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Nonparametric estimation of the probability of
default with double smoothing

Rebeca Pel´ 1, Ricardo Cao2 and Juan M. Vilar2aez

Abstract 

In this paper, a general nonparametric estimator of the probability of default is proposed
and studied. It is derived from an estimator of the conditional survival function for cen-
sored data obtained with a double smoothing, on the covariate and on the variable of
interest. An empirical study, based on modifed real data, illustrates its practical appli-
cation and a simulation study shows the performance of the proposed estimator and
compares its behaviour with smoothed estimators only in the covariate. Asymptotic ex-
pressions for the bias and the variance of the probability of default estimator are found
and asymptotic normality is proved.

MSC:62G05, 62G07, 62G08, 62G20, 62N02, 62P20. 
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1. Introduction 

Credit risk is an important research area. It is useful for fnancial companies to assess
the risk of insolvency caused by unpaid loans. Estimating the probability of default on
consumer credits, loans and credit cards is one of the main problems that banks, savings
banks, savings cooperatives and other credit companies must address. For a fxed time,
t, and a horizon time, b, the probability of default (PD) can be defned as the probability
that a credit that has been paid until time t becomes unpaid not later than time t + b. To
estimate the PD, banks and fnancial institutions typically use features of the credit and
the clients. They usually build some linear combination (credit scoring) based on these
informative variables and the probability of default is allowed to depend on this scoring
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x, PD(t|x). A common aproach in credit scoring is using logistic regression to build the
index. The logistic model of credit scoring has been studied by Wiginton (1980), Srini-
vasan and Kim (1987), Steenackers and Goovaerts (1989), Thomas, Crook and Edelman
(1992) and Samreen and Zaidi (2012), among others.

It can be deduced from the defnition of the PD that it is a relevant measure in other
felds apart from the fnancial one. For example, companies that provide energy services
(electricity, gas), water, streaming services (TV, cinema, music), telephone or internet
are interested in estimating the probability that a customer who receives their services at
time t will leave the company before time t + b.

There is an extensive literature in which survival analysis methods are used for
solving credit risk problems. Among others, we mention the work of Naraim (1992),
Stepanova and Thomas (2002), Hanson and Schuermann (2004), Glennon and Nigro
(2005), Allen and Rose (2006), Baba and Goko (2006), Beran and Djaı̈dja (2007) and
Cao, Vilar and Devia (2009). A common feature of all these papers is the use of paramet-
ric or semiparametric regression techniques for modelling the time to default, including
exponential models, Weibull models and Cox’s proportional hazards models, which are
typical in this literature. Nonparametric curve estimation is a fexible approach that only
uses the information that the data provides without making assumptions about the shape
of the curve. Therefore, it is very convenient in this context. Following this idea, Cao
et al. (2009) proposed a PD estimator using Beran’s estimator for the conditional sur-
vival function, Beran (1981). This work was expanded in the paper of Peláez, Cao and
Vilar (2021b) who studied four nonparametric estimators of the probability of default in
credit risk derived from estimators of the conditional survival function for censored data.

In the recent work, Peláez, Cao and Vilar (2021a), a general nonparametric estimator
of the conditional survival function with double smoothing is proposed and studied. This
survival estimator is not only smoothed in the covariate but also in the time variable. A
large simulation study shows there that the estimator with double smoothing improves on
the corresponding nonparametric estimator of the survival function which is smoothed
only in the covariate. Here, a general nonparametric estimator of the PD with double
smoothing is proposed and studied. It is derived from the survival estimator with double
smoothing studied in Peláez et al. (2021a).

The remainder of this paper is organized as follows. In Section 2, the nonparamet-
ric estimator of the probability of default with double smoothing is defned, the doubly
smoothed PD estimator based on Beran’s estimator is applied to a set of modifed real
data and its asymptotic properties are presented. In Section 3, a simulation study shows
the improvement obtained by using the double smoothing in several nonparametric esti-
mators of the probability default. Finally, Section 4 contains some concluding remarks.
Appendix A includes terminology, assumptions and detailed theoretical results. Ap-
pendix B includes a sketch of proof of the theoretical results.
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2. Nonparametric PD estimator with double smoothing 

Let {(Xi,Zi,δi)}n
i=1 be a simple random sample of (X ,Z,δ ) where X is the covariate,

Z = min{T,C} is the follow-up time variable, T is the time to occurrence of the event,
C is the censoring time and δ = I{T≤C} is the uncensoring indicator. It is assumed that
an unknown relationship between T and X exists. In credit risk, usually, X is the credit
scoring, Z is the observed maturity, T is the time to default and C is the time until the end
of the study or the anticipated cancellation of the credit. The distribution function of T
is denoted by F(t) and the survival function by S(t). The functions F(t|x) and S(t|x) are
the conditional distribution and survival functions of T given X = x evaluated at t. In this
context, let x be a fxed value of the covariate X and b any fxed value (typically, b = 12
in months). Then the probability of default in a time horizon t + b from a maturity time,
t, is defned as follows:

PD(t|x) = P(T ≤ t + b|T > t,X = x) 
F(t + b|x) − F(t|x) S(t + b|x) (1)

= = 1− .
1− F(t|x) S(t|x) 

Therefore, an estimator of PD(t|x) could be obtained by replacing S(t + b|x) and
S(t|x) in (1) with appropriate estimators. Following this idea, Cao et al. (2009) and
Peláez et al. (2021b) used nonparametric estimators of the conditional survival func-
tion, Sbh(t|x) with h = hn being the smoothing parameter for the covariate, to obtain the
corresponding nonparametric estimator of PD(t|x) denoted by cPDh(t|x).

In Peláez et al. (2021a) the following nonparametric estimator of the conditional
survival function with double smoothing is proposed and studied:� �n t − Z(i)eSh,g(t|x) = 1− ∑ s(i)K , (2)

gi=1bwhere s(i) = Sh(Z(i−1)|x) − Sbh(Z(i)|x) with i = 2, ...,n and s(1) = 1− Sbh(Z(1)|x), Z(i) is the
i-th element of the sorted sample of Z, K(t) is the distribution function of a kernel K,R tK(t) = −∞ K(u)du, and g = gn is the smoothing parameter for the time variable. This
survival estimator, defned in (2), is not only smoothed in the covariate but also in the
time variable. It is based on the idea of estimating the survival function in a point t
conditional on x by means of a weighted mean of the values that the estimator Sbh(u|x) 
takes in points near t.

Estimating the probability of default, PD(t|x), by means of the nonparametric es-
timator of the conditional survival function with double smoothing is the aim of this
paper. For this purpose, S(t|x) in (1) is replaced by the doubly smoothed nonparametric
estimator, Seh,g(t|x), obtaining the following nonparametric estimator of PD(t|x):

eSh,g(t + b|x)fPDh,g(t|x) = 1− . (3)eSh,g(t|x) 
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Since Sbh(t|x) is any arbitrary conditional survival estimator, the probability of de-
fault estimator fPDh,g(t|x) is very general. From now on, this paper focuses on the dou-
bly smoothed Beran’s estimator SeB (t|x) associated through (2) with the classic Beran’sh,g
estimator of the survival function given by� �n

Sb 
h
B(t|x) = ∏ 1− 

I{Zi≤t, δi=1}wi,n(x) 
, (4)

i=1 1− ∑n
j=1 I{Z j<Zi}w j,n(x) 

where � � 
K (x− Xi)/h

wi,n(x) = � � 
∑

n (x− Xj)/hj=1 K

with i = 1, ...,n and h = hn is the smoothing parameter for the covariable.
Using SeB (t|x) in (3), the smoothed probability of default estimator based on Beran’sh,g

B
survival estimator is obtained. It is denoted by f 

h,gPD (t|x).
However, any other estimator of the conditional survival function could be consid-

ered to obtain the corresponding smoothed estimator defned in (2) and then, to estimate
the probability of default through the expression given in (3). In particular, two other sur-
vival estimators are considered in this work: the Weighted Nadaraya-Watson estimator
(WNW) and the Van Keilegom-Akritas estimator (VKA). The WNW estimator was built
following the idea of Cai (2003), where the survival estimator is based on local linear
regression. Since the weighted local linear estimator presents problems when estimating
probabilities, a constant ft is proposed in Peláez et al. (2021b). The VKA estimator was
defned in Van Keilegom and Akritas (1999) and Van Keilegom, Akritas and Veraver-
beke (2001). The expressions for both estimators are shown in Section 2 of Peláez et al.

SWNW SV KA(2021a) and they are denoted by b (t|x) and b (t|x). Their smoothed versions areh h
built according to Equation (2), obtaining the following smoothed survival estimators:
SeWNW (t|x) and SeV KA(t|x). Replacing Seh,g(t|x) with SeWNW (t|x) and SeV KA(t|x) in Equationh,g h,g h,g h,g

WNW
(3) gives the nonparametric smoothed estimators of PD(t|x) denoted by f (t|x) andPDh,g

V KAfPD (t|x).h,g

2.1. Application to real data 

In order to illustrate the use of these smoothed estimators in the context of credit risk, a
real data set is analysed using the doubly smoothed Beran’s estimator. The data consists
of a sample of 10000 consumer credits from a Spanish bank registered between July
2004 and November 2006. They are also considered by Peláez et al. (2021b), where
the PD is estimated using parametric and non-parametric methods for S(t|x) which are
not smoothed in t, as is the case in this paper. The data set provides the credit scor-
ing computed for each borrower, the observed lifetime of the credit in months and the
uncensoring indicator. To obtain each customer’s credit scoring, the fnancial institu-
tion adjusted a scoring model on several informative variables collected in the dataset:
gender, marital status, profession, place of residence, type of housing, age, employment
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history and bank account balance. See Devia (2016) for more details. Due to confden-
tiality, the estimated coeffcients of the original explanatory variables are not reported
here. The resulting credit scoring is used as a covariate in this analysis. The sample cen-
soring percentage is 92.8%; equivalently, the proportion os credits for which the default
is observed is 7.2%. An intentionally biased subsample was obtained from the original
sample, so as so as not to show the true solvency situation of the bank and thus preserve
confdentiality.

Figure 1. Estimation of S(t|x) (left) and estimation of PD(t|x) (right) at horizon b= 5 for x = 0.5
by means of the smoothed Beran estimator on the consumer credits dataset for h= 0.05 and three
different values of g.

The probability of default for x = 0.5 at horizon b = 5 months is estimated in a time
grid along the interval [0,25] using the smoothed Beran’s estimator. The estimation is
obtained with some different possible values of the time variable smoothing parameter,
while the covariate bandwidth is fxed to a reasonable value (h = 0.05), since it has a
very slight infuence on the estimation. Figure 1 shows the results.

Beran’s estimation and the smoothed Beran’s estimation of the conditional survival
function and the PD for h = 0.05 and g = 3 are shown in Figure 2. Although the survival
estimations are very similar with both estimators, it can be seen how the roughness of
the curve estimation is reduced and the jumps are removed when using the smoothed
Beran’s estimator. This is even more remarkable when estimating the probability of
default.

According to the smoothed Beran’s estimation, the probability of default has an in-
creasing tendency. It follows from it that the higher the debt maturity, the higher the
probability of falling into default for an individual with this credit scoring.

Finally, sample quartiles of the credit scoring are considered for the group of clients
with observed default (uncensored group) and the group with unobserved default (cen-
sored group). Figure 3 shows the PD estimation by means of the smoothed Beran’s
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estimator for these values of the credit scoring at horizon b = 5 months with h = 0.05
and g = 3.

Figure 2. Estimation of S(t|x) (left) and estimation of PD(t|x) (right) at horizon b= 5 for x = 0.5
by means of Beran’s estimator (dashed line) and smoothed Beran’s estimator (solid line) using
the bandwidths h = 0.05 and g = 3 on the consumer credits dataset.

Figure 3. Smoothed Beran’s estimation of PD(t|x) at horizon b = 5, for large (left) and small
(right) values of the score x, using bandwidths h = 0.05 and g = 3. The large values chosen are
the three sample quartiles of the score for nondefaulted credits, while the small values are the
three sample quartiles of the score for the defaulted credits.

2.2. Asymptotic results of the doubly smoothed Beran’s PD estimator 
B

Asymptotic properties of the smoothed Beran’s estimator of the PD, f (t|x), are ob-PDh,g
tained using the results for the smoothed Beran’s survival estimator presented in Peláez
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et al. (2021a). An intuitive idea of these results is shown here. The simplifed expression
B

of the asymptotic bias of f (t|x) is as follows:PDh,g� B �f 2ABias PD (t|x) = c1h2 + c2g ,h,g

B
and the asymptotic variance of f (t|x) is given byPDh,g� B � 1 g hfAVar PD (t|x) = c3 + c4 + c5 ,h,g nh nh n

for some real constants c1, c2, c3, c4 and c5. For detailed expressions of these constants
and the asymptotic normality of the estimator, see Appendix A. For proofs of these
results see Appendix B.

It is diffcult to use the theoretical bias and variance in an applied context in order to
compare estimators or to obtain optimal smoothing parameters, since the constants c1,
c2, c3, c4 and c5 involved are complex and depend on too many population functions.

3. Simulation study 

Intuitively, the improvement coming from smoothing in the time variable in the con-
ditional survival function estimator will lead to a similar gain for nonparametric PD
estimators. The aim of this section is to explore this by simulation.

Two models are considered and three different censoring scenarios are distinguished
for each model. Model 1 is close to a proportional hazards model, while Model 2 moves
away from this Cox’s model. The covariate X follows a U(0,1) distribution in both
models.

For Model 1, the time to occurrence of the event conditional on the covariate, T |X = x,
follows a Weibull distribution with parameters d = 2 and A(x)−1/d where A(x) = 1+ 5x,
and the censoring time conditional on the covariate, C|X = x, follows a Weibull distri-

2bution with parameters d = 2 and B(x)−1/d where B(x) = 10+ b1x+ 20x , for some
suitable values of b1. The conditional survival function, the probability of default and
the censoring conditional probability of this model are the following:

−A(x)td
S(t|x) = e , 

e−A(x)(t+b)d

PD(t|x) = 1− , 
e−A(x)td

P(δ = 0|X = x) = 
B(x) 

.
A(x)+ B(x) 

Setting x = 0.6, the chosen values are b1 = −27, b1 = −22 and b1 = −2, so that the
censoring probability is 0.2, 0.5 and 0.8, respectively. The time horizon is b = 0.1 (20%
of the time range) and the estimation is obtained in a time grid 0 < t1 < · · · < tnt of size
nt where tnt + b = F−1(0.95|x = 0.6).
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Model 2 considers an exponential distribution with parameter Γ(x) = 2 + 58x − 
2160x + 107x3 for the time to occurrence of the event conditional on the covariate,

2T |X = x and an exponential distribution with parameter ∆(x) = 10 + d1x + 20x , for
some suitable values of d1, for the censoring time conditional on the covariate, C|X = x.
In this case, the conditional survival function, the probability of default and the censoring
conditional probability are given by:

−Γ(x)tS(t|x) = e , 

−Γ(x)bPD(t|x) = 1− e , 

P(δ = 0|X = x) = 
∆(x) 

.
Γ(x)+ ∆(x) 

Setting x = 0.8, the chosen values are d1 = −113/4, d1 = −55/2 and d1 = −123/5,
so that the censoring conditional probability is 0.2, 0.5 and 0.8, respectively. The time
horizon is b = 0.7 (20% of the time range) and the PD is estimated in a time grid 0 < 
t1 < · · · < tnt of size nt where tnt + b = F−1(0.95|x = 0.8).

The standard Gaussian kernel truncated in the range [−50,50] is used for both co-
variate and time variable smoothing. The sample size is n = 400, and the size of the
lifetime grid is nt = 100. The boundary effect is corrected using the refexion principle
proposed in Silverman (1986).

These models were previously used in the simulation study of Peláez et al. (2021a).
This makes it possible to compare the results obtained in both studies.

B
First, the performance of Beran’s PD estimator, c 

h (t|x), and the smoothed Beran’sPD
B

PD estimator, f 
h,gPD (t|x), are compared.

B
The optimal bandwidth for c 

h (t|x), h1, is taken as the value which minimises aPD
Monte Carlo approximation of the mean integrated squared error (MISE) given by�Z � � cMISEx(h) = E PDh

B
(t|x) − PD(t|x) 

�2dt

based on N = 100 simulated samples. The value of MISEx(h) using this smoothing
parameter is approximated from N = 1000 simulated samples and used, along with
its square root (RMISE), as a measure of the estimation error which is committed by

BcPDh (t|x).
B

The smoothed PD estimator f (t|x) depends on two bandwidths: h that measuresPDh,g
the smoothing degree introduced in the covariate and g that measures the smoothing in
the time variable. Two strategies are used in order to obtain these smoothing parameters.

Strategy 1 

It consists in fxing the covariate smoothing parameter to the the optimal h1 for Be-
ran’s estimator and approximating the optimal smoothing parameter g. The error to
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minimise is �Z � � 
B �2fMISEx(h1,g) = E PD (t|x) − PD(t|x) dth1,g

considered as a function of the bandwidth g. It is approximated from N = 100 simulated
samples in a grid of 50 g values and the bandwidth which provides the smaller error
is chosen as g1. Then, N = 1000 samples are simulated to approximate MISEx(h1,g1) 

B
which is the measure of the estimation error of f (t|x).PDh,g

Strategy 2 

The optimal bandwidth (h2,g2) is chosen (from a meshgrid of 50 values of h and 50
values of g) as the pair which minimises some Monte Carlo approximation of�Z � � 

B �2fMISEx(h,g) = E PD (t|x) − PD(t|x) dth,g

based on N = 100 simulated samples. Then, the value of the MISE committed by
BfPD (t|x) is approximated from N = 1000 simulated samples.h2,g2

Figure 4. MISEx(h1,g) function approximated via Monte Carlo for the smoothed Beran’s
estimator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom) with
P(δ = 0|x) = 0.2 (left), P(δ = 0|x) = 0.5 (center) and P(δ = 0|x) = 0.8 (right).
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Figure 5. MISEx(h,g) function approximated via Monte Carlo for the smoothed Beran’s es-
timator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom) with
P(δ = 0|x) = 0.2 (left) and P(δ = 0|x) = 0.8 (right).

The main advantage of using Strategy 1 is its lower computational cost, but it pro-
vides rather worse results than Strategy 2. It should be noted that neither the bandwidth
obtained with Strategy 1 nor Strategy 2 can be used in practice but they produce a fair
comparison since the estimators are built using the best possible smoothing parameters.

The error curve MISEx(h1,g), which is minimised to obtain the optimal time smooth-
ing parameter according to Strategy 1, is shown in Figure 4 for each level of censoring
conditional probability and each model. It follows from these graphs that the optimal
bandwidth g is easily approximated by Strategy 1.

The function MISEx(h,g) for Models 1 and 2 for the lowest and highest censoring
levels is shown in Figure 5. These plots show the two-dimensional functions to be min-
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imised using Strategy 2. The red area is the region where this minimum is reached and
its coordinates provide the optimal smoothing bandwidths. It is clear that the choice
of the time bandwidth (g) notably affects the estimation the estimation error, whereas h
seems not to affect much the quality of the estimator.

On the contrary, the value of g for which the smallest error is committed does not
seem to depend too much on the value of the covariate bandwidth (h). Figure 6 shows
MISEx(h,g) as a function of g for some fxed values of h within the interval where the
optimum is reached. The curves are similar and close for all values of h, mainly at the
highest level of censoring conditional probability.

Figure 6. MISEx(h, g) as a function of g, approximated via Monte Carlo for the smoothed
Beran’s estimator using N = 100 simulated samples from Model 1 (top) and Model 2 (bottom)
for some fxed equispaced values of h ∈ [0.1, 0.5] with P(δ = 0|x) = 0.2 (left), P(δ = 0|x) = 0.5
(center) and P(δ = 0|x) = 0.8 (right).

The optimal bandwidths and the estimation errors that are committed by Beran’s
estimator and the smoothed Beran’s estimator with both Strategies 1 and 2 for each
model are shown in Table 1. The value of Ri is defned as follows:� B �fRMISE PD (·|x)hi,giRi(x) = � B � , cRMISE PD (·|x)h1

with i = 1,2 depending on whether Strategy 1 or 2 is used. They help to compare the
behaviour of the estimators and quantify the improvement of the double smoothing over
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the smoothed estimator only in the covariate. The closer to 0 the value of R1 or R2, the
greater the improvement with respect to Beran’s estimator. The relation between R1 and
R2 (R1 greater than R2 or viceversa) also informs which of the two strategies reduces the
error most.

Table 1. Optimal bandwidths, RMISE, R1 and R2 of the PD estimation for Beran’s estimator, the
smoothed Beran’s estimator with Strategy 1 and the smoothed Beran’s estimator with Strategy 2
in each level of censoring conditional probability for Model 1 and Model 2.

Model 1 Model 2 
P(δ = 0|x) 0.2 0.5 0.8 0.2 0.5 0.8 
BcPDh1 

h1 0.35714
0.05437

0.34694
0.11195

0.39796
0.25738

0.10306
0.27128

0.12265
0.49813

0.14224
0.67999RMISE 

BfPDh1,g1 

h1 0.35714
0.08347
0.04065
0.74765

0.34694
0.12265
0.06574
0.58723

0.39796
0.18633
0.07246
0.28153

0.10306
1.18571
0.25222
0.92974

0.12265
1.47755
0.24154
0.48489

0.14224
1.82245
0.20558
0.30233

g1 

RMISE 
R1 

BfPDh2,g2 

h2 0.21429
0.09327
0.03845
0.70719

0.15714
0.13735
0.05941
0.53068

0.18980
0.19612
0.06208
0.24120

0.10816
1.21122
0.09210
0.33950

0.25918
1.61020
0.12350
0.24793

1.00000
1.90204
0.13434
0.19756

g2 

RMISE 
R2 

In all cases, RMISE values are lower for the smoothed Beran’s estimator with both
Strategies 1 and 2 than for Beran’s estimator and this difference becomes bigger when

B
increasing the censoring conditional probability. The estimator f (t|x) with optimalPDh,g
bandwidth (h2,g2) (Strategy 2) provides more accurate estimations than the others, since
the relation 0 < R2 < R1 < 1 is satisfed for all cases.

When the censoring conditional probability is 0.2 or 0.5 in Model 1, the time smooth-
ing with Strategy 1 reduces the error by about 35% and this improvement is about 60%
when the conditional probability of censoring is 0.8. This improvement increases by an
additional 5− 10% when using Strategy 2. The error reduction in Model 2 with respect
to the nonsmoothed PD estimator is more signifcant, reaching 50% and 70% when us-
ing Strategy 1 and censoring is moderate or heavy, respectively. This reduction is bigger
when using Strategy 2, reaching 75− 80%.

A brief study not included here shows that the results of these simulations hold when
the distribution of X is not uniform but a more realistic asymmetric distribution if X
denotes the credit scoring.

The computation time of both estimators should be considered in the comparison.
Table 2 shows the CPU times (in seconds) that Beran’s estimator and the smoothed
Beran’s estimator spend on estimating the probability of default curve in a 100-point
time grid and a fxed value of x, for different values of the sample size. The smoothing
parameters are fxed to the optimal ones for estimating estimating the curve.
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Table 2. CPU time (in seconds) for estimating PD(t|x) in a time grid of size 100 for each
estimator and different sample sizes.

n 50 100 200 400 1200
Beran 0.01 0.01 0.01 0.02 0.03

SBeran 0.03 0.03 0.03 0.05 0.20

Table 2 shows that the second smoothing increases the CPU time and the Beran’s
PD estimator with double smoothing is more affected by the increase in sample size
than Beran’s estimator.

It is expected that the two strategies used to fnd the optimal bandwidths will also
have different computational effciency. Table 3 shows the CPU time (in minutes) for
each strategy and several number of trials to check this. For both strategies the size of
each sample is n = 400 and the PD is estimated in a time grid of size 100. The number of
simulated samples to approximate the MISE by Monte Carlo is the parameter that varies
in order to compare the CPU time of each strategy. Strategy 1 has a clear computational
advantage over Strategy 2, since Strategy 2 is signifcantly slower.

B
Table 3. CPU time (in minutes) for approximating the optimal bandwidth (h,g) for f (t|x)PDh,g
with Strategies 1 and 2.

N 50 100 150 200
Strategy 1 3.01 4.28 5.40 7.32
Strategy 2 80.61 204.51 228.01 296.95

Since the improvement in statistical effciency that the time variable smoothing pro-
vides to Beran’s PD estimator has been verifed, it is interesting to check if other PD
estimators based on other estimators for the survival function are equally improved by
applying this type of smoothing. With this aim, in a second simulation study, the be-

WNW
haviours of the smoothed Weighted Nadaraya-Watson estimator (SWNW), f (t|x),PDh,g

V KA
and the smoothed Van Keilegom-Akritas estimator (SVKA), f (t|x), are comparedPDh,g
to each other as well as to the smoothed Beran’s estimator.

Since the computational times of these estimators are pretty high, only Strategy 1
is used to look for the optimal smoothing parameters, since Strategy 2 would further
increase the computation time of the simulations.

In order to quantify the improvement that the smoothing provides to the PD esti-
mators and compare the performance of the three estimators, the ratios R• 

S and R• are
defned as follows: � • �fRMISE PD (·|x)h1,g1R• 

S(x) = � � ,•cRMISE PD (·|x)h1� • �fRMISE PD (·|x)h1,g1R•(x) = c � B � ,fRMISE PD (·|x)h2,g2

c



P(δ = 0|x) = 0.2 P(δ = 0|x) = 0.5 P(δ = 0|x) = 0.8 
SBeran SWNW SVKA SBeran SWNW SVKA SBeran SWNW SVKA 

Model 1 
h1 0.35714 0.38776 0.25918 0.34694 0.90102 0.22857 0.39796 1.00000 0.23469

g1 0.08347 0.14020 0.06327 0.12265 0.20531 0.11653 0.18633 0.28367 0.19347

RMISE 0.04065 0.03513 0.06418 0.06574 0.03260 0.09957 0.07246 0.04705 0.09816

R• 
S 0.74765 0.50036 0.88744 0.58723 0.19457 0.76112 0.28153 0.14115 0.38976

R• 
c 1.05722 0.91365 1.66918 1.10655 0.54873 1.67598 1.16720 0.75789 1.58119

Model 2 
h1 0.10306 0.09143 0.04567 0.12265 0.10694 0.05380 0.14224 0.11857 0.12837

g1 1.18571 1.55102 1.44286 1.47755 1.77551 1.45714 1.82245 1.92857 1.52857

RMISE 0.25222 0.12628 0.49730 0.24154 0.13406 0.37621 0.20558 0.13375 0.11410

R• 
 0.92974 0.33177 1.63226 0.48489 0.19828 0.88273 0.30233 0.16480 0.16868S

R• 
c 2.73855 1.37112 5.39957 1.95580 1.08551 3.04623 1.53030 0.99561 0.84934

106 Nonparametric estimation of the probability of default with double smoothing 

being • = B, WNW, V KA and they are included in Table 4 along with the approximation
of the optimal smoothing parameters and the error committed by each estimator.

Table 4. Optimal bandwidths, RMISE, R• 
S and R• of the PD estimation for the smoothed Beran’sc

estimator, the smoothed WNW estimator and the smoothed VKA estimator with Strategy 1 for
each level of censoring conditional probability for Models 1 and 2.

The values of R• 
S report the infuence of the smoothing. The smaller the value, the

better the estimation obtained with the smoothed estimator compared to the correspond-
ing nonsmoothed estimator. Since its value is less than 1 in almost all cases of Models 1
and 2, it is confrmed that the smoothing in the time variable is an improvement of any
of the estimators, mainly when censoring is heavy. In addition, the smaller the value of
R• 

S, the greater the improvement that smoothing provides to the estimator. In this line,
the doubly smoothed WNW estimator is the estimator whose error is reduced the most.

The value of R• is useful to compare the behaviour of the three estimators withc
B

the behaviour of f (t|x) (the smoothed Beran’s estimator with Strategy 2). SincePDh2,g2

almost all the R• values obtained are greater than 1, it can be concluded that the smoothedc
Beran’s estimator with Strategy 2 provides more accurate estimations of the probability
of default. Moreover, the closer to 1 the value of R• 

c , the better the estimators. Thus, in
general terms, the smoothed Beran’s estimator with Strategy 1 is the second best option
for estimating the probability of default.

In some cases the smoothed WNW estimator presents an R• less than 1, which in-c
dicates that the error it makes is occasionally smaller than the errror committed by the
smoothed Beran’s estimator with Strategy 2. Therefore, the smoothed WNW estimator
appears to be competitive with Beran’s in some contexts.

It is also appropriate to analyse the differences between the computacional times
os these techniques. Table 5 shows the CPU time (in seconds) that is needed by each
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estimator to obtain the probability of default curve in a time grid of size 100 and a fxed
value of x for different values of the sample size.

Table 5. CPU time (in seconds) for estimating PD(t|x) in a time grid of size 100 for every
estimator and different sample sizes.

n Beran SBeran SWNW SVKA 

50 0.01 0.03 2.30 0.42
100 0.01 0.03 6.33 1.80
200 0.01 0.03 25.97 7.34
400 0.02 0.05 140.62 53.99

1200 0.03 0.20 1459.35 507.36

The time variable smoothing clearly implies an increase of the CPU time. The three
doubly smoothed PD estimators which were considered have higher CPU times than
Beran’s estimator. It should be noted that the smoothed Beran’s estimator is least affected
by the increase of the sample size and it is the fastest of the three doubly smoothed
estimators. The CPU time of the smoothed VKA increases very fast with the sample
size but the slowest method and most affected by the sample size is the smoothed WNW
estimator.

4. Conclusions 

A general doubly smoothed estimator of the probability of default is proposed in this pa-
per. Asymptotic properties of the smoothed PD estimator based on the smoothed Beran’s
estimator for the survival function are proved and its asymptotic distribution is found.
This doubly smoothed Beran’s estimator of the PD showed a remarkably good behavior
in the scenarios analysed in the simulation study. The time variable smoothing results
in a signifcant improvement of the PD estimator, since the estimation error (MISE) is
reduced, mainly when using Strategy 2 for approximating the optimal bandwidth. How-
ever, the computational time is increased. These same evidences were observed in any of
the smoothed PD estimators studied by simulation. Nevertheless, the smoothed Beran’s
estimator of the PD turned out to have the most stable behaviour and to be the fastest
of all. The selection of the smoothing parameters for the smoothed Beran’s estimator
is still an outstanding problem. The study of automatic methods probably based on the
bootstrap is an appealing idea to be considered for future work.
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A. Asymptotic results of the doubly smoothed Beran’s estimator of 
the PD 

B
Asymptotic properties of the smoothed Beran’s estimator of the PD, f (t|x), arePDh,g
shown in this section. The following notation is used.

Let R : R −→ R be any function and defne the constantsZ Z 
cR = R(t)2dt, dR = t2R(t)dt, 

and the functions Z u
Rl(u) = ulR(u), Rl(u) = Rl(t)dt. (5)

−∞ 

Given any function f : Rk −→ R, its frst derivatives with respect to the frst and
second variables are denoted as follows:

∂ f (x1, ...,xk) ∂ f (x1, ...,xk)f ′ (x1, ...,xk) = , ḟ (x1, ...,xk) = 
∂ x1 ∂ x2

Correspondingly, the second derivatives with respect to the frst or second variable are
¨denoted by f ′′ (x1, ...,xk) and f (x1, ...,xk), respectively. Finally, let f ∗ g be the convolu-

tion of any two functions f and g.
The required assumptions are listed below. They are standard in the literature and

not too restrictive in this context. They were previously assumed in Peláez et al. (2021a),
Dabrowska (1989) and Iglesias-Pérez and González-Manteiga (1999) in the nonparamet-
ric conditional survival function estimation setup.

A.1. X , T , C are absolutely continuous random variables.

A.2. The density function of X , m, has support [0,1].

A.3. Let H(t) = P(Z ≤ t) be the distribution function of Z and H(t|x) be the conditional
distribution function of Z|X = x,

(a) Let I = [x1,x2] be an interval contained in the support of m such that,

0 < γ = inf{m(x) : x ∈ Ic} < sup{m(x) : x ∈ Ic} = Γ < ∞ 

for some Ic = [x1 − c,x2 + c] with c > 0 and 0 < cΓ < 1.

(b) For any x ∈ I, the random variables T |X = x and C|X = x are independent.

(c) Denoting lH(·|x) = inf{t/H(t|x) > 0} and uH(·|x) = inf{t/H(t|x) = 1}, for any
x ∈ Ic, 0 ≤ lH(·|x), 0 ≤ uH(·|x) 

(d) There exist l,u,θ ∈ R with l < u, satisfying inf{1− H(u|x) : x ∈ Ic} ≥ θ > 0.
Therefore 1− H(t|x) ≥ θ > 0 for every (t,x) ∈ [l,u] × Ic.
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A.4. The frst and second derivatives of m, m′ (x) and m′′ (x), respectivaly, exist and are
continuous in Ic.

A.5. Let H1(t) = P(Z ≤ t,δ = 1) be the subdistribution function of Z when δ = 1. The
corresponding density functions of H(t) and H1(t) are bounded away from 0 in
[l,u].

A.6. Let H1(t|x) the conditional subdistribution function of Z|X = x when δ = 1. The
frst and second derivatives with respect to t of the functions H(t|x) and H1(t|x),
i.e. H ′ (t|x), H1

′ (t|x), H ′′ (t|x) and H1
′′ (t|x), exist and are continuous in [l,u] × Ic.

A.7. The second partial derivatives frst with respect to x and second with respect to t
of the functions H(t|x) and H1(t|x), i.e. Ḣ ′ (t|x) and ˙

1(t|x) respectively, exist andH ′ 

are continuous in [l,u] × Ic.

A.8. The kernel, K, is a symmetric, continuous and differentiable density function with
compact support [−1,1].

A.9. The smoothing parameters h = hn and g = gn satisfy h → 0, g → 0, and nh3 → ∞ 
and nhg2 → ∞ when n → ∞.

Using the asymptotic results for the smoothed Beran’s estimator of the conditional
survival function given in Peláez et al. (2021a), the asymptotic properties of the estimator

BfPD (t|x) are obtained. The following are the functions required to state these results:h,g

1{Z≤t,δ =1} 
Z t 1{u≤Z}

ξ (Z,δ , t,x) = − � �2 dH1(u|x),1− H(Z|x) 0 1− H(u|x)Z � � 
η(Z,δ , t,x) = K(u) 1− F(t − gu|x) ξ (Z,δ , t − gu,x)du,� � 
Φξ (u, t,x) = E ξ (Z1,δ1, t,x)|X1 = u ,� � 
J(t|x) = 1− F(t|x) L(t|x),Z t dH1(z|x)L(t|x) = � �2 , o 1− H(z|x)� � 
Dg(u, t1, t2,x) = Cov η(Z1,δ1, t1,x),η(Z1,δ1, t2,x)|X1 = u m(u),� � 
N(u, t1, t2,x) = E ξ (Z1,δ1, t1,x)ξ (Z1,δ1, t2,x) X1 = u ,� 
D(t,x) = 

� 
1− F(t|x) 

�2 m′′ (x)N(x, t, t,x)+ m(x)N′′ (x, t, t,x)+ 2m′ (x)N′ (x, t, t,x)� 
−2cKm(x)Φ′ 

ξ (x, t,x)Φ
′ 
ξ (x, t,x) ,� � 

dK 1− F(t|x) � � 
B1(t,x) = 2Φ

ξ 
′ (x, t,x)m′ (x)+ Φ′′ 

ξ (x, t,x) ,2m(x) 
1

B2(t,x) = − dKF ′′ (t|x),
2 � � 

2cK � � t2 − t1C1(t1, t2,x) = J(t1|x) 1− F(t2|x) K ∗ K , 
m(x) g



112 Nonparametric estimation of the probability of default with double smoothing 

� � � 
cK t1 − t2C2(t1, t2,x) = 2J(t1|x) f (t2|x)K ∗ K1m(x) g� ��� � t2 − t1
+2J′ (t1|x) 1− F(t2|x) K ∗ K1 , 

g�dK2 � �� � 
Φ′C3(t1, t2,x) = m(x) 1− F(t1|x) 1− F(t2|x) ξ (x, t1,x)Φ

′ 
ξ (x, t2,x)m2(x) �1

D′′ + g(x, t1, t2,x) ,2cKV1(t,x) = 
� 
1− F(t|x) 

�2L(t|x), 
m(x) 
cK(cK − 1)� �2V2(t,x) = 1− F(t|x) L′ (t|x), 

m(x)� �dK2 � �2� �2 1
V3(t,x) = m(x) 1− F(t|x) Φ′ 

ξ (x, t,x) + D(t,x) . 
m2(x) 2

Another assumption related to the differentiability of the above functions is required:

A.10 Let (t,x) ∈ [l,u] × Ic. The frst derivative of L(u|x) with respect to u exists at (t,x).
The second derivative of m(u) exists et u = x. The second derivative of S(u|x) exists
at (t,x) and (t + b,x). The second derivative of Φξ (u, t,x) exists at (x, t,x). The
second derivative of J(u|x) exists at (t,x). The second derivative of Dg(u, t1, t2,x) 
exists at (x, t, t + b,x). The second derivatie of N(u, t1, t2,x) exists at (x, t, t,x).

Theorem A.1. Let (t,x) ∈ [l,u] × Ic be such that S(t|x) > 0. Under assumptions A.1-
B � B �fA.10, expressions for the asymptotic bias of PDf 
h,g(t|x), ABias PD (t|x) , and theh,g

B � B �fasymptotic variance of PDf 
h,g(t|x), AVar PDh,g(t|x) , are the following:� �� B � 1− PD(t|x) B1(t,x) − B1(t + b,x)f h2ABias PD (t|x) =h,g S(t|x)� � 

1− PD(t|x) B2(t,x) − B2(t + b,x) 2+ g ,
S(t|x) � �� B � V1(t + b,x) S(t + b|x)C1(t, t + b,x) S(t + b|x)2V1(t,x) 1

AVar PD = − 2 +f (t|x)h,g S(t|x)2 S(t|x)3 S(t|x)4 nh� � 
V2(t + b,x) S(t + b|x)C2(t, t + b,x) S(t + b|x)2V2(t,x) g

+ − 2 +
S(t|x)2 S(t|x)3 S(t|x)4 nh� � 

V3(t + b,x) S(t + b|x)C3(t, t + b,x) S(t + b|x)2V3(t,x) h
+ − 2 + .

S(t|x)2 S(t|x)3 S(t|x)4 n
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Theorem A.2. Under the assumptions of Theorem A.1 and assuming Ch := limn→∞ n1/5h> 
B1/50 and Cg := limn→∞ n g > 0, the limit distribution of f (t|x) is given byPDh,g

√ � B � dfnh PD (t|x) − PD(t|x) −→ N(µ,s0),h,g

where � � 
C5/2 1− PD(t|x) B1(t,x) − B1(t + b,x)

µ = h S(t|x)� � 
1− PD(t|x) B2(t,x) − B2(t + b,x) 

+C1/2Cg
4/2

h S(t|x) 
and � �� � 

V1(t + b,x) S(t + b|x) cK 1− F(t|x) 1− F(t + b|x) L(t|x)2s = − 40 S(t|x)2 S(t|x)3 m(x) 
S(t + b|x)2V1(t,x)

+ .
S(t|x)4

Remark 1. Assuming Ch := limn→∞ n1/5h> 0, but n1/5g→ 0, the asymptotic distribution√ � B � dfof the smoothed Beran’s PD estimator is nh PD (t|x) − PD(t|x) −→ N(µe,s0). withh,g� � 
C5/2 1− PD(t|x) B1(t,x) − B1(t + b,x)

µe = .h S(t|x) 

nh1/5h → 0, n1/5Assuming n g → 0 and → ∞, the asymptotic distribution of the
(lnn)3

√ � B � dsmoothed Beran’s PD estimator is nh PD (t|x) − PD(t|x)f 
h,g −→ N(0,s0). 

B. Proofs 

Proofs of the results shown in Appendix A are done using results from papers Peláez
et al. (2021b) and Peláez et al. (2021a).

Proof of Theorem A.1. 

P
Denote P = S(t + b|x), Q = S(t|x) and PD(t|x) = 1− . Similarly, Pe = SeB (t + b|x),h,gQeB P
Qe = e (t|x) and f (t|x) = 1− . As a consequence of the proof of Theorem 1 inSB PDh,g h,g

Qe 
Peláez et al. (2021b): � B � 

ABias PDf (t|x) = α1 + α2 + α3, (6)h,g
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� B �fAVar PD (t|x) = β1 + β2 + β3,h,g (7)

where

P E( eP)
α1 = − ,

Q E( eQ) 

eCov( eP,Q)
α2 = ,

E( eQ)2

h i�e �2P eE Q− E( eQ)eQ
α3 = − 

E( eQ)2
(8)

and
Var( eP)

β1 = ,
E( eQ)2

E( e eP)Cov( eP,Q)
β2 = −2 ,

E( eQ)3

E( eP)2Var( eQ)
β3 = . 

E( eQ)4
(9)

The asymptotic expressions for the bias, the covariance and the variance of the sur-
vival estimator SeB (t|x) are obtained from Theorems 3 and 4 of Peláez et al. (2021a):h,g � � 

SeB 2Bias (t|x) = B1(t,x)h2 + B2(t,x)g + o(h2), (10)h,g� � 
Cov SeB (t1|x),SeB (t2|x) = C1(t1, t2,x) 

1
+C2(t1, t2,x) 

g
h,g h,g nh nh (11)h

+C3(t1, t2,x) + Rn(t,x), n� � 1 g h
Var SeB (t|x) = V1(t,x) +V2(t,x) +V3(t,x) + Rn(t,x), (12)h,g nh nh n� � 

g2 h
where Rn(t,x) = o + .

nh n
Considering Equations (8)-(12), detailed expressions for α1, α2 and α3 are obtained

as follows:
2P P+ B1(t + b,x)h2 + B2(t + b,x)g + o(h2)+ o(g2)

α1 = −
Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 

2PQ+ PB1(t,x)h2 + PB2(t,x)g + o(h2)+ o(g2) 
= � �+ 

Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 
2−PQ− QB1(t + b,x)h2 − QB2(t + b,x)g + o(h2)+ o(g2)� � 

Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 

PB1(t,x)h2 − QB1(t + b,x)h2 + o(h2)+ o(g2) 
= � �+ (13)

Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2) 
2PB2(t,x)g2 − QB2(t + b,x)g + o(h2)+ o(g2)� � 

Q Q+ B1(t,x)h2 + B2(t,x)g2 + o(h2)+ o(g2)� � 
1− PD(t|x) B1(t,x) − B1(t + b,x)

h2
S(t|x) 

= � � 
1− PD(t|x) B2(t,x) − B2(t + b,x) 2+ g + o(h2)+ o(g2),

S(t|x) 
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C1(t, t + b,x) 1 C2(t, t + b,x) g C3(t, t + b,x) h
α2 = + + + Rn(t,x), (14)

S(t|x)2 nh S(t|x)2 nh S(t|x)2 nh 
P � �2

i eE Qe − E(Qe)
Qe Var(Qe)

α3 = ≤ 
E(Qe)2 E(Qe)2 (15)

V1(t,x) 1 V2(t,x) g V3(t,x) h
= + + + Rn(t,x).S(t|x)2 nh S(t|x)2 nh S(t|x)2 n

Plugging (13), (14) and (15) into (6) and using Assumption A.9,� �� B � 1− PD(t|x) B1(t,x) − B1(t + b,x)f h2ABias PD (t|x) =h,g S(t|x)� � 
1− PD(t|x) B2(t,x) − B2(t + b,x) 2+ g ,

S(t|x) 

and the bias part in Theorem A.1 is proved.
Now, expressions (9), (10), (11) and (12) lead to

V1(t + b,x) 1 V2(t + b,x) g V3(t + b,x) h
β1 = + + + Rn(t,x), (16)

S(t|x)2 nh S(t|x)2 nh S(t|x)2 n

S(t + b,x)C1(t, t + b,x) 1 S(t + b,x)C2(t, t + b,x) g
β2 = −2 − 2

S(t|x)3 nh S(t|x)3 nh
(17)

S(t + b,x)C3(t, t + b,x) h−2 + Rn(t,x),S(t|x)3 n

S(t + b,x)2V1(t,x) 1 S(t + b,x)2V2(t,x) g
β3 = +

S(t|x)4 nh S(t|x)4 nh
(18)

S(t + b,x)2V3(t,x) h
+ + Rn(t,x),S(t|x)4 n

and plugging Equations (16), (17) and (18) in (7) the variance part in Theorem A.1 is
proved. ■ 

Proof of Theorem A.2 

From Equations (1) and (3) follows:

SeB
h,g(t + b|x) S(t + b|x) � B �f− = − PDh,g(t|x) − PD(t|x) . (19)eSB (t|x) S(t|x)

h,g

1 S(t + b|x)
On the other hand, denoting a1 = , a2 = − and

S(t|x) S(t|x)2� � � � e SB� � S(t|x) SB (t + b|x) − S(t + b|x) − S(t + b|x) e (t|x) − S(t|x)h,g h,gC SeB (t|x) = ,h,g
SeB (t|x)S(t|x)h,g
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it holds

eSh
B
,g(t + b|x) S(t + b|x) � � � � 

− = a1 SeB (t + b|x) − S(t + b|x) + a2 SeB (t|x) − S(t|x)h,g h,gSeB (t|x) S(t|x)
h,g � �e� � SB (t|x)h,ge+C SB (t|x) 1− ,h,g S(t|x) 

and considering (19):

BfPD(t|x) − PD (t|x)h,g� � � � 
= a1 SeB (t + b|x) − S(t + b|x) + a2 SeB (t|x) − S(t|x)h,g h,g� �� � SeB (t|x) 

(20)
h,ge+C SB (t|x) 1− .h,g S(t|x) 

peSince SeB (t|x) is a consistent estimator of S(t|x), SB (t|x) −→ S(t|x). Thus,h,g h,g

SeB (t|x)h,g p
1− −→ 0.

S(t|x) 

√ � B �fTherefore, the asymptotic distribution of nh PD (t|x) − PD(t|x) is the same as theh,g
asymptotic distribution of the linear combination

√ � � √ � � 
a1 nh SeB (t + b|x) − S(t + b|x) + a2 nh SeB (t|x) − S(t|x) .h,g h,g

From Lemma 1 in Peláez et al. (2021a), SeB (t|x) is split up into the following termsh,g

n
SeB

h,g(t|x) = S(t|x)+ ∑ 
i=1

ϕn,i(t,x)+ B2(t,x)g2 + Rn(t|x), (21)

� � 
1 K (x− Xi)/h

where ϕn,i(t,x) = η(Zi,δi, t,x) are independent and identically dis-
nh m(x) 

tributed random variables for all i = 1, ...,n and Rn(t|x) is negligible with respect to
the other terms: � �3/4 � � nlnn 12)+ Op h2

∑ ϕn,i(t,x).Rn(t|x) = Op + √+ o(g
nh nh i=1

Using (21),
√ � � √ � � 

a1 nh SeB (t + b|x) − S(t + b|x) + a2 nh SeB (t|x) − S(t|x)h,g h,g
√√n (22)

∑ ϕen,i(t,x)+ a1B2(t + b,x)g2 nh+ a2B2(t,x)g2 nh+ Re n(t,x),= 
i=1



Rebeca Pel ´ 117aez, Ricardo Cao and Juan M. Vilar 

where √ � � 
ϕen,i(t,x) = nh a1ϕn,i(t + b,x)+ a2ϕn,i(t,x) (23)

and √ � � 
Re n(t,x) = nh a1Rn(t + b,x)+ a2Rn(t,x)� �3/4√ lnn √ 

= nh(a1 + a2)Op + nh(a1 + a2)o(g2)
nh (24)� � n

+Op h2 + √ 1 ∑ ϕen,i(t,x). 
nh i=1� � 

Since h→ 0 and nh→ ∞, the term Op h2+ √ 1 ∑
n
i=1 ϕen,i(t,x) in (24) is negligible

nh
with respect to ∑

n
ϕn,i(t,x) in (22). Given that g → 0, the term

√ 
nh(a1 + a2)o(g2) ini=1 e √ √ 

(24) is negligible with respect to a1B2(t+b,x)g2 nh+a2B2(t,x)g2 nh in (22). Finally,
√ � �3/4lnn

the term nh(a1+ a2)Op in (24) is negligible with respect to ∑
n
i=1 ϕen,i(t,x) innh

4/5nh Chn
(22) because = → ∞. The variance of the dominant term in (22) is O(1):

(lnn)3 (lnn)3� � � � 
Var ∑

n
i=1 ϕen,i(t,x) = nVar ϕen,1(t,x)� � � � � 

= n2h a1
2Var ϕn,1(t + b,x) + a2

2Var ϕn,1(t,x) (25)� �� 
+2a1a2Cov ϕn,1(t + b,x),ϕn,1(t,x) . 

From the proof of Theorem 3 in Peláez et al. (2021a),� � 
Cov ϕn,1(t1,x),ϕn,1(t2,x) � � � � 

2cK � �� � t2 − t1 1 g
= 1− F(t1|x) 1− F(t2|x) L(t1|x)K ∗ K + O . 

m(x)n2 g h n3h� � � � 
t2 − t1 b

In particular, for t1 = t, t2 = t + b, K ∗ K = K ∗ K and
g g� � Z +∞b

lim K ∗ K = lim K(y)K(u− y)dy
n→∞ g u→∞ −∞Z Z+∞ +∞ 

= lim K(u− y)K(y)dy = K(y)dy = 1. 
u→∞−∞ −∞ 

Consequently,� � 
Cov ϕn,1(t + b,x),ϕn,1(t,x) � � � � 

2cK � �� � 1 g 1
= 1− F(t|x) 1− F(t + b|x) L(t|x) + O + o . (26)

m(x)n2 h n3h n2h

For t1 = t2,
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� � Zt2 − t1K ∗ K = K ∗ K(0) = K(u)K(−u)du
gZ Z �Z � Z Zu

= K(u)K(u)du = K(u) K(v)dv du = K(u)K(v)dudv
−∞ {v≤u�}�Z Z Z Z1

= K(u)K(v)dudv+ K(v)K(u)dvdu
2 Z Z {v≤u} {u≤v}
1 1

= K(u)K(v)dudv = .
2 R2 2

So, � � cK � �2� 1
� 

g
� 

Var ϕn,1(t,x) = 1− F(t|x) L(t|x) + O . (27)
m(x)n2 h n3h

Replacing (26) and (27) in (25),� � 
Var ∑

n
i=1 ϕen,i(t,x) 

2 cK � �2 2 cK � �2
= a 1− F(t + b|x) L(t + b|x)+ a 1− F(t|x) L(t|x)1 m(x) 2 m(x) 

cK � �� � � 
g
� 

+4a1a2 1− F(t|x) 1− F(t + b|x) L(t|x)+ O + o(1). 
m(x) n� � 

Thus, Var ∑
n
i=1 ϕen,i(t,x) = O(1) and the linear combination can be expressed as (22)

with Re n(t,x) negligible with respect to the term ∑
n
i=1 ϕen,i(t,x). Therefore, we proceed to

analyse the asymptotic distribution of ∑
n
i=1 ϕen,i(t,x).

As the variables ϕn,i(t,x) are independent and identically distributed for all i =� � 
1, ...,n, the variables ϕen,i(t,x) are also so. In addition, Var ϕen,i(t,x) exists and it is
fnite for all i = 1, ...,n. In this scenario, if Lindeberg’s condition for triangular arrays
(see Theorem 7.2 in Billingsley (1968)) is satisfed, then

n � � �� 
d

∑ ϕen,i(t,x) − E ϕen,i(t,x) −→ N(0,s0), (28)
i=1

where
cK � �2 cK � �22 2 2s = a 1− F(t + b|x) L(t + b|x)+ a 1− F(t|x) L(t|x)0 1 2m(x) m(x)

cK � �� � (29)
+4a1a2 m(x) 

1− F(t|x) 1− F(t + b|x) L(t|x). 

We will now check Lindeberg’s condition:

1
� n � � ��2

� 
lim E ∑ ϕen,i(t,x) − E ϕen,i(t,x) 1n,i = 0 (30)
n→∞ s2

0 i=1

for every ε > 0, where 1n,i denotes the indicator function given by� � 
1n,i = 1 ϕen,i(t,x) − E[ϕen,i(t,x)] > εs0 . 
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Using assumption A.3d, ξ (Z,δ , t,x) is found out to be bounded:

1{Z≤t,δ =1} 
Z t dH1(u|x)|ξ (Z,δ , t,x)| = − � �21− H(Z|x) 0 1− H(u|x) 

1{Z≤t,δ =1} 
Z t dH1(u|x) 1 Z t dH1(u|x)≤ + � �2 ≤ +

1− H(Z|x) 0 1− H(u|x) θ 0 θ 2
1 H(t|x) 1 1≤ + ≤ +
θ θ 2 θ θ 2

and, consequently, η is also bounded:Z � �� � 1 1|η(Z,δ , t,x)| ≤ K(u) 1− F(t − gu|x) + du
θ θ 2� �� �21 1 � � g � � 

= + 1− F(t|x) + dK 1− F ′′ (t|x) + O(g2).
θ θ 2 2 � 

Since η is bounded, K and m(x) have compact support and nh → ∞, ϕen,i(t,x), i = 
1, ...,n, n ∈ N is a sequence of random variables which is bounded by a convergent to
zero sequence. Hence, there exists n0 ∈ N such that for all i = 1, ...,n, 1n,i = 0 for all
n ≥ n0 and accordingly,

1
� n � � ��2

� 
lim E ϕen,i(t,x) − E ϕen,i(t,x) 1n,i = 0, 
n→∞ s2 ∑ 

0 i=1

which proves Lindeberg’s condition given in (30).
Furthermore, from Theorem 3 in Peláez et al. (2021a),� �� � h2 h2

E ϕn,1(t,x) = B1(t,x) + o , 
n n

so, � � � � 
E ∑i

n
=1 ϕen,i(t,x) = nE ϕen,1(t,x)√ � � √ � � 

= a1n nhE ϕn,1(t + b,x) + a2n nhE ϕn,1(t,x)√ � � 
= nh5 a1B1(t + b,x)+ a2B1(t,x)+ o(h2) . 

Therefore, taking into account that h = Chn−1/5, we have

n
d

∑ ϕen,i(t,x) −→ N(µ0,s0), 
i=1

where � � 
C5/2

µ0 = h a1B1(t + b,x)+ a2B1(t,x) . 

Consequently, recalling (22) and assuming g = Cgn−1/5,
√ � � √ � � da1 nh SeB (t + b|x) − S(t + b|x) + a2 nh SeB (t|x) − S(t|x) −→ N(µ1,s0),h,g h,g



120 Nonparametric estimation of the probability of default with double smoothing 

where
C4/2

µ1 = µ0 +C1/2
g

� 
a1B2(t + b,x)+ a2B2(t,x) 

� 
.h

1 S(t + b|x)
Finally, using equation (20) with a1 = and a2 = − , the asymptotic

S(t|x) S(t|x)2

distribution of the PD estimator holds:
√ � B � dfnh PD (t|x) − PD(t|x) −→ N(µ,s0),h,g

where µ = −µ1. Then, � � 
C5/2 S(t + b|x) B1(t + b,x)

µ = h B1(t,x) −S(t|x)2 S(t|x)� � 
+C1/2C4/2 S(t + b|x) B2(t + b,x) 

h g S(t|x)2 B2(t,x) − 
S(t|x)� � 

C5/2 1− PD(t|x) B1(t,x) − B1(t + b,x) 
= h S(t|x)� � 

1− PD(t|x) B2(t,x) − B2(t + b,x) 
+C1/2Cg

4/2
h S(t|x) 

and � �2 � �2
1 cK 1− F(t + b|x) L(t + b|x) S(t + b|x)2 cK 1− F(t|x) L(t|x)2s = +0 S(t|x)2 m(x) S(t|x)4 m(x)� �� � 
S(t + b|x) cK 1− F(t|x) 1− F(t + b|x) L(t|x)

−4
S(t|x)3 m(x)� �� � 

V1(t + b,x) S(t + b|x) cK 1− F(t|x) 1− F(t + b|x) L(t|x) 
= − 4

S(t|x)2 S(t|x)3 m(x) 
S(t + b|x)2V1(t,x)

+ .
S(t|x)4

■ 
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