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Here, we propose a method for the semantic segmentation of 3D point clouds based on
functional data analysis. For each point of a training set, a number of handcrafted features
representing the local geometry around it are calculated at different scales, that is, varying
the spatial extension of the local analysis. Calculating the scales at small intervals allows
each feature to be accurately approximated using a smooth function and, for the problem
of semantic segmentation, to be tackled using functional data analysis. We also present
a step-wise method to select the optimal features to include in the model based on the
calculation of the distance correlation between each feature and the response variable.
The algorithm showed promising results when applied to simulated data. When applied
to the semantic segmentation of a point cloud of a forested plot, the results proved better
than when using a standard multiscale semantic segmentation method. The comparison
with two popular deep learningmodels showed that our proposal requires smaller training
samples sizes and that it can compete with these methods in terms of prediction.

Key Words: Laser scanning; Multiscale analysis; Functional data; Multiclass
classification; Variable selection.

1. INTRODUCTION

Semantic segmentation of 3D point clouds using machine learning involves assigning a
label to each point in a point cloud a set of features obtained from the coordinates of a training
sample (sometimes color and/or intensity are also used as features) taken as explanatory
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variables. These samples are often obtained through the analysis of the local geometry
around each point on the training dataset. The results tend to improve when the features are
calculated at different scales of local vicinity. This is usually accomplished using the points
within spheres of different radii centered on each training point (Lee and Schenk 2002), or by
taking data from a variable number of their nearest neighbors (Linsen and Prautzsch 2001)
to calculate the covariance matrix and extract the eigenvalues and eigenvectors. Hence,
the name multiscale machine learning (ML) semantic segmentation has been the object
of research for many years and has largely replaced rule-based methods (Guo et al. 2015;
Cabo et al. 2019; Xie et al. 2020). Nowadays, its use is so widespread that it is considered
a standard method for 3D point cloud semantic segmentation. In fact, such methods have
been implemented in a range of widely used software for 3D point cloud visualization and
analysis, such as the CANUPO suite implemented in Cloud Compare (Brodu and Lague
2012). In recent years, the interest has moved towards deep learning (DL) (Zhang et al.
2019). PointNet (Qi et al. 2017) is a seminal DL model for point cloud classification and
semantic segmentation that does not use approaches such as voxelization or projections
onto planes. PointNet was improved using a hierarchical approach called PointNet++ (Qi
et al. 2017). Since then, new DL models for semantic segmentation have emerged, such
as DGCNN (Wang et al. 2018), SEGCloud (Tchapmi et al. 2017), RandLA-Net (Hu et al.
2021), cylindrical and asymmetrical 3D convolution networks (Xinge et al. 2021) or Point
Transformer (Zhao et al. 2021), among others. Also, a set of benchmark datasets have been
built to compare thosemodels such as Shapenet (Chang et al. 2015), Scannet (Dai et al. 2017)
or Semantickitti (Behley et al. 2019). DL may be favorable because handcrafted features
are not needed (although results can be improved by using them) and that it generally
outperforms ML methods in terms of providing more accurate results for large training
samples. However, DL also has some drawbacks: (1) in general, it requires much more
training data, so considerably more time to label the point clouds, (2) it uses models with
several hidden layers and many parameters that are difficult to design and which are prone
to overfitting, (3) the models are like black boxes, hence very difficult to interpret, and (4)
hardware requirements are also greater and GPU processing is common in order to reduce
computing time. For these reasons, semantic segmentation with ML is still competitive and,
in some aspects, such as interpretability, better than DL, so further research in this area is
worth pursuing.

One of the issues concerning the use ofML for semantic segmentation is finding the scales
at which optimal results are obtained. The issue is not straightforward, and several solutions
have been proposed, none of themdefinitive.One simple and commonoption, but inaccurate,
is to select scales at regular intervals, that is, according to a linear function. A slightly better
method is to use a quadratic function, since short scales are oftenmore informative than large
scales (Demantké et al. 2011). Obviously, neither method mentioned ensures that the most
suitable scales are selected. A more sophisticated approach consists of taking into account
the point density and the curvature at each point, as it was analyzed previously for noisy
point clouds (Mitra and Nguyen 2023). A different solution (Weinmann et al. 2015) is based
on analyzing the structure of the local covariance matrix obtained from the coordinates of
the points and a measure of the uncertainty, such as Shannon’s entropy (Shannon 1948).
Recently, Oviedo-de la Fuente et al. (2021) has proposed estimating the optimum scales
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being the maximum values of the distance correlation (DC) functions between the features
and the label assigned to each point. Comparing this approach with other methods using a
real dataset revealed the advantages of this approach, interpretability and predictive capacity.
In this study, we decided to deal with the problem in a different way: instead of trying to find
the optimal scales, we calculated the features at a large number of scales at equal intervals
and considered them as scale-dependent functions. The segmentation is then performed as
if infinite scales were used to calculate the features.

Another aspect of interest in ML is to ascertain the importance of the features, which has
largely been studied using regression and classification. A review of different feature selec-
tion methods can be found in Jović et al. (2015). The goal is often to simplify the process by
selecting only features relevant to the specific situation, which results in reduced computing
time and more accurate results, as well as a better understanding of the relationship between
the features and response variable. Some of the methods, such as that proposed in this work,
select features according to their performance in a modelling algorithm (wrapper methods).
Here, we present a fast and simple stepwise method based on a previous work for feature
selection in regression (Febrero-Bande and González-Manteiga 2019) that progressively
adds features to a model depending on the correlation between those features and the error
in themodel. This algorithm has beenmodified to be applied to a classification problem such
as the one at hand. From now on, we will consider semantic segmentation as a synonym for
classification in statistics although in point cloud processing they refer reference to different
tasks).

The main novelty of this study lies in treating features calculated at different scales as
functions instead of vectors, avoiding overlooking reporting scales as well as having to
select the optimal scales, which can be a complex and time-consuming procedure.

The paper is structured as follows: Sect. 2 outlines our approach, which includes amethod
to select themost important features for the semantic segmentation of point clouds. Section3
presents simulation studies aimed at evaluating the performance of the proposed methodol-
ogy under different scenarios. Section4 presents a case study using semantic segmentation
to dissect a forested area into individual components and Sect. 5 focuses on our conclusions.

2. METHODOLOGY

2.1. STATEMENT OF THE PROBLEM

Let us consider a data sample of n observations {Xi , Yi }ni=1, whereX = (
X1, . . . ,Xp

)
is

a vector of predictors and Y ∈ {1, 2, . . . ,C}, the variable that codifies the category assigned
to each observation. Each predictorX j ∈ R

K is observed in a set of K discretization points,

so X j =
(
x jk1 , . . . , x jkK

)
. In point cloud semantic segmentation, X j represents each of

the features used to segment the point cloud, (k1, k2, . . . , kK ) the scales of calculation of
these features, and Y the label assigned to each of the points (Thomas et al. 2018; Atik and
Duran 2021). As mentioned earlier, in this case the features are local geometric attributes,
such as Linearity or Planarity, that change with the scale used, that is, with the size of the
neighborhood around each point considered in their calculation. The objective of semantic
segmentation is to assign a new observation to a specific class based on the particular
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characteristics of that class obtained from the training data, thereby minimizing error in the
assignment. This is achieved by means of a classifier that searches for patterns in the values
of the features corresponding to each class.

Traditionally, features are vectors that contain information at multiple scales, but in
this work we instead approximate them by using smooth functions. Thus, it is possible to
analyze the features in a continuous range of scales and, in addition, to take advantage of
the information provided by the derivatives of those functions. Theoretically, approximating
features by smooth functions is a reasonable hypothesis for dense and uniform point clouds
since small increments of the scale lead to small increments of the radius of the spheres
centered in each point, that in turn will slightly modify the value of the features. This is
favored by the fact that the spheres are concentric, so the larger spheres contain all the points
of the smaller concentric spheres. However, in real situations the scale intervals are discrete
and discontinuities in the features can be expected at small scales for irregular point clouds
with sparse points in some areas containing different types of objects. In any case, even in
this situation representing the features as functions is useful to reach a better understanding
of the problem and also to discover discontinuities in the features.

Following a functional perspective, we will consider each calculated vector of features
X j , j = 1, . . . , p, as a sample with error of an underlying theoretical smooth function
X j (k) on the real separable Hilbert space H ≡ L2 (K), defined on a compact interval K
and endowed with inner product 〈x, y〉 = ∫

K x(k)y(k)dk and norm ‖x‖ = ∫
K x2(k))dk.

Besides performing the semantic segmentation from a functional point of view, we also
propose a methodology to select the most relevant features, i.e., those having a significant
influence on the results of the semantic segmentation. Variable selection inmultivariate anal-
ysis, including regression and classification, is a widely studied topic (Blum and Langley
1997; Kuhn and Johnson 2019), as it allows to simplify the models and offers a better com-
prehension of the solutions. In functional data classification, variable selection makes refer-
ence to replacing the function X j (k) with a lower dimensional vector (Fraiman et al. 2016;
Berrendero et al. 2016); however, herewe attempt to find a subset Xl (k), l = 1, ..., q, q < p,
of the original features that results in a classification error close to (or even lower than) the
error corresponding to a model that incorporates all the features.

There are many classification methods for multivariate or functional data, so it is not
feasible to test them all. Besides, this is not being the purpose of this work. As such, in this
studywe have applied four well-known and testedmethods, bothmultivariate and functional
approaches: generalized linear model (GLM) (Hastie and Tibshirani 1987), random forest
(RF) (Breiman 2001;Möller et al. 2016), support vector machines (SVM) (Boser et al. 1992;
Rossi and Villa 2006) and a generalized linear model (GLM) with regularization (Friedman
et al. 2010).

2.2. GENERATING FUNCTIONAL FEATURES FROM POINT CLOUDS

Feature engineering from point clouds is summarized in Fig. 1. For each point in the point
cloud, a sphere of a specific radius (scale) centered in this point is created and the points
inside this sphere are used to obtain a value of the feature at that scale. Then, the values
of the features depend on the points and on the scale. As will be explained in Section 4,
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Figure 1. Scheme of the procedure to generate functional features from discrete features at different scales.

there are some typical features used in semantic segmentation obtained through a principal
component analysis where the variables are the coordinates of the points inside the sphere.
In a multiscale analysis, the procedure is repeated for concentric spheres of different radius
centered on each point of the point cloud. Consequently, the larger spheres contain points of
the smaller ones. As mentioned before, this implies that, except in exceptional cases (sparse
points in border areas), there will be no abrupt changes in the values of the features as the
radius of the spheres increases. Sampling a point cloud at different scales reveals different
properties of the underlying surface, improving the semantic segmentation (Hackel et al.
2016).

Given the values of any feature at each point corresponding at different scales, a smooth
function is adjusted as explained in the next section. As a result, each feature associated
at the center of the sphere is now a function and, therefore, a functional data classification
analysis can be conducted, the functions being the explanatory variables (features) and the
label assigned to each of them the response variable.

2.3. SMOOTHING BY DECOMPOSITION IN BASIS FUNCTIONS

A standard method for adjusting a smooth curve to the observations in functional data
analysis is to consider functions as linear combinations of a finite number of basis functions.
Basis functions can be of different types: Fourier basis, polynomials, B-splines (BSP) or
wavelets, depending on the characteristics of the data. Nevertheless, the standard Karhunen-
Loève decomposition is represented as follows:

X̂ j (k) =
L∑

l=1

c jlφl(k) (1)

where c jl ∈ R are coefficients and φl(k) ∈ L2(K) the basis functions. The lower the number
of basis L , the greater the smoothing and the greater the dimension reduction.

A well-known and widely used basis expansion is the Fourier series expansion:

X̂(k) = c0 + c1sinwk + c2coswk + c3sin2wk + c4cos2wt + . . .

The basis functions are periodic sine and cosine functions, and the parameter w determines
the period 2π/w. When the values of k are equally spaced, then the basis is orthogonal. For
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this and other aspects on Functional Data Analysis, it is advisable to consult (Ramsay and
Silverman 1997).

The coefficients in (1) are usually determined by a least squares approach:

K∑

m=1

[

x jkm −
L∑

l=1

c jlφl(km)

]2

= (
X j − �c j

)� (
X j − �c j

) = ‖X j − �c j‖2 (2)

where X�
j =

(
x jk1 , ...x jkK

)
, c�

j = (
c j1, ..., c j L

)
and � = {φ1 (km) , ..., φL (km)}Km=1 a

K × L matrix. The solution to the minimization problem in (2) is:

c j =
(
���

)−1
��X j (3)

when � is K × L full rank matrix.
Calculating the inverse of the matrix in (3) can be computationally expensive for high

dimension problems. In this case, it is advisable to generate band matrices or better still,
diagonal matrices, as when orthogonal Fourier basis functions are used, given that �T� is
a diagonal matrix.

An alternative for smoothing wiggly curves is to add a penalization term to (3) , so the
expression to be minimized is:

K∑

m=1

⎡

⎣x jkm −
L∑

j=1

c jlφl(km)

⎤

⎦

2

+ λ · PEN (X j ) (4)

where λ ∈ R is a smoothing parameter to fix the intensity of the penalty term PEN (X j ).

A popular penalty term is PEN2(X j ) = ∫ [∑L
l=1 c jl D

2 (φl(k))
]2

dk, which penalizes the

curvature of the functions X j (k) through the calculation of the second derivative, D2, of the
basis functions. When λ is zero, the minimization problem reduces to minimize the square
of the residuals, but as its values increase the penalty term becomes more important and the
adjusted function tends to be smoother, with small second derivatives.

2.4. DECOMPOSITION IN FUNCTIONAL PRINCIPAL COMPONENTS

Similar to its multivariate counterpart, functional principal component analysis (FPCA)
aims to obtain a small number of orthogonal functions that most efficiently describe the
variations in the data Principal Component Analysis, functional or not, aims to find a
lower-dimensional representation of the problem while preserving the maximum amount
of information from the original variables. PCA results from the solution of the following
eigenequation:

�̂ (X) ξ̂ = λ̂ξ̂ (5)

where �̂ is the covariance matrix of the data represented by the n × p dimensional matrix
X, while λ̂ ∈ R and ξ̂ ∈ R

p represent eigenvalues and eigenvectors, respectively.
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The extension of PCA to FPCA consists in replacing vector by functions, matrices by lin-
ear operators and scalar products in a vector space by scalar functions in a square-integrable
functional space (Han 2014). Accordingly, FPCA results from the solution of the Fredholm
functional eigenequation (note the similarity with equation (5)):

∫

K
�̂ (s, k) ξ̂ (k) dk = λ̂ξ̂ (s) (6)

Assuming that the predictors X j , j = 1, . . . , p, are centered around the mean, the
covariance function is estimated by (from now on, we will dispense with the subscripts to
simplify):

�̂ (s, k) = n−1φ(s)�C�Cφ(k) (7)

where C is an n × L matrix that stores the coefficients, φ(.) a column vector of length
L , λ̂ ∈ R an eigenvalue, and ξ̂ the corresponding orthogonal eigenfunction, verifying∫
K ξ̂r (k)ξ̂s(k)dk = δr,s for all r, s.
Similar to X (k), each eigenfunction ξ(s) has an expansion in basis functions

ξ̂ (s) =
L∑

l=1

blφl(s) = φ(s)�b (8)

where φ(s)� = (φ1, . . . , φL) and b� = (b1, ..., bL ).
Substituting (6) and (7) in (5) results in the following matrix eigenequation:

n−1C�CWb = λ̂b (9)

where W = ∫
φ�φ is an L × L symmetric matrix of the inner products

〈
φl1 , φl2

〉 =∫
K φl1(k)φl2(k)dk.
The solution, b, to this eigenequation contains the eigenvectors associated with the eigen-

values λ̂ of the matrixCW. When basis functions are orthonormal,W = I, FPCA is equiva-
lent to a standard multivariate PCA applied to the matrix of coefficients C (Florence 2016).

2.5. FEATURE SELECTION

One of the purposes of this research is to select, among the various features constructed
from the coordinates of the points, those that make a significant contribution in terms of
the results of the classification. The idea behind the method, which is independent of the
classifier, is that the residuals of a model containing some of the features can be related
to other features not included in the model, and that among these features the one most
correlated with the residuals is the best candidate to add to the model in order to improve the
results. If the model improves in terms of a metric for the classification, CM, (specifically
in this work intersection-over-union, IoU, also named the Jaccard index, has been used as
the metric), then feature is definitively incorporated into the model, if not, it is rejected. The
procedure starts with a model that uses a single feature (the one with the highest distance
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correlation with the vector of categories), and the rest of the features are progressively
incorporated following the same criteria, their correlation with the residuals of the previous
iteration and the accuracy or other metric used to evaluate the classification, until none of
the features has a significant correlation with the output.

The proposed algorithm for variable selection is shown below (Algorithm 1). The main
idea behind this iterative procedure is that the residuals of the classification can capture
information not collected in previous steps. Firstly, three parameters are initialized: a set
M (i) containing the features of the model in each iteration, starting with the null set; a
set S(i) that stores the subscript of the features still not included in the model (also in the
i th iteration) and ξ (i), a variable that represents the residuals of the model. The residual
in each iteration ξ (i) is calculated as 1 − ˆY (i), so high probabilities produce low residual
values. Iterations continue while the correlation distance between the residual and the input
features are significant. In this case, M (i), S(i) and ξ (i) are updated, except when there is
no improvement in the classification metric, that is, when the classification error does not
decrease. In this particular situation M (i) and the metric used to evaluate the performance
of the classifier are not updated. The main differences with the algorithm in Febrero-Bande
and González-Manteiga (2019) is how the residuals are defined (in a regression context
the residuals were defined as ξ = Y − Ŷ ) and the fact that the metric for classification is
different to the metric for a regression.

Algorithm 1 Variable selection using DC
Initialize:
M(0) = ∅, S(0) = {1, 2, ..., p} , ξ (0) = 1 − Y
for i = 1, ..., p do

α(i) = argmax
j∈S(i−1)

R(X j , ξ
(i−1))

if R(Xα(i) , ξ
(i−1)) significant, then

M(i) = M(i−1) ∪ Xα(i)

S(i) = S(i−1)\
{
s(i)

}

Ŷ (i) = f (M(i))

ξ (i) = 1 − Ŷ (i)

if CE(i) > CE(i−1) then
M(i) = M(i−1)

I oU (i) = I oU (i−1)

end if
else

Stop
end if

end for

The metric used to measure the correlation between residuals and features (vector or
functional covariates) is distance correlation R(X, Y ) (Székely et al. 2007; Székely and
Rizzo 2014). It is defined as follows:

R(X, Y ) = dCov2(X, Y )
√
dVar2(X)dVar2(Y )

(10)
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where distance covariance, dCov2(X, Y ), and distance variance, dVar2(·), are doubly cen-
tered Euclidean distances among all the elements of the X and Y .

This metric fulfills two important conditions that differentiate it from the Pearson’s cor-
relation:

• R(X, Y ) is defined for X and Y random vector variables in arbitrary, not necessarily
equal, finite dimension spaces.

• R(X, Y ) = 0 characterizes the independence of X and Y, even when the independence
is nonlinear.

Therefore, distance correlation is able to detect not only linear but also nonlinear depen-
dence between two variables. Distance correlation satisfies 0 ≤ R ≤ 1.

3. TESTINGWITH ARTIFICIAL DATA

3.1. DATA GENERATION

To assess the situation when the variables are of different natures, we have developed
a simulation study to check the performance of the algorithm in a mixed scenario with
functional and scalar variables.

Five functional and five scalar variableswere simulated, and the responsewas constructed
as a function of the first two functional and the first two scalar variables. The functional
variables, X1, . . . ,X5, were generated following Ornstein–Uhlenbeck processes in [0, 1]
independently of each other. The scalar variables Z1 and Z5 follow a distribution U[0, 1],
while Z2, Z3 and Z4, follow a N(0, 1). So, in order to check how the procedure selects
covariates when they have different natures we constructed the response as follows:

Y = 10 + a1X1β1 + a2X 2
2 + 3a3Z1 + a4Z

2
2 + ε (11)

with β1 = 2t + sin 4π t + 0.1, t ∈ [0, 1] and ε ∼ N (0, .252).
The coefficients a = {a1, a2, a3, a4}were introduced to emphasize each part of themodel

in the following scenarios:

i. Functional linear effect: a = {1, 0, 0, 0}
ii. Functional with linear and nonlinear effects: a = {1, 1, 0, 0}
iii. Functional and scalar linear effect: a = {1, 0, 1, 0}
iv. Functional and scalar with nonlinear effect: a = {0, 1, 0, 1}
v. Functional and scalar with linear and nonlinear effects: a = {1, 1, 1, 1}
We estimated the model through different functional classification models using the

first four principal components as functional covariates. Specifically, the functional models
used are: functional random forest (FRF), functional support vector machines (FSVM) and
functional generalized linear model (FGLM ). The suffix.VS indicates that Algorithm 1 was
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Table 1. Percentage of times that each covariatewas included in themodel for B = 100 replications. Theoretically,
the numbers in bold should be 100 and the rest 0

Model a X1 X2 X3 X4 X5 Z1 Z2 Z3 Z4 Z5

FRF.VS {1, 0, 0, 0} 100 7 9 3 7 1 9 4 7 5
{1, 1, 0, 0} 100 100 6 4 4 4 2 4 9 1
{1, 0, 1, 0} 100 3 5 6 5 100 6 8 5 3
{0, 1, 0, 1} 2 100 0 2 2 1 100 1 3 4
{1, 1, 1, 1} 100 92 2 3 5 94 98 2 3 4

FSVM.VS {1, 0, 0, 0} 100 3 4 3 2 4 4 3 0 1
{1, 1, 0, 0} 100 100 2 2 1 5 7 3 4 1
{1, 0, 1, 0} 100 3 6 2 1 100 2 6 2 0
{0, 1, 0, 1} 3 100 1 1 1 6 100 9 1 1
{1, 1, 1, 1} 99 95 1 1 2 90 98 3 4 5

FGLM.VS {1, 0, 0, 0} 100 3 4 4 5 1 3 1 0 2
{1, 1, 0, 0} 100 28 3 1 0 1 7 2 4 1
{1, 0, 1, 0} 100 3 3 5 3 100 4 7 2 3
{0, 1, 0, 1} 1 25 0 1 1 1 76 1 0 0
{1, 1, 1, 1} 99 33 2 2 1 93 35 3 3 5

Bold values represent maximum values

used to select the variables. n = 200 samples were generated, and the process was repeated
B = 100 times to stablish the percentage of times that a particular covariate enters the
model.

The response was categorized in two different ways:

• Binary response model (Y2): Y in (11) was categorized in two levels using the median
as threshold: Y2 = 0 if Y ≤ q0.5, Y2 = 1 if Y > q0.5, qα being the quantile of order α

of Y distribution

• Multinomial response model (Y3): Y was categorized in three levels according to the
following rule: Y3 = 0 if Y ≤ q0.33, Y3 = 1 if q0.33 < Y ≤ q0.67 y Y3 = 2 if
Y > q0.67.

3.2. NUMERICAL RESULTS

Table 1 shows the results obtained for different scenarios for the binary response. The
suffix.VS indicates that Algorithm 1 was used to select the variables. As can be seen, the
results are very good. X1 was selected almost all the time in the 100 repetitions. For each
repetition, the size of the test sample was 100. The non-relevant variables enter the model
less than 10% of the time. GLM with feature selection, FGLM.VS, has problems to select
the features with a nonlinear effect: X2 and Z2 (scenarios ii, iv and v).

Table 2 shows the results for different combinations of a1, a2, a3, a4, for the multinomial
response. Note that although the classification problem is slightly more complicated than
for the binary response, the results are very good. Again, FGLM had difficulties selecting
variables with a nonlinear effect: X2 y Z2 (scenarios ii, iv and v).

Table 3 shows predictions, particularly we used intersection-over-union (IoU), also
known as the Jaccard index, a metric widely used in semantic segmentation of images
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Table 2. Percentage of times that a specific covariate was included in the model for B = 100 replications.
Multinomial response with 3 classes, Y3

Model a X1 X2 X3 X4 X5 Z1 Z2 Z3 Z4 Z5

FRF.VS {1, 0, 0, 0} 100 5 3 7 8 6 9 12 6 5
{1, 1, 0, 0} 100 100 6 6 5 4 4 4 4 3
{1, 0, 1, 0} 100 8 9 13 7 100 6 7 8 2
{0, 1, 0, 1} 2 100 8 4 1 4 100 3 2 4
{1, 1, 1, 1} 100 88 6 3 7 96 95 4 5 5

FSVM.VS {1, 0, 0, 0} 100 6 2 4 2 5 7 4 1 1
{1, 1, 0, 0} 100 99 2 1 3 3 3 5 6 5
{1, 0, 1, 0} 100 2 1 5 1 100 1 2 0 3
{0, 1, 0, 1} 2 98 3 0 2 1 100 3 4 5
{1, 1, 1, 1} 100 87 3 1 3 85 95 3 5 6

FGLM.VS {1, 0, 0, 0} 100 8 3 6 6 5 5 9 3 3
{1, 1, 0, 0} 100 34 4 6 3 5 2 1 4 4
{1, 0, 1, 0} 100 6 6 8 5 100 3 5 2 4
{0, 1, 0, 1} 0 24 0 1 2 0 79 0 1 0
{1, 1, 1, 1} 100 27 5 4 7 94 35 5 7 4

Bold values represent maximum values

Table 3. Mean (in B = 100 repetitions) IoU in a test sample using multivariate and functional models, two types
of response (binary and multiclass) and five different scenarios

Y a RF FRF FRF.VS SVM FSVM FSVM.VS GLM FGLM FGLM.VS

Y2 {1, 0, 0, 0} 0.75 0.79 0.84 0.74 0.74 0.82 0.78 0.85 0.86
{1, 1, 0, 0} 0.75 0.79 0.84 0.74 0.74 0.82 0.78 0.85 0.86
{1, 0, 1, 0} 0.75 0.77 0.84 0.74 0.76 0.81 0.82 0.87 0.88
{0, 1, 0, 1} 0.63 0.67 0.77 0.52 0.48 0.73 0.42 0.42 0.42
{1, 1, 1, 1} 0.60 0.63 0.67 0.58 0.55 0.66 0.50 0.52 0.52
Mean 0.67 0.70 0.76 0.64 0.62 0.74 0.61 0.64 0.65

Y3 {1, 0, 0, 0} 0.57 0.63 0.68 0.57 0.58 0.69 0.64 0.73 0.76
{1, 1, 0, 0} 0.41 0.45 0.53 0.44 0.39 0.49 0.34 0.36 0.37
{1, 0, 1, 0} 0.53 0.57 0.69 0.54 0.59 0.66 0.68 0.77 0.80
{0, 1, 0, 1} 0.38 0.43 0.58 0.32 0.29 0.52 0.25 0.25 0.25
{1, 1, 1, 1} 0.30 0.43 0.49 0.41 0.39 0.45 0.33 0.34 0.35
Mean 0.46 0.50 0.60 0.46 0.45 0.56 0.45 0.49 0.51

Bold values represent maximum values

and point clouds. It should be noted that we have simulated scenarios that are difficult to
classify; hence, the results would be better for simpler scenarios. An analysis of the table
leads to the following conclusions:

• For both the binary and the multinomial responses, functional approaches outperform
their non-functional counterparts

• Mean IoU is larger for a binary response than for a multinomial response

• Appropriate variable selection contributes to improve the results, although this depends
on the classifier
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Figure 2. Terrestrial laser scanning point cloud from of a longleaf pine forest plot. Colors correspond to different
vegetation structure categories that were manually classified.

• Among the functional models, the best results were in general obtained using FRF,
while the GLM with penalization (it is a linear model) led to the worst results when
there were nonlinear effects

• The maximum mean IoU corresponds to the functional approach with Functional
Random Forest and variable selection.

4. CASE STUDY

4.1. DATASET AND FEATURE EXTRACTION

To test the classifications, we used a terrestrial laser scanning point cloud from a longleaf
pine (Pinus palustris) plot in Pebble Hill, Georgia, USA. The plot dimensions are approx-
imately 47 × 53 m (2500m2). The scanner (RIEGL VZ2000) was placed in 8 positions
throughout the plot, and the scanning density was set up so neighboring points on an ideal
surface at 10m from the sensor would be 6mm apart. The point clouds from the 8 different
scans were registered and joined using the software RisCAN Pro 2.0 (RisCAN Pro 2022),
resulting in a total of 22 million points after removing duplicates within 5mm of each other.
The plot contained 83 trees (250 trees per ha), and it was completely covered by understorey
vegetation (grasses and shrubs), with a horizontal shrub coverage of approximately 60%.
The average diameter at breast height of the tree was 28cm, and the dominant height was
22m.

The point cloud was manually and visually classified into four classes as regards the
vegetation structure: branches and leaves (69% of the points), stems (7%), shrubs (12%),
and grasses (12%). Figure2 shows the resulting manually classified point cloud.

In order to extract the features representing the local geometry around each point, the
eigenvalues and eigenvectors of the covariance matrix constructed from the coordinates of
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Table 4. Features extracted from the point cloud. z represents a vector in the direction of the vertical axis

Name Formula

Eigenvalue sum λ1 + λ2 + λ3

PCA1
λ1

(λ1+λ2+λ3)

PCA2
λ2

(λ1+λ2+λ3)

Nx (v3)x
Ny (v3)y
Nz (v3)z
Linearity λ1−λ2

λ1

Planarity λ2−λ3
λ1

Anisotropy λ1−λ3
λ1

Sphericity λ3
λ1

Omnivariance 3√λ1λ2λ3
Eigenentropy

∑3
i=1 λi lnλi

Surface variation λ3
(λ1+λ2+λ3)

Horizontality acos(v3·z)‖v3‖

the points in a sphere of a specific radius were calculated. This was accomplished through
the eigendecomposition of the covariance matrix� (Ordóñez and Cabo 2017; Thomas et al.
2018):

� = 1

N

N∑

i=1

(pi − p̄)T(pi − p̄) = V�V−1 (12)

where N is the number of points in the sphere,pi = (Xi , Yi , Zi ) a vectorwith the coordinates
of eachpoint,V amatrixwhose columns are the eigenvectorsvi , i = 1, .., 3, and� a diagonal
matrix whose nonzero elements are the eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0.

The three eigenvalues and the eigenvector v3 were used to calculate different features
registered in Table 4.Most of these features includemathematical operations with the values
of the eigenvalues which are linked to an ellipsoid that represents the local geometry around
each. Thus, when (λ1 � λ2, λ3 � 0)we face a linear structure. Similarly, λ1, λ2 � λ3 � 0
indicates a planar geometry,whileλ1 � λ2 � λ3 corresponds to a local volumetric geometry.
A more detailed study of the geometrical meaning of these and other local features can
be obtained in Demantké et al. (2011); Dittrich et al. (2017). In addition, the Z coordinate
(elevation above ground)was also included as it is a discriminant variable, especially in order
to distinguish grasses and shrubs from the crown. Obviously, this variable is independent
of the scale.

The features defined in Table 4 were calculated at 60 different scales (i.e., 60 different
search radii around each point), evenly spaced between 2.5 and 150cm.
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Figure 3. Subset of the study dataset with the manually classified point cloud and two features (Verticality and
Linearity) computed at two different scales (0.25 and 1m) .

4.2. RESULTS AND DISCUSSION

A subset of the test/training point cloud is shown in Fig. 3, along with the representation
of two features (Verticality and Linearity) at two different scales (0.25 and 1m). Clear
differences can be seen for the points belonging to certain classes by using a single feature;
for instance, tree trunks are clearly distinguishable from the Verticality associated with each
point. However, it is also easy to see in Fig. 3 how the use of different scales can dramatically
change the values for the same feature and same class (e.g., some large stems having low
linearity values, in blue in the figure, at a 0.25m scale, and high values, in red, at a 1m
scale).

Figure4 is a heatmap of DC values for each pair of features as well as each of the features
with the response variable, for all the scales. As can be seen, the response variable is more
strongly correlated with verticality (DC = 0.39) than with the rest of the features. In general,
the derivatives are less strongly correlated with the response than the original features. It
can also be seen that some features are highly correlated with each other (i.e., Linearity
has a high correlation with PCA1 and PCA2, and Sphericity is quite highly correlated with
Surface variation). This explains why the algorithm we propose here for feature selection
does not incorporate many of the features in the final model.

Figure 5 shows the mean value curves for six of the features (Verticality, Anisotropy,
Surface variation, Linearity, Planarity and Sphericity), for all the data in the training sample,
and for each category. These features were, in the same order, the most important according
to the feature selection algorithm used. Figure5makes it clear that there are some differences
among the features for each category. For instance, the mean values for Verticality are, as
would be expected, very different at all the scales for points on stems and grass, and very
similar for points on shrubs and branches-leaves at most scales. Also, in some features
(e.g., Anisotropy, Linearity and Planarity), points on stems show very sudden changes at
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Figure 4. Heatmap of distance correlation values for all the features and the response variable.

the smallest scales, but stabilize around 30cm, which is close to the average stem diameter.
In general, the mean value curves show a clear stabilization pattern for all the features at
scales that are above 30 or 40cm. Note that in very dense point clouds, like that of the test
forest plot, the use of scales (i.e., search radii around each point for feature computations)
larger than 50–70cm implies that a large number of points from different classes are likely
to be included. This could be considered ’contamination’ of the feature calculations, as the
computation is not performed with points from the same class.

Table 5 shows the metrics used to evaluate the different models: IoU for each class and
mean IoUof all the classes. Themodels usedwere SVM,GLMandRF. The results are shown
for both, multivariate and functional models (Cabo et al. 2019). For the latter, two different
functional approaches were used: smoothing with B-Splines (BSP) and using principal
components instead of the original features (FPCA). In addition, for these two functional
approaches we also analyzed the effect of incorporating to the model the first derivatives and
the four most frequently selected features in all the variable selection processes: Verticality,
Anisotropy, Surface variation, and elevation above the ground (Z coordinate). Furthermore,
two popular deep learning models, specifically PointNet and DGCNN, were tested. These
two models use the coordinates of the points and the components of the normals at k = 0.5
meters as input features. A total of 6,000,000 points were used to train the DLmodels, many
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Figure 5. Mean value curves for six of the features (Verticality, Anisotropy, Surface variation, Linearity, Planarity
and Sphericity), for all the data in the training sample, and for each category.

more than the 10,000 points used for the ML models. Larger sample sizes did not produce
better results.

Themultivariatemodels were trained considering all the features and scales and also after
applying an algorithmof recursive feature elimination (Kuhn 2016).As usual, differentmod-
els provide different results, and in this particular case SVM and RF slightly outperformed
GLM. It is also observed that the results improve after applying feature selection. The func-
tional approach does not produce a substantive improvement with respect to the multivariate
analysis even when the derivatives of the features are included in the model. There is also
no significant difference between using principal components (FPCA) or splines (BSP).
However, the use of the four-variable selection clearly improves the results, but even in this
case using FPCA instead of BSP does not improve the results, and indeed worsens them.
Comparison with deep learning methods was uneven, as our best model (BSP with variable
selection of functional features) achieves a higher mean IoU value than PointNet but lower
than DGCNN.

Regarding the classification performance in the different classes, as shown in Table 5
there is neither a clear and definite pattern nor any one class with a clearly better or worse
performance. However, in the best classification models in terms of IoU (those using a four-
variable selection), branches and leaves seem to have slightly better results than the other
classes. Also, in the multivariate approach, in all the models (SVM, GLM and RF), points
on shrubs showed clearly worse results than the other classes, which is probably due to some
confusion in distinguishing between branches-leaves and shrubs, which is reduced with the
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Table 5. Intersection over union (IoU) for each class and average values using SVM, GLM, Random Forest (RF)
and two deep learning models: PointNet and DGCNN.

GLM feature selection derivatives variable selection
IoU GLM GLM FPCA BSP FPCA BSP FPCA BSP

mean IoU 0.535 0.584 0.571 0.591 0.577 0.553 0.648 0.694
branches + leaves 0.605 0.617 0.626 0.599 0.619 0.543 0.738 0.781
grass 0.583 0.696 0.684 0.733 0.711 0.747 0.734 0.720
shrubs 0.463 0.559 0.518 0.537 0.51 0.436 0.584 0.629
stems 0.488 0.466 0.457 0.494 0.466 0.485 0.535 0.646

RF feature selection derivatives variable selection
IoU RF RF FPCA BSP FPCA BSP FPCA BSP

mean IoU 0.583 0.706 0.708 0.710 0.719 0.733 0.768 0.773
branches + leaves 0.557 0.716 0.755 0.775 0.759 0.769 0.803 0.806
grass 0.652 0.752 0.799 0.769 0.774 0.780 0.764 0.766
shrubs 0.451 0.662 0.632 0.602 0.651 0.652 0.728 0.736
stems 0.673 0.0.692 0.645 0.693 0.690 0.730 0.776 0.782

SVM feature selection derivatives variable selection
IoU SVM SVM FPCA BSP FPCA BSP FPCA BSP

mean IoU 0.544 0.594 0.692 0.730 0.701 0.721 0.727 0.766
branches + leaves 0.619 0.629 0.697 0.711 0.696 0.745 0.747 0.804
grass 0.574 0.709 0.753 0.750 0.769 0.744 0.737 0.710
shrubs 0.476 0.556 0.686 0.687 0.684 0.634 0.709 0.727
stems 0.508 0.482 0.630 0.771 0.654 0.762 0.716 0.823

DL
IoU PointNet DGCNN

mean IoU 0.668 0.794
branches + leaves 0.979 0.971
grass 0.344 0.759
shrubs 0.543 0.646
stems 0.806 0.801

Bold values represent maximum values

Within each machine learning model, IoU values are shown for all the options considered: standard multivariate
approaches and functional approaches: functional principal component analysis (FPCA), B-splines (BSP), their
derivatives, and the result of a variable selection (Verticality, Anisotropy, Surface variation, and elevation above
the ground)

functional approaches. DGCNNmodel provided very good results in all the categories with
the exception of shrubs. For its part, PointNet showed good results for stems and branches
but very bad results for grasses and shrubs.

Some differences between the solutions provided by the two DLmodels and the RF(BSP
+ VS) functional approach are showed in Fig. 6. The functional model classifies as branches
an leaves some points located on top of the stems. It is also visible that the functional model
classifies groups of points corresponding to shrub as branches and leaves. On their part, the
twoDLmodels tend to classify as stem groups of points that should be classified as branches
and leaves.
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Figure 6. Point cloud used to evaluate the performance of the mathematical models. The rectangles of each color
delimit the enlarged areas in the general view of the plot (right). Detail of the classification carried out by the two
DL models and the functional model RF (BSP + VS) in the areas delimited by the rectangles (left).

Table 6. Computing time in seconds for the best multivariate and functional models (in terms of mean IoU) and
for the two deep learning models tested

Model Ntrain CPU GPU Ntest CPU GPU

RF (FS) 10,000 9.2 6,829,216 253.1
RF(BSP) 10,000 10.6 6,829,216 1,611.4
RF(BSP+VS) 10,000 99.7 6,829,216 435.5
PointNet 6,000,000 24,376.1 661.2 6,829,216 171.7 6.5
DGCNN 6,000,000 61,434.0 751.6 6,829,216 81.10 9.2

For the two deep learning models, a distinction is made between CPU and GPU processing. Ntrain and Ntest are
the sizes of the training and test samples, respectively

Table 6 shows the computing time (in seconds) during training for the multivariate and
functional approaches with the highest mean IoU, as well as for the two DL models tested.
All the models were run in a computer withWindows 11 and the following features: Intel(R)
Core(TM) i7-8550UCPU, 1.80 GHz, 16.0 GBRAM. The twoDLmodels were also training
using a GPU Geoforce RTX 2080. As can be seen, training DL models require much more
computation time than trainingML or functional models to reach comparable results, except
when the proposed feature selection method is applied to the functional features. This is
because of the calculation of the distance correlation in each iteration. Accordingly, if
we look for a balance between classification error and computing time, selecting variables
following ourmethodwould not be the best option.However, selecting the important features
has some advantages such as improving the interpretability of a model or reducing the
negative effects of collinearity or concurvity. The time difference reduces considerably
when a GPU is used to train the DL models.

The size of the training sample in Table 6 is different for DL and ML models for two
reasons. On the one hand, DL models do not generalize well for samples as small as 10,000
points, so it is not useful to use such a small samplewith theDL algorithm.On the other hand,
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MLmodels are computationally expensive for large sample sizes above that value. However,
this is not amajor drawback aswe have verified that for larger samples up to 20,000 points the
results of the ML models do not improve significantly. Regarding inference times (sample
test), execution time is longer for MLmodels than for DLmodels (for the same sample size)
specially in the case of the functional data model with variable selection RF(BSP+VS).

5. CONCLUSIONS

In this work, we illustrate the use of functional data analysis for multiscale semantic
segmentation of 3D point clouds as an alternative to the standard multivariate analysis.
The functional data analysis approach avoids the problems associated with not considering
relevant scales or having to search for them, which is a drawback in the standard approach.
We compare different adaptations of the multivariate models to the functional case, which
offers a balanced compromise between predictive capacity and simplicity.

The results obtained using artificial data concur with the initial hypothesis that approach-
ing the features by functions and selecting some features result in a better approximation
to the data. All the finally selected models combined functional and scalar information suc-
cessfully, except for the functional GLM when the relationship between the variables is
nonlinear. In general, the application of the proposed feature selection algorithm improves
the accuracy of the model.

In terms of the application to real data, there is no significant improvement of the results
when features are approximated by functions, except when a process of variable selection is
applied. Finally, however, the best model only included four of the fourteen initial variables.
Of the four categories studied, the one including branches and leaves was slightly better
classified than the other three. Conversely, shrubs were the worst classified category due to
their confusion with other classes, especially with grass, although the functional approach
mitigates this effect.

The comparisonof our approachwith twodeep learningmodels for 3Dpoint cloud seman-
tic segmentation was promising. Considering the mean IoU as the metric for comparison,
functional models with feature selection outperformed PointNet, but DGCNN surpassed all
the ML and functional models. When the IoU for each category is compared, branches +
leaves and stems were mainly better classified with the DL algorithms, but not the other
two categories. DL models faster in inference than ML models. If other aspects such as
interpretability, training sample size or training computation time are taken into account,
the functional approach can be considered superior to those based on deep learning, with
exception of the method with feature selection that it is very time consuming.

SUPPLEMENTARY MATERIALS: CODES AND DATA

The codes and data used in this paper are available in the GitHub repository
https://github.com/moviedo5/FDA_3D_Point_Cloud/. From the pkg folder, the package
fda.usc.devel (devel version of fda.usc, Febrero-Bande et al. (2012)) can be

https://github.com/moviedo5/FDA_3D_Point_Cloud/
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installed. From thepkg folder, the packagefda.usc.devel (devel version of fda.usc,
Febrero-Bande et al. (2012)) can be installed an essential requirement for reproducing the
provided examples.
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