., 2015; Lee, Jin, & Liu, 2017). Moreover, the analysis of
Big Data in industrial contexts requires specific knowledge of the do-
main (Lee, Jin, Liu, 2017).

In this paper, we present our findings from the preliminary analysis
of a data sample obtained from an ongoing Predictive Maintenance
case-study in a metallurgical company. We describe the dataset and the
insights gained from exploring the data. The analysis resulted in a

Nomenclature

clmi A machine’s theoretical maximum coolant level
clvalue A machine’s current coolant level
idmi A machine’s unique identifier
idwpi A workpiece’s unique identifier
id i A message’s unique identifier
lcpt Last Complete Part Timer
M A set of machines
mi An individual machine
maxdiff Maximum difference between the theoretical maximum

coolant level and the real maximum coolant level
maxmargin Upper threshold of the coolant’s low level definition
minmargin Lower threshold of the coolant’s low level definition
mg

i
The importance of a message (notification, alert or alarm)

M30t Current M30 Parts Counter
M30t 1 Previous M30 Parts Counter
pti Shortest recorded production time for a given workpiece

type
pptt Current present part timer
Pwpi Set of machines involved in the production of a workpiece

and respective expected production time
R A set of rules
Red. Estimated redundancy on a pair of variables
refvalue Real maximum coolant level value
Rcp

i
A message’s list of recipients

safetymargin Safety margin of the spindle’s rate
sample max_ Maximum coolant level registered
spindleload A machine’s current spindle load
spindlerpm A machine’s current spindle rotating rate
spindletimer Number of seconds the spindle rate has been above its

maximum rating
srmi A machine’s maximum spindle rotating rate
ssmi A machine’s maximum spindle speed
Tx i A message’s text
V i A list of variables associated with the context of the mes-

sage
Wp A set of workpieces
wpi A workpiece

i A message
A set of messages

Fig. 1. InValue system’s architecture.
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reduction of the feature space and the conception of a rule-based model.
This document is organized as follows: (1) Introduction, wherein the

theme and motivations were presented; (2) Background, where the
architecture and analysed features are briefly explained; in Section (3),
Data Analysis, the captured dataset is explored through several
methods, followed by the application of (4) Feature Selection processes;
these are followed by the specification of a set of rules which are pre-
sented in (5) Rule-based Model, leading to the (6) Discussion and, fi-
nally, (7) Conclusions.

2. Background

The Industrial Enterprise Asset Value Enablers project (InValuePT,
2017) aims to provide a platform that facilitates the shift from tradi-
tional maintenance approaches to more proactive ones. All stages the
data must go through are addressed: from the acquisition processes, to
its processing and subsequent delivery to the end users. This paper
describes the preliminary analysis and features' selection that were
performed on a dataset containing machining information from a me-
tallurgical company. This data was gathered by the InValue system's
acquisition module and concerns the operations performed by one of
the company's lathe machines. These processes aim to uncover im-
portant relationships in the existing data, thus extracting relevant
knowledge for the implementation of predictive maintenance ap-
proaches.

The InValue system is set up in a metallurgical company that is
specialized in precision parts production and uses raw materials, such
as aluminium, steel, bronze and technical plastics, to produce custom
parts for industry clients.

The system’s architecture comprises three main layers: (1) Data
acquisition, (2) Data Processing and (3) Information delivery (Fig. 1). A
more in-depth description of the architecture can be found in (Canito
et al., 2017).

Performing Predictive Maintenance requires the system to monitor
the manufacturing machines and obtain vast amounts of operating data.
This task is performed by the data acquisition layer, which collects data
from the machines and from the production management software. The

machines facilitate information through a bus with a described pro-
tocol, which is consumed through a gateway. In case such a protocol is
not defined, or terminals to existing sensors cannot be developed, new,
external sensors, will first be installed.

All the data captured by the data acquisition layer is stored in a
repository and made available to the other modules through a data
stream. The repository can be queried directly by both the information
delivery tier, mainly for visualization purposes, and by the Big Data
processing module for data analysis and creation of predictive models.
However, while creating the predictive models requires historical data
to predict faults in the machines before they occur, such models must be
used with real-time data. As such, the Big Data processing module also
consumes the stream made available by the data acquisition module.
The Big Data management module is responsible both for pre-proces-
sing the data and for employing Machine Learning and Data Mining
techniques with the purpose of identifying components that might be
approaching failure, diagnosing failures, and proposing possible cor-
rective measures. The data is also analysed with the aim of suggesting
actions that will lead to a decrease in waste production and a reduction
in energy consumption.

For predictive maintenance to be carried out, it is imperative that
the knowledge acquired by analysing the data reaches the right people
at the right time. The company’s collaborators will be able to visualize
information that is pertinent to their specific functions and responsi-
bilities, such as short-term alarms and notifications for machine op-
erators and key-performance indicators for upper management em-
ployees. It will also be possible to view comparative analysis of similar
equipment and conduct analytical monitoring of the processed data
from different temporal perspectives. Furthermore, the proposed
system will be integrated with the company’s production and man-
agement software to aid the manufacturer improve their processes and
reduce costs and maintenance times.

A prototype of the data acquisition module has been installed on
one of the company’s lathes, specifically a Haas ST-30 lathe (Haas
Automation Inc, 2018). In a later stage of development, the system will
monitor and collect data from four machines: two lathes and two ver-
tical machining centres.

Table 1
Variables monitored by the data acquisition prototype.

Element Description Origin

Serial Number Machine Serial Number Machine Protocol
Control Software Version Version of the machine’s software Machine Protocol
Machine Model Number Machine’s model number Machine Protocol
Tool Changes (total) Number of times a tool was changed since the machine was first powered on Machine Protocol
Tool Number in Use Turret station number currently in use Machine Protocol
Dry Run Indicates if the machine is running a program without producing a part Machine Protocol
Power-On Time (total) Time since the machine was powered on Machine Protocol
Motion Time (total) Time the machine is in motion Machine Protocol
Last Cycle Time Last production cycle time Machine Protocol
Previous Cycle Time Previous production cycle time Machine Protocol
M30 Parts Counter #1 Counts the number of times a program completes. Machine Protocol
M30 Parts Counter #2 Counts the number of times a program completes. Machine Protocol
Maximum axis loads for

X, Y, Z, A, B, C, U, V, W, T
Maximum load an axis has achieved since the machine was powered on Machine Protocol

Coolant Level Cutting emulsion level Machine Protocol
Spindle load with

Haas vector drive
Spindle load Machine Protocol

Present part timer Effective production time for the part currently in production Machine Protocol
Last complete part timer Effective production time for the part previously completed Machine Protocol
Tool in spindle Turret station number currently in use Machine Protocol
Spindle RPM Spindle rotation speed Machine Protocol
Present machine coordinate position X, Y, Z, A, B Current machine position for axes X, Y, Z, A, B Machine Protocol
Present work coordinate position X, Y, Z, A, B Position of the part at the start of production in axes X, Y, Z, A, B Machine Protocol
Present Tool offset

X, Y, Z, A, B
Distance of the tool relative to the origin in axes X, Y, Z, A, B Machine Protocol

Machine Vibration
X, Y, Z

Vibration during the cutting process on axes X, Y, Z Sensor

Noise Noise inside the machine Sensor
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The prototype collects machine and sensor data concerning forty-
seven features, forty-three of which are obtained directly from the
machine and four that are collected from external sensors. The acqui-
sition of a total of seventy-eight features is planned for later stages of
development, including critical data related to the machines’ electrical
components. The data would, ideally, include information about pro-
blems that occurred in the machine. However, due to circumstances
beyond our control, the machines of the metallurgical company in-
volved in the project fail very rarely. Consequently, that information is
currently unavailable, which constrains the type of data analysis that
can be performed.

A possible approach to this problem is the use of one-class classifi-
cation methods, such as one-class SVM and autoencoder, to perform
anomaly detection. Table 1 presents a small description of each of the
variables monitored by the prototype.

3. Data analysis and correlation

The analysis presented here was performed on a sample of the
collected data. Since the data was obtained from several sources, it was
necessary to integrate and consolidate it prior to performing the ana-
lysis. The dataset consists of 23,134 rows and 48 columns, representing
about 6 days of data acquisition. Each column represents the forty-
seven features mentioned in Section 2, plus a column with the time/
date at which the data was measured.

After analysing the sample for missing data, it became apparent that
several features could be removed from the dataset:

• maximum axis load for axes Y, B, C, U, V, W, T;
• present machine coordinate position for axis Z;
• present work coordinate position for axis Z;
• present tool offset for axes Z, A, B.
The software installed in the lathe is the same across the entire

product line. It is prepared to collect information about axes the ST-30
lathe doesn’t have, but that might be present in other Haas machines.
There are other features, such as the ‘Tool Number in Use’ and ‘Tool in
Spindle’ that aren’t very informative. This occurs because the value
registered by the machine doesn’t actually identify the tool in use, but
the position in the turret where the tool has been placed. It is, therefore,
impossible to identify the operating tool using only the information
obtained from the machine.

A feature of interest is the ‘Present Part Timer’, which records the
time it takes to effectively produce a given part. This means that time is
only recorded when the part is actually being cut by the tool. Whenever
the tool isn’t actually operating on the part, the timer is paused. Because
the acquisition of data happens continuously, this feature can be used to
discern if a part is being produced or not. A relationship can be ob-
served, in Fig. 2, between this feature and the feature ‘Spindle Load
with Haas Vector Drive’. When the line representing the ‘Present Part
Timer’ is flat (which means the timer is paused), the spindle load is
zero. When the tool is operating on a part it places a load on the spindle,
so it’s normal for the load to be zero when the tool isn’t being used.

However, a part might not be completed successfully, a fact that
cannot be perceived by analysing the “Present Part Timer” feature
alone. More information can be obtained by looking at the “Last
Complete Part Timer” and “M30 Parts Counter” variables, which can be
used to complement the information provided by the “Present Part
Timer”. Most CNC programs end with code M30. This code signals the
successful completion of a cycle and causes the program to reset, saving
time during the mass production of parts. The variable “M30 Parts
Counter” counts how many times the M30 code was executed, which is
equivalent to how many parts were successfully produced. The “Last
Complete Part Timer” records the time it took to produce a part whose
program execution reached the M30 code. The first plot in Fig. 3 shows
the “Last Complete Part Timer” data overlaid on the “Present Part
Timer” and the second plot presents the “M30 Parts Counter”. The red
points in the first plot represent the moments when the value of the
“Last Complete Part Timer” changed. As can be observed, if two or
more consecutive parts take the exact same time to be produced the
value of the “Last Complete Part Timer” won’t change.

This information can be used to optimize the production of parts,
since it shows when and for how long the machine is stopped and re-
veals variable production times for the same type of part. The time it
takes to successfully complete a specific part, as given by the “Last
Complete Part Timer”, can be used as a reference value for the pro-
duction of similar parts and can be updated whenever a part takes less
time to complete. Any time the production time deviates negatively
from that reference value, a notification or alarm can be issued. As
mentioned above, the “Last Complete Part Timer” can’t be used to
check if a part was successfully produced, since its value will only
change if a part takes a different time to produce. The “M30 Parts
Counter”, however, changes every time the production program of a
part reaches the M30 code and can be used reliably to confirm a part

Fig. 2. Part timer and spindle load for the same time period.
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was successfully produced. This data can also be used to detect when
problems occur during the production of a part. Fig. 4 shows that be-
tween 10:00 and 11:00 three parts were produced but not concluded,
with a similar situation occurring after midday.

Information regarding the spindle, such as the spindle’s load and
speed, are very important since anomalies related with this component
can be indicative of problems in the machine. The feature ‘Spindle Load
with Haas Vector Drive’ records the spindle’s load as the energy out-
putted by the vector drive to power the spindle’s motion. The spindle
has a maximum rating of 22.4 kW and a maximum speed of 3400 rpm.
Theoretically, the machine is capable of working at this rate infinitely;
however, it can sustain a load of 150% of the maximum capacity for
30min, at most, and of 200% for 3min, maximum. Fig. 5 shows
changes in the spindle’s load over the course of a day. It can be ob-
served that the spindle worked below its maximum capacity for most of
the day, but as both plots clearly show, it exceeded the 22.4 kW rate
once. Further exploration revealed it happened for less than 10 s and

didn’t cause any problems. However, it is clear that the analysis of the
spindle component provides valuable information for purposes of pre-
dictive maintenance. Fig. 6 shows the ‘Spindle RPM’ for the same
period. The positive and negative values represent the clockwise and
counter clockwise motion of the spindle, respectively.

The features representing the axes’ coordinates can provide valuable
information regarding the production of parts. The Haas ST-30 lathe
provides information regarding the machine’s coordinates, the work-
piece’s coordinates, and the tool offset coordinates. The machine’s co-
ordinates represent the machine’s working plane in relation to the
cutter’s central point, while the workpiece’s coordinates refer to the
machine’s position relative to the workpiece plane. Programming on a
CNC machine uses the cutter’s centre point as a reference, but different
tools have different lengths and diameters, which, if not considered,
will cause the tool to cut the wrong parts of the workpiece. Therefore,
an offset value must be defined whenever a different tool is used. As
such, the tool offset coordinates refer to the position of the tip of the

Fig. 3. Last Complete Part Timer overlaid on Present Part Timer and M30 Parts Counter. (For interpretation of the references to colour in the figure text, the reader is
referred to the web version of this article.)

Fig. 4. Plot detail showing parts not successfully concluded.
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cutting tool relative to the cutter’s centre point.
Every produced part has a specific design, meaning the production

of different units of the same part should result in similar coordinate
patterns. This pattern information can be used as input to machine
learning algorithms to create models capable of distinguishing between
normal and abnormal production of parts. Fig. 7 illustrates the pro-
duction of several units of the same part. The continuous line demon-
strates how the ‘Machine Coordinate Position for Axis X’ evolves over
time, while the dashed line refers to the ‘Present Part Timer’ feature and
shows when the production of each part began and ended. While si-
milar, the patterns aren’t exactly the same. Considering the different
units in production have the exact same design, it would be expected
for the coordinate patterns to also be the same, but they are not. This
happens in part because the machine operator can intervene in the
production of a part and perform manual operations, such as delaying
or speeding up the production, which introduce variations to the ex-
pected pattern. Nevertheless, a coordinate pattern is still obvious and
changes to that pattern represent anomalies in the production of a given
part. This information can be related with other features, like the

Spindle Load, to detect problems in the machine.
The coolant level is also a feature of interest, since this fluid plays an

important role in the production of parts. Cutting a workpiece material
generates a lot of heat, which can cause the tool to wear out rapidly,
alter the metallurgical characteristics of the material and cause un-
wanted chemical reactions. As the name implies, the coolant, in this
case a water-oil emulsion, serves the purpose of cooling the cutting tool
and the workpiece. As such, information about the coolant level can be
indicative of imminent problems in the machine (e.g. the coolant has
run out) and can be related to other parameters to detect alterations in
the machine’s normal functioning. The data collected by monitoring
this parameter can also be used to issue alarms and notifications re-
garding the current coolant level in order to prevent overheating pro-
blems.

The analysis of the data sample allowed us to understand which
features are most important for detecting operational anomalies and
how they can affect a machine’s normal operation. It was possible to
conclude that the features related to the spindle are crucial to detect
problems in the machines, but information related to the coolant fluid

Fig. 5. Spindle load.

Fig. 6. Spindle RPM.
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and the machines' coordinates are also relevant. Additionally, the fea-
tures concerning the production of parts provide valuable information
to optimize their production. This information is relevant to the entire
Haas product line, regardless of the context in which the machines are
used and may even be applicable to similar machines built by other
companies, provided that the necessary adaptations are considered.

4. Feature selection

With the advent of Big Data, datasets large in both number of in-
stances and number of features are brought to the frontline of data
analysis. The state space increases exponentially with the number of
features, which then increases the computational requirements of most
learning algorithms – for which the number of input features and
sample size are important factors. Reducing the number of features of
the problem is imperative to reduce both memory and computational
requirements. The process of feature selection also improves the per-
formance of many predictors by reducing overfitting and improving
accuracy, among other benefits (Isabelle, 2006).

Feature selection (FS) methods typically belong to one of three
classes, determined by the evaluation metric of choice: filter methods,
wrapper methods and embedded methods (Chandrashekar & Sahin,
2014):

• Filter methods work as a pre-processing step and are independent of
the learning algorithm, relying on the general characteristics of the
training data. Their main advantages are the low computational cost
and good generalization ability;
• Wrapper methods use the learning algorithm to measure the relative
usefulness of subsets of variables. Because the number of subsets
grows with the number of features and the algorithm has to be
called for each one, these methods are prone to becoming compu-
tationally heavy;
• Embedded methods have the FS included in the learning process. The
search for the optimal feature subset is built into the classifier and
fulfils the role of searching the combined space of feature subset and
hypothesis, capturing dependencies at a lower computational cost
than wrappers.

In the context of this work, the method of feature selection that was
applied is an adaptation of the Minimum Redundancy Maximum
Relevance (mRMR) algorithm, which belongs to the category of filter

methods. mRMR (Ding & Peng, 2005) ranks the importance of a set of
features based on their relevance to the target, while penalizing fea-
tures that are redundant among them. The goal of this algorithm is to
find a subset of features which better describe the target class; in other
terms, the subset of features the target class is most statistically de-
pendent on. The complexity of this task increases with the dimension-
ality, particularly if the number of samples available is insufficient. As
such, the maximum dependency calculation can be enhanced with two
different criteria: maximum relevance and minimum redundancy.

Finding the maximum relevance means identifying the subsets of
features that best describe the target class, that is, those with the
greatest mutual dependence between the features and the target class.
However, as described in (Ding & Peng, 2005), selecting the n most
relevant features doesn’t necessarily translate into the most descriptive
subset: frequently, the n strongest features are also highly correlated,
i.e., redundant. As such, the second criterion comes into play: that of
minimum redundancy, which aims to find the n most distinct features in
the feature-set.

As mentioned in Section 2, no data concerning actual failures is
currently available (i.e., the target class is not known). Therefore, the
mRMR algorithm had to be modified to run in an unsupervised fashion.
Although it is not possible to compute the relevance between each
feature and the class label, the criterion of minimum redundancy can be
applied to select the subset of features with the lowest pairwise corre-
lation. The criterion of minimum redundancy through mutual in-
formation was computed by normalizing the values in the dataset to the
[0–1] range, further discretizing them in 5 intervals by employing the
equal width binning strategy, which resulted in a 47×47-sized matrix
of redundancies.

Of these, the 10% most redundant pairs were considered for further
analysis, resulting in the 15 feature pairs shown in Table 2.

Several features are very closely related, and thus a higher re-
dundancy was expected. That is the case of ‘MP30PC1’ and ‘MP30PC2’,
which are both counters, counting how many times a given operation
was executed; they happen to carry similar information on this parti-
cular dataset, but such is not a mandatory situation and they can be
used to record different indicators. ‘Tool in Use’ and ‘Tool in Spindle’
have similar meanings and are updated under similar circumstances;
‘Last Complete Part Timer’ and ‘Last Cycle Time’ both refer to the time
the machining process was on for a given part – albeit in different
formats –, and thus a high redundancy is not surprising.

Considering the redundancy between ‘Tool in Spindle’ and ‘Tool

Fig. 7. Present Part Timer and Machine coordinate position for axis X during four production cycles.

M. Fernandes et al. International Journal of Information Management 46 (2019) 252–262

258



Number in Use’ described above, it follows that they both share close
relationships with the same features. Interesting levels of redundancy
among coordinates were discovered, both between coordinates and in
relation to the ‘Tool Number in Use’. Because the last is not a particu-
larly informative feature, not much knowledge can be extracted from
this relationship.

The counters ‘MP30PC1’ and ‘MP30PC2’ share some redundancy
with the ‘Total Tool Changes’, considering that the tool can be changed
after a work is completed, but this is not a requirement. The same ra-
tionale can be applied to the relationship between ‘Coolant Level’ and
‘Total Tool Changes’.

The uncovered relationships allow us to reach some conclusions
about which features could be excluded. ‘Tool in Spindle’ and ‘Tool
Number in Use’ carry little and repeated information, and therefore
only one of them needs to be kept; the same logic can be applied to the
‘Last Complete Part Timer’ and ‘Last Cycle Time’ pair. ‘Last Cycle Time’
and ‘Previous Cycle Time’ represent the same information, but in dif-
ferent moments in time. Since the acquisition process happens con-
tinuously, the data is bound to become duplicated and, consequentially,
only one of them needs to be monitored. Work coordinates and Machine
coordinates both refer to axial coordinates, but the axes may have
different origin points. This, however, does not happen similarly for all
coordinate pairs and therefore further exploration is required. As for
different axes, they are independent features and thus excluding any of
them is excluding valuable information.

The results of this algorithm show some relationships between
features that were to be expected but reinforce the conclusions reached
by the data analysis process, allowing for a reduction of the feature
space from 47 to 32 features. These findings have also been validated
by the machine’s manufacturers.

5. Rule-based model

As described in Section 2, the InValue platform will employ Ma-
chine Learning and Data Mining techniques to uncover new knowledge
about the operation and maintenance of equipment from the data col-
lected by the Data Acquisition module. These Machine Learning models

will be enhanced by a set of rules that provide information about the
condition of specific operational parameters with the purpose of pre-
venting deterioration of a machine’s components and maximizing
productivity.

These rules comprise the rule-based model presented in this section
and were derived from the information and associations identified
during the analysis described in Section 3.The model defines the actions
the InValue system must take when certain conditions are met. It
consists of a set of machines M and a set of workpiecesWp, such that a
workpiece wp Wp is associated with a set of machines and respective
expected production times. The model also features a set of messages
and a set of rules R that will define the system’s behaviour, as described
below:

Definition 1. A rule-based model M R( , , ) consists of:

- a set of machines M = … >m m m n{ , , , }, 0;n1 2
- a set of workpieces = … >Wp wp wp wp n{ , , , }, 0;1 1 1
- a set of messages = …{ , , , }k1 2 , k> 0;
- a set of rules = … >R r r r j{ , , , }, 0.j1 2

Definition 2. A machine =m id sr ss cl{ , , , }i m m m mi i i i consists of:

- …m M i n, {1, 2, , };i
- idmi is the identifier of a given machine;
- srmi is the maximum rating of the spindle of a given machine;
- ssmi is the maximum speed of the spindle of a given machine;
- clmi is the maximum theoretical value of a given machine’s coolant
level.

Definition 3. A workpiece =wp id P{ , }i wp wpi i consists of:

- …wp Wp i n, {1, 2, , };i
- idwpi is the identifier of a given workpiece;
- Pwpi is the set of machines the workpiece is produced in and re-
spective expected production times, Pwpi =

… >m pt m pt m pt n{{ , }, { , }, , { , }}, 0.n n1 1 2 2

Definition 4. A message = id m Rcp Tx V mg{ , , , , , }i ii i i i i
consists

of:

- …i n, {1, 2, , };i
- id i is the message’s identifier;
- mi is the machine associated with the message;
- Rcp

i
is a list of recipients, … >i n Rcp, {1, 2, , }, | | 0i i

;
- Tx i is the text associated with the message;
- V iis a list of variables associated with the context of the message;
- mg

i
is the importance of the message (Notification, Alert or Alarm).

Definition 5. The rules that make up the model define the relationships
between variables uncovered in Section 3, and will describe the
system’s behaviour when certain conditions are met.

No domain information is available regarding the expected pro-
duction time of a given part. As such, this value is initially determined
by analysing the collected data, specifically the “Last Complete Part
Timer” feature, and finding the shortest time it took to produce a part.
The following rule updates that value whenever a part of the same type
takes less time to produce:

Table 2
15 most redundant feature pairs.

Feature 1 Feature 2 Red.

MP30PC1 MP30PC2 2.2327
Tool in Spindle Tool Number in Use 2.1321
Last Complete Part Timer Last Cycle Time 1.9991
Present Machine coordinate Pos A Present Work coordinate Pos A 1.9444
Tool in Spindle Present Machine coordinate Pos A 1.8258
Tool in Spindle Present Work coordinate Pos A 1.8247
Tool Number in Use Present Machine coordinate Pos A 1.8226
Tool Number in Use Present Work coordinate Pos A 1.8223
MP30PC1 Total Tool Changes 1.8056
MP30PC2 Total Tool Changes 1.8056
Present Work coordinate Pos X Present Work coordinate Pos Y 1.1861
Present Machine coordinate Pos X Present Work coordinate Pos X 1.0914
Last Complete Part Timer Previous Cycle Time 1.0908
Last Cycle Time Previous Cycle Time 1.0876
Coolant Level Total Tool Changes 0.9294
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Rule r1. …P Wp i n whenever, {1, 2, , } ,wpi < =lcpt pt then pt lcpti i

Let us now define a rule that triggers an alert message anytime a
part takes longer to produce than expected:

The following rule causes the relevant people to be notified when-
ever the production of a part doesn’t end successfully.

The next two rules start and stop a timer every time the spindle load
is greater or smaller than its maximum rating, respectively:

Rule r5. …

>

m M i n whenever spindle

sr and spindle then stop spindle

, {1, 2, , },

0
i load

m timer timeri

Let us now define a rule that triggers an alert message when the
spindle load exceeds the maximum rating:

The following rule triggers an alarm message if the spindle load
exceeds the maximum rating up to 150% by more than 30min:

The following rule triggers an alarm message if the spindle load ex-
ceeds the maximum rating between 150% and 200% by more than 3min:

The following rule triggers a message that will alert the machine
operator any time the spindle exceeds 80% of the maximum speed:

Rule r2. … >

=

P Wp i n whenever lcpt pt then send message

id m machine operator production manager The current part took longer to
produce than expected last complete part timer pt Alert

, {1, 2, , } ,

, , [ , ], "
. ", [ , ],

wp i i

i

i

i

j

Rule r3. = =

=

time instant t whenever ppt and M M then send message
id m machine operator production manager The part being produced wasn t
successfully concluded present part timer M parts counter Notification

, 0 30 30
, , [ , ], "

. ", [ , 30 ],

t t t i

i

1

j

Rule r4. … > =m M i n whenever spindle sr and spindle then start spindle, {1, 2, , }, 0i load m timer timeri

Rule r6. … > =m M i n whenever spindle sr then send message
id m machine operator The spindle is working at a higher rating than the maximum
recommended value spindle sr Alert

, {1, 2, , },
, , [ ], "

. ", [ , ],i load mi i
j i

load mi

Rule r7. … > ×

=

m M i n whenever spindle sr and spindle sr and spindle

then send message
id m machine operator The spindle has exceeded the maximum rating
and has been working at this rate for more than min It must be brought down
to normal levels spindle sr Alarm

, {1, 2, , }, 1.5

1800
, , [ ], "

30 .
. ", [ , ],

i load m load m timer

i

i

load m

i i

j

i

Rule r8. … > × ×

=

m M i n whenever spindle sr and spindle sr and spindle

then send message
id m machine operator The spindle has greatly exceeded the maximum rating
and has been working at this rate for more than min It must be brought down to
normal levels spindle sr Alarm

, {1,2, , }, 1.5 2

180
, , [ ], "

3 .
. ", [ , ],

i load m load m timer

i

i

load m

i i

j

i

Rule r9. … = > ×

=

m M i n safety whenever spindle ss safety then send message

id m machine operator The spindle speed is reaching a critical value
spindle ss Alert

, {1, 2, , }, 0.8,

, , [ ], " . ",
[ , ],

i margin rpm m margin i

i

rpm m

i

j

i
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The following rule triggers an alarm message whenever the spindle
exceeds the maximum speed:

The coolant level has a maximum theoretical value, but in practice
the maximum value varies, depending on the sensor installed in each
machine. The only information available is that the real maximum
value is close to the theoretical value and the coolant level is considered
to be low once it’s less than 50% of the maximum value. As such, it is
necessary to empirically define a machine’s maximum coolant level.
This is done by finding the highest value of coolant level in the data
sample and comparing it with the theoretical value.

Let us now specify a rule that defines the coolant level’s maximum
reference value in function of the theoretical value and the sample’s
maximum value:

The following rule will trigger an alert message if the current
coolant level is between 50% and 60% of the reference value:

The following rule will trigger an alarm message if the coolant le-
vel’s current value is lower than 50% of the reference value.

6. Discussion

While the InValue system encompasses several stages, from the
acquisition of data to the delivery of information, the authors' main
objective is analysing the data and building models capable of pre-
dicting faults in the machines. A considerable obstacle to that objective
is the absence of faults, which constrains the type of data analysis that
can be performed.

A sample of the collected data has been analysed with the aim of
better understanding the data and identifying the most significant
features and relationships. Whereas the analysis was performed on a
relatively small sample of data, the insights drawn from the data are

applicable to a much larger sample size and are supported by the do-
main knowledge provided by the machine’s manufacturers. Data con-

cerning the spindle was found to be of particular importance to detect
problems in the machines, and it was also possible to uncover patterns
of machine coordinates related to the machining of specific parts that
can be used as input in the detection of anomalies. Moreover, insights
were obtained that can contribute to optimize the production of parts
and signal problems during the cutting process.

Additionally, a Feature Selection method was employed in order to
assess redundancy between pairs of features. Although many of the
discovered relationships were to be expected and support the conclu-
sions reached by the exploratory analysis, some of them are interesting
and surprising, requiring further study. Our analysis allowed us to start

from a 47-feature dataset and scale it down to a 32-feature dataset, as is
demonstrated in Table 3.

As shown, the reduction reflects the exclusion of features related to
axes that are not used by the machine in the study, features that re-
present the same information but in different points in time and fea-

tures concerning the same information but with different data types.
The knowledge acquired by analysing the data has also led to the

definition of a rule-based model, which specifies the relations between
the variables of interest, the machines and the actions taken by the
InValue system.

7. Conclusions

This paper focused on the problem of carrying out predictive
maintenance in a metallurgical company and presented the results of
the preliminary data analysis and feature selection that were performed
on a sample of the collected data. The insights derived from the data

Rule r11. … = =
< ×

×m M i n max ref
cl sample max cl max diff
sample max sample max cl max diff, {1, 2, , }, 0.1,

, _ _
_ , _ _i diff value

m m

m

i i

i

Rule r12. … = = > × <

×

=

m M i n max min whenever cl ref min and cl ref

max then send message

id m machine operator The coolant level is getting low cl cl Alert

, {1, 2, , }, 0.6, 0.5,

{ , [ ], " . ", [ , ], " "}

i margin margin value value margin value value

margin i

i value m,j i

Rule r13. … = ×

=
[ ]

m M i n min whenever cl ref min then send message
id m machine operator The coolant level is low Replenish immediately

cl cl Alarm

, {1, 2, , }, 0.5,
, , [ ], "e; . !"e;,

, ,

i value value value value i

i

value m

j

i

Table 3
The 32 features considered more relevant according to the analysis.

Serial Number Dry Run Last complete part timer Maximum axis loads for X, Z, A
Control Software Version Power-On Time (total) Spindle RPM Present machine coordinate position X, Y, A, B
Machine Model Number Motion Time (total) Coolant Level Present work coordinate position X, Y, A, B
Tool Changes (total) M30 Parts Counter #1 Spindle load with

Haas vector drive
Present Tool offset
X, Y

Tool Number in Use M30 Parts Counter #2 Present part timer Machine Vibration
X, Y, Z

Noise

Rule r10. … >

=

m M i n whenever spindle ss then send message

id m machine operator The spindle has exceeded the maximum speed
spindle ss Alarm

, {1, 2, , },

, , [ ], " . ",
[ , ],

i rpm m i

i

rpm m

i

j

i
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will assist in the development of adaptive learning models capable of
handling complex information that can be applied to an entire product
line of industrial equipment. Additionally, a number of rules were ex-
tracted from the relationships found during the data analysis process
that were consolidated in a rule-based model. These rules will be the
foundation of a rule-based system, which will be used to complement
the predictive models that will be generated in the future.

The next stage of this work will also include collecting data from
additional variables, such as the system temperature and different
electrical components. This step is crucial, since more information
about the machines’ operating status can be obtained from them.
Considering that all Haas machines employ the same firmware, it is
possible that similar conclusions could be achieved both in terms of
relevant features and their meaning. Future experiments will involve
the monitorization of other machines to establish if these conclusions
can be extended to different equipment.

Monitoring industrial machines in real-time results in large amounts
of data that can't be analysed using traditional methods. As such, future
work will also include the use of Big Data technologies.
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