
Research Article
Multi-GPU Development of a Neural Networks Based
Reconstructor for Adaptive Optics

Carlos González-Gutiérrez ,1 María Luisa Sánchez-Rodríguez,2

José Luis Calvo-Rolle ,3 and Francisco Javier de Cos Juez 1

1Department of Exploitation and Exploration of Mines, University of Oviedo, Oviedo, Spain
2Department of Physics, University of Oviedo, Oviedo, Spain
3Department of Industrial Engineering, University of A Coruña, Ferrol, A Coruña, Spain

Correspondence should be addressed to José Luis Calvo-Rolle; jlcalvo@udc.es

Received 25 November 2017; Accepted 21 February 2018; Published 28 March 2018

Academic Editor: José Manuel Andújar

Copyright © 2018 Carlos González-Gutiérrez et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Aberrations introduced by the atmospheric turbulence in large telescopes are compensated using adaptive optics systems, where
the use of deformable mirrors and multiple sensors relies on complex control systems. Recently, the development of larger scales of
telescopes as the E-ELT or TMT has created a computational challenge due to the increasing complexity of the new adaptive optics
systems. The Complex Atmospheric Reconstructor based on Machine Learning (CARMEN) is an algorithm based on artificial
neural networks, designed to compensate the atmospheric turbulence. During recent years, the use of GPUs has been proved
to be a great solution to speed up the learning process of neural networks, and different frameworks have been created to ease
their development. The implementation of CARMEN in different Multi-GPU frameworks is presented in this paper, along with
its development in a language originally developed for GPU, like CUDA. This implementation offers the best response for all the
presented cases, although its advantage of using more than one GPU occurs only in large networks.

1. Introduction

Development of large telescopes is one of the biggest chal-
lenges in nowadays astronomy and astrophysics. Future
construction of the Thirty-Meter Telescope (TMT) [1] and
the European Extremely Large Telescope (E-ELT) [2], the
two largest telescopes in the world, have originated enormous
challenges for engineers and researchers [3]. One of the
key elements of these telescopes is the development of the
adaptive optics (AO) [4] system that helps to improve the
quality of the received image.

There are several tomographic techniques employed in
the image reconstruction for AO systems, like Single Con-
jugate Adaptive Optics (SCAO), Multiconjugate Adaptive
Optics (MCAO), or Multiobject Adaptive Optics (MOAO)
[5] to be used in the future E-ELT [3]. MOAO uses several
reference guide stars to obtain information to reconstruct
the atmosphere turbulence profile [6]. To combine this

information, it is necessary to use tomographic reconstruc-
tion algorithms. Some of the most popular are based on a
matrix vector multiplication, with the control matrix being
defined by either least squares (LS) [7, 8] or minimum
variance techniques [9]. However, during recent years most
complex solutions have been developed, like Learn andApply
(L&A) [10], or the intelligent system known as Complex
Atmospheric Reconstructor based on Machine Learning
(CARMEN) [11, 12]. Due to the increasing complexity and
amount of data used by these algorithms [13], some of pre-
vious algorithms have been implemented in Graphics Pro-
cessing Units (GPUs) [14, 15], speeding up substantially their
execution and development [16, 17].

CARMEN is a tomographic reconstructor for MOAO
systems created at the University of Oviedo. It was initially
developed using nonparametric estimation techniques [18]
and Multivariate Adaptive Regression Splines (MARS) [19],
but its development using Artificial Neural Networks (ANN)

Hindawi
Complexity
Volume 2018, Article ID 5348265, 9 pages
https://doi.org/10.1155/2018/5348265

http://orcid.org/0000-0002-9912-7807
http://orcid.org/0000-0002-2333-8405
http://orcid.org/0000-0002-9660-7944
https://doi.org/10.1155/2018/5348265
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2018%2F5348265&domain=pdf&date_stamp=2018-03-28

2 Complexity

achieves great results at on-sky testing [20, 21]. ANNanddeep
learning have become very popular in recent years [22], and
several frameworks have been developed to help researchers
in their projects [23]. Most of these frameworks provide
GPU acceleration, and some of them have shown good
results speeding up CARMEN training and execution [24–
26]. However, only one GPU has been used in previous tests,
while there are already some Multi-GPU implementations
both for convolutional neural networks [27, 28] and for L&A
[29].

The purpose of this paper is to detail the implementation
of CARMEN in different Multi-GPU environments and
compare their training and execution times. The implemen-
tations include some of the most popular neural network
frameworks, with their different Multi-GPU proposals and
the development of a code in a native GPU language such as
CUDA.

In Section 2, a most detailed explanation of CARMEN
an AO will be provided. In Section 3, different approaches
to Multi-GPU systems will be given, while Section 4 talks
about how the selected frameworks implement this Multi-
GPU approach. Section 5 describes the proposed experiment,
and Section 6 shows obtained results with its analysis. Finally,
conclusions are provided along with future lines in the search
for improvements.

2. CARMEN

CARMEN is a tomographic reconstructor based on artificial
neural networks. In Section 2.1 details about the adaptive
optics system are explained, and Section 2.2 is a small
summary about the neural network architecture.

2.1. Adaptive Optics. MOAO systems use several guide stars
inside the field of view of the astronomical object as a
reference. These stars provide information about the wave-
front aberrations produced by the atmosphere. There are
several techniques to combine this information in order to
reconstruct the incoming wave-front.

To characterize the incoming wave-front received in large
telescopes, it is common to use the Shack-Hartman Wave-
front Sensor (SH-WFS) [30]. This sensor is composed by
several lenses (called lenslets) with the same focal length
and are focused on different photon sensors. As it can be
observed in Figure 1, the incident wave-front can be split in
a matrix of tilts, and the deviation from the focal spot can be
calculated. Both the 𝑥 and 𝑦 deviations are computed, using
a centroiding algorithm. This matrix of centroids is used as
input to the system and allows characterizing the aberrations
introduced by the atmosphere, combining the information of
several reference stars.

CANARY [31, 32] is an (AO) on-sky demonstrator, prin-
cipally intended for developing and testing AO concepts for
the future 39m E-ELT. It is operated on a Nasmyth platform
of the 4.2m William Herschel Telescope, one of the Isaac
Newton Group of Telescopes (ING) of the Observatorio del
Roque de los Muchachos (ORM), La Palma, Canary Islands,
Spain. CANARY has operated in several configurations to
demonstrate different AO techniques on-sky. Different sizes

and improved SH-WFS have been used through the years,
which provides a wide range of configurations. Two config-
urations that have already been tested on-sky between 2013
and 2015 [13] will be discussed in this paper.

(i) CANARY Phase B1 is designed to perform observa-
tions with one Rayleigh Laser Guide Star (LGS) and
up to four Natural Guide Stars (NGSs). It has a SH-
WFS with 7 × 7 subapertures, although only 36 of
them are activated due to the circular telescope pupil
and secondary obscuration.

(ii) CANARY Phase C2 is designed for the study of Laser
Tomography AO (LTAO) MOAO. There are four
Rayleigh Laser Guide Stars, and the corresponding
WFS have 14 × 14 subapertures (144 active).

Results in DRAGON [33], the successor of CANARY, will
also be presented, although it is still under development at
Durham University. Since it has not been fully finished and
has never been tested on-sky, DRAGON have been simulated
in Durham AO Simulation Platform (DASP) [34].

(i) DRAGON provides a single channel MOAO system
with a woofer-tweeter DM configuration, four NGSs,
and four LGSs each with 30 × 30 subapertures, where
only 704 of them are operative.

2.2. Architecture. CARMEN is a multilayer perceptron,
which contains a single hidden layer. This means that it has
two fully connected layers, where every neuron is connected
to all the neurons in the previous layer. The output of each
neuron is computed following (1), where 𝑤 is the weight of
each connection, 𝑥 is the value of the neurons in the previous
layer, 𝑏 is a constant value called bias, and 𝑓 is an activation
function.

𝑌 = 𝑓(𝑛∑
𝑖=0

(𝑤
𝑖
⋅ 𝑥
𝑖
) + 𝑏) . (1)

The number and size of the hidden layers have been the
purpose of previous studies [35, 36], so the architecture of
the neural network will not be analyzed in this paper, and
it will follow the patterns previously defined. In the input
layer, the number of neurons depends on the numbers of
guide stars and the size of SH-WFS. The number of input
neurons will be the numbers of subapertures of the SH-WFS,
multiplied by 2 (the 𝑥 and 𝑦 coordinates of the centroid), also
multiplied by the amount of reference stars. Following the
architecture of the previous studies, the number of neurons
in the hidden layer is equal to the number of input neurons.
Finally, the output of the ANN is the expected wave-front
slopemeasurements as seen by the on-axis wave-front sensor,
so the number of output neurons will be the number of
subapertures of the SH-WFS multiplied by two. The neural
network architecture is shown in Figure 2.

3. Multi-GPU Implementation

There are different approaches about how to parallelize an
artificial neural network. Although using multiple CPUs has

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

Complexity 3

Measured
positions
 (unfilled circles)

Part of the CCD
array behind a
single aperture

Incident wavefront

Reference
positions
 (filled circles)

Aperture array

CCD array
Y

X

Z

Δx

Δy

Figure 1: Measurement of Wave Front Tilts using a SH-WFS.

WFS1

WFS2

WFSN

Hidden layer

On-axis
slopes

Figure 2: CARMEN architecture.

been proven as a good solution [37], in this paperwe are going
to focus on parallelizing the network by using GPUs, since
it has been one of the common trends during the last years
[25, 38]. However, splitting the work across different GPUs
has been one of the biggest challenges that researchers have
had to deal with. Two different solutions have been used to
solve this problem, data parallelism and model parallelism,
which will be detailed beneath.There are also new proposals,
which can combine both data and model parallelism [28] or
take advantage from asynchronous synchronization to train
the neural networks [39, 40].

3.1. Data Parallelism. The idea behind data parallelism is to
split the input data of each iteration in different GPUs. By
using the stochastic gradient descent based on minibatches,
it is easy to divide each minibatch, into smaller pieces, and
use them as a smaller input to the network. Each GPU holds
a copy of the complete model of the neural network and take
the forward pass with the respective chunk of the minibatch.
Once the output is obtained, gradients are calculated in the
backward pass for each chunk.The last step is to collect all the

gradients, update themodel values, and send the newweights
back to each GPU.

In Figure 3 it is possible to observe how data flows
through the system and the theoretical speeds of exchanging
information between graphics cards. Although there is no
need of sending data between GPUs in the forward pass,
one of the biggest problems of this kind of parallelism is
exchanging the gradients in the backward pass. If the number
of parameters of the different layers is too high, sending the
information through the PCI-Express could consume too
much time. Also, it is necessary to wait until the end of the
gradient exchange and the weight matrix update, to start the
next iteration of the training process, which could be a huge
bottleneck.

3.2. Model Parallelism. In this scenario, the neural network
model is split across the GPUs. This can be done in two
different ways. One easy approach is to put each layer in a
separate graphics card and send the outputs of each layer to
the next GPU. However, this approach is strongly limited by
the number of layers and their size. The other solution is to
split the model “horizontally,” so each GPU has a portion of
the weights matrices from every layer.

As it can be observed in Figure 4, the outputs of each layer
have to be shared between GPUs during the forward pass.
This requires that each GPU needs to wait for the rest of them
to be finished, so it is necessary to start all the computations
almost at the same time, so all GPUs end their calculations
simultaneously. During the backward pass, the error needs
to be exchanged between cards also, so each matrix could be
updated.

Although this method seems to exchange much more
information between GPUs than the Data Parallelism idea,
this is strongly dependent on the network architecture. For
networks that contain large layers, it could be faster to share

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

4 Complexity

Hidden layer I

Backward

Exchange gradients

GPU cluster
communication

Hidden layer I

Forward

Hidden layer II

Exchange gradients
Hidden layer II

+200 GB/s

+200 GB/s

+200 GB/s

+200 GB/s

2x 16 GB/s

2x 16 GB/s

5GB/s

5GB/s

Figure 3: Data parallelism reproduced from [41].

Hidden layer I

Forward

Exchange outputs

Hidden layer II

Exchange outputs

Hidden layer I

Backward

Exchange deltas

Hidden layer II

Exchange deltas

GPU cluster
communication

+200 GB/s

+200 GB/s

+200 GB/s

+200 GB/s

5GB/s

5GB/s

2x 16 GB/s

2x 16 GB/s

2x 16 GB/s

2x 16 GB/s

Figure 4: Model parallelism reproduced from [41].

only the output and the errors than to send the whole matrix
to all the GPUs. Also splitting the matrices across the GPUs
allows the use of bigger layers that could not fit in thememory
of a single GPU.

4. Neural Network Frameworks Overview

With the recent success of Deep Learning in university and
industry, dozens of neural networks frameworks have been
developed [23]. For these analysis, only three of the most
popular [42–44] have been selected. Although it was used in
our previous papers [24, 26], Theano has been left out of the
comparative due to the recent announcement of their creators
not to continue its development [45].

4.1. Caffe. Caffe is a deep learning framework developed by
the Berkeley Vision and Learning Center and is released

under the BSD 2-Clause license [46]. It is mainly written
in C/C++ and uses CUDA to speed up the execution on
the GPU, with support for Nvidia cuDNN. It provides an
interface that supports data parallelism out of the box, just
selecting which GPUs of the system are going to be used.
However, it does not have an implementation for executing
one single input across multiple-GPUs.

4.2. Torch. Torch is a scientific computing framework with
wide support for machine learning algorithms. It is written in
Lua and C/CUDA to provide fast execution and includes the
possibility of importing modules to complete and accelerate
the system.

For themulti-GPU implementation, it provides theData-
ParallelTablemodule, which allows parallelizing the training
with the implementation of data parallelism model. By using
this module, it is possible to replicate the model across

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

Complexity 5

· · · · · ·

Mean

Variables

Update

Gradients

Loss

Model

GPU1

Gradients

Loss

Model

GPU2

CPU

Figure 5: Data parallelism in TensorFlow.

different GPUs and split the minibatch in smaller chunks,
sending each piece to a separate graphics card. Once the
inputs are split, the framework automatically shares gradients
between GPUs and updates the model after each iteration. As
it happens with Caffe, a Multi-GPU implementation of the
execution process is not possible without big changes in the
source code.

4.3. TensorFlow. TensorFlow is an open source software
library for numerical computation. It was originally devel-
oped by the Google Brain Team. It is written in C++ and
CUDA and provides a Python API for an easy implementa-
tion.

Unlike the rest of the cases, two different implemen-
tations will be used. In the case of using only one GPU,
all computations will take place in it. However, the multi-
GPU implementation is a little more complex. A replica of
the model is created on every GPU, as it is suggested in
[47]. Then, each one of them computes the forward and
backward pass and sends the gradients back to the CPU. The
main processor calculates themeans of the gradients, updates
the model, and sends the information back to each GPU.
Figure 5 is a schematic representation of how data parallelism
is implemented in TensorFlow.

4.4. CUDA. CUDA is a programming language developed by
Nvidia, which allows parallelizing different computations by
using GPUs. It provides libraries such as CUBLAS, cuFFT, or
cuDNN to facilitate the work of developers. Their use in all
the previous presented frameworks and some of the tools and
libraries provided,makingCUDAamost suitable choice than
other GPGPU languages like OpenCL.

In this case, the code has been developed to use model
parallelism instead of data parallelism. Each weight matrix
is divided among the GPUs, and all graphics cards received
a full copy of the minibatch. After computing the outputs of

each layer, by usingCUBLAS and cuDNN libraries, the results
are shared between GPUs. In order to avoid overloading
the PCI, the sharing process is asynchronous, and it starts
once one of the GPUs has finished the computation of the
information. However, it is not possible to compute the next
layer until all the GPUs have all the outputs.

The backward process is very similar. Each GPU com-
putes the gradients of their portion of the matrix. After that,
errors are shared and every GPU updates the corresponding
weights. Since it is possible to control when the data are
copied fromRAM, the nextminibatch is copied to everyGPU
while updating the matrices, so it is possible to speed up even
more the training process.

5. Experiment Description

In the present paper, two different measurements will be
assessed. First of all, training times will be compared, evaluat-
ing changes in the time needed by the different frameworks,
when the number of GPUs is changed. The second measure-
ment is the performance of the CUDA code for execution.
The other three frameworks are left out of this comparison,
because data parallelism is not suitable for executing only one
input, since it is not possible to split that input among several
GPUs.

5.1. Training. The training benchmark is the same method
used in [24–26] andwill be summarized. In this case, not only
learning rate, momentum, and backpropagation algorithm,
Stochastic Gradient Descent (SGD) [48], are fixed, but also
the minibatch size will always be 256. A comparison will be
made by changing the number of GPUs used for training,
from 1 to 4. Size of the dataset will increase according to the
size of the neural network, although it is not relevant since
increasing the size of the dataset will increase training times
linearly.

To measure training times, a timer is started once the
whole dataset is copied to RAM and all weights matrixes are
initialized and copied to VRAM (VRAM: GPU Video RAM,
RAM: CPU RAM). Timer is stopped when the whole dataset
is executed and backpropagated, which is denominated as an
epoch. The operation is repeated 20 times and averaged, to
ensure more reliable results, which allows checking that there
is no substantial difference between each epoch, less than 1%.

5.2. Execution. In execution, there will be two different
measurements for CUDA code. One of them will analyze the
ideal scenario, where the input is already copied into RAM
and a second where the system must load the input from
SSD. This differentiation is needed because it is not possible
to ensure how the future integration of the reconstructor with
a real telescope will be.

For this benchmark, data is in separated h5 files [49],
and the output was written to a separate file. System is fed
with 10,000 inputs one at a time and averaged, which allows
measuring execution time. All weight matrixes are copied to
VRAM before execution and they remain constant during
all iterations. In one case, the copy from SSD to RAM and
vice versa is considered for the time measurement. However,

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

6 Complexity

1 GPU 2 GPUs 3 GPUs 4 GPUs
CUDA 0.3689 0.6802 0.9601 1.3599
Torch 4.7358 11.2706 15.2536 16.2466
TensorFlow 1.2436 1.7672 1.9744 2.0892
Caffe 5.5428 3.2423 2.5021 2.1019

0
2
4
6
8

10
12
14
16
18

CANARY-B1, 216-216-72 ANN
350,000 dataset, seconds per epoch

Figure 6: Training times per epoch for CANARY-B1.

in the other scenario, the timer is only started when data is
copied to RAM.

5.3. Benchmark Equipment. The experiments were per-
formed on a computer running on Ubuntu LTS 14.04.3, with
an Intel Xeon CPU E5-1650 v3 @ 3.50GHz, 128Gb DDR4
memory, 4 Nvidia GeForce GTX TitanX, with 12Gb DDR5
VRAM, and 1 Tb SSD hard drive.

6. Results

In this section, results obtainedwith the different frameworks
and varying the number of GPUs will be presented. Also,
an analysis of the results will be provided, explaining the
behavior of the different frameworks.

6.1. CANARY-B1. CANARY-B1 is the smallest system ana-
lyzed. In Figure 6, it is possible to observe some interesting
behavior. For instance, Torch is the slowest framework by
far, and increasing the number of GPUs only provokes worst
training times. Something similar could be monitored for
CUDA and TensorFlow. Although both are the faster options
with only one GPU, increasing the number of cards harms
their performance. In this scenario Caffe, despite having good
performance results with several GPUs, has the worst results
with a single GPU. This behavior contrasts with the per-
formance of the other frameworks considered. In particular
when the number of GPUs increases, it is able to reduce time
until matching times with TensorFlow with 4 GPUs.

In the execution with CUDA, similar results can be
observed in Figure 7. Increasing the number of GPUs not
only does not provide any benefit but also increases execution
times substantially. For RAM execution has almost a linear
relation, where doubling or tripling the number of GPUs has
the same impact in times. Also, as it was analyzed in previous
works [24, 25], loading data fromSSD instead of directly from
RAM has an important impact on performance, although in
this case it could be observed how this difference is almost
fixed (about 0.3 milliseconds) for every number of GPUs.

6.2. CANARY-C2. In CANARY-C2 results from Figure 8 are
quite similar to those of the previous system. Torch is the

SSD RAM
1 GPU 0.071 0.376
2 GPUs 0.126 0.437
3 GPUs 0.211 0.521
4 GPUs 0.323 0.642

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700

CANARY-B1 (milliseconds)

Figure 7: Execution times for CANARY-B1.

1 GPU 2 GPUs 3 GPUs 4 GPUs
CUDA 5.547 9.288 14.169 19.009
Torch 29.017 66.563 76.311 85.750
TensorFlow 15.524 41.215 45.307 52.676
Caffe 28.152 20.129 19.141 18.398

0
10
20
30
40
50
60
70
80
90

100

CANARY-C2, 1152-1152-288 ANN
1,500,000 dataset, seconds per epoch

Figure 8: Training times per epoch for CANARY-C2.

slowest framework again and increasing the number of GPUs
is very harmful for training times. In this case, TensorFlow
has a similar behavior, having a huge increase in their times
when escalating the number of GPUs. Again, CUDA is the
fastest solution but is not able to take advantage of the increas-
ing number of GPUs to speed up training. At last, Caffe has
similar training times than torch for single GPU. However,
with 4GPUs it is able not only to decrease their training times,
but also to improve the results obtained by CUDA.

As it happens in training times, CANARY-C2 shows
almost the same results (Figure 9) as CANARY-B1. It is
interesting to notice that even having a neural network with
about 28x more weights, the increment in execution times is
low, especially in the case of 4 GPUs.

6.3. DRAGON. DRAGON is the biggest network employed
in this paper and has about 100x more connections than
CANARY-C2. In this scenario there is a shift in some trends
observed in previous networks. In Figure 10, TensorFlow is
the slowest framework for every number of GPUs. Torch
is the second worst option, although training times do not
increase as much as in the other cases. For a network of this
size, Caffe has better results than the other two frameworks,
but, unlike the previous cases, it is not able to reduce training
times when increasing the number of GPUs. At last, CUDA
is again the fastest solution. However, in this case when the
number of GPUs is increased, training times are reduced.

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

Complexity 7

SSD RAM
1 GPU 0.122 0.422
2 GPUs 0.179 0.488
3 GPUs 0.247 0.567
4 GPUs 0.370 0.681

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800

CANARY-C2 (milliseconds)

Figure 9: Execution times for CANARY-C2.

1 GPU 2 GPUs 3 GPUs 4 GPUs
CUDA 1479 905 881 836
Torch 2647 4629 5782 5603
TensorFlow 5213 12700 14205 16214
Caffe 1935 2719 3704 4083

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

DRAGON, 11264-11264-1408 ANN
8,000,000 dataset, seconds per epoch

Figure 10: Training times per epoch for DRAGON.

A similar situation can be observed for the execution
times. As it can be observed in Figure 11, increasing the
number ofGPUs can decrease execution times.Thedifference
between using one and two GPUs is especially significant,
although even in the case of four, execution times keep
improving.

6.4. Discussion. There are lots of ideas that could be extracted
from the previous results. One of them is that data parallelism
implementations of Torch and TensorFlow are not suitable
solutions for the present problem. Keeping this in mind, it is
interesting to notice how the “full-GPU” backpropagation in
Torch is quite slow for smaller systems but improves when the
neural network size increases. However, for the hybrid CPU-
GPU solution (Figure 5) used in TensorFlow, better results
are obtained when the size is smaller. This behavior could be
explained by how backpropagation in a small network cannot
take advantage of the high level of parallelism provided by
a GPU and consequently is better performed in a CPU. On
the opposite side, when the neural network grows, not only
this parallelism is better used, but also the time consumed by
sending all the weightmatrixes fromRAM toVRAM is a high
time-consuming operation.

Regarding Caffe, some differences are observed with
respect to the other solutions. For small networks it is able to

SSD RAM
1 GPU 2.816 3.157
2 GPUs 1.573 1.915
3 GPUs 1.375 1.717
4 GPUs 1.170 1.517

0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500

DRAGON (milliseconds)

Figure 11: Execution times for DRAGON.

reduce training times when increasing the number of GPUs.
However, this is not enough to improve results provided by
the CUDA code. Since the multi-GPU mode is a built-in
solution, it is not possible to explain why these results take
place.

At last, the model parallelism solution implemented in
CUDA provides the best results for all cases. However, the
inability to improve training and execution times for smaller
networks, whenmoreGPUs are available, should be analyzed.
For CANARY systems, the workload is too low even for
one GPU, and increasing the number only provokes time
overload because of the movement of data between cards.
However, when the size of the network increases, and the
GPUs are fully loaded, both training and execution times start
to reduce. AlthoughDRAGON is currently the largest system
available, it will keep growing in the next years [13], and bigger
systems will take much more advantages of this multi-GPU
implementation.

In the case of execution, an interesting behavior can be
observed. Including data transfer between SSD and RAM in
the experiment triggers a huge overload for all cases. There is
a 0.3 milliseconds difference for every case, independently of
the size of the data transfer. However, it is expected that, in a
real telescope, it will not be necessary to read and copy data to
the SSD, because of a better integration with the system. Also,
as it happens with training, increasing the size of the network
takes advantages of the number of GPUs. As it wasmentioned
before, the smaller networks do not provide enoughworkload
to fill a GPU, but due to the increasing size of the sensors, it
will not be a problem in the near future.

7. Conclusions and Future Lines

In this paper, some of the most popular neural network
frameworks [42] and a code directly developed in CUDA
have been analyzed. It is possible to extract from the exposed
results that both TensorFlow and Torch are not suitable for
Multi-GPU execution when the neural network used is a
multilayer perceptron. In the case of Caffe, it has shown that
increasing the number of GPUs in smaller networks offers
some benefits, although it is not able to keep those benefits
when the size increases. For the three SH configurations
presented, the best solution is the code directly developed
in CUDA, which has also the potential of taking better

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

8 Complexity

advantages of the number of GPUs, when the size of the
network increases.

However, developing these solutions in different frame-
works can provide some advantages in the future. Convo-
lutional neural networks (CNN) are very popular for image
processing [50, 51], and their use could be an interesting
upgrade for CARMEN architecture. Previous studies show
that model parallelism could be a better solution for CNN
than data parallelism [27, 28], so any of the frameworks
could be faster for CNN than the CUDA solution. Also,
Recurrent Neural Networks (RNN) [52, 53] should be easier
to implement by using a neural network framework, since
they are much more prepared for that use [42].

One last idea is the use of online learning, which means
that CARMEN could be constantly training when the recon-
structor is executed on-sky. Recent works show that this tech-
nique could provide an interesting boost in the performance
of the reconstructor [54, 55]. By using more than one GPU, it
will be possible to adapt the neural network towork faster and
be much more precise correcting what is happening on sky.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The authors appreciate support from the Spanish Economics
and Competitiveness Ministry, through Grant AYA2014-
57648-P, and the Government of the Principality of Asturias
(Consejeŕıa de Economı́a y Empleo), through Grant FC-15-
GRUPIN14-017.

References

[1] J. Nelson and G. H. Sanders, “The status of the thirty meter
telescope project,” in Proceedings of the Ground-based and
Airborne Telescopes II, France, June 2008.

[2] R. Gilmozzi and J. Spyromilio, “The European extremely large
telescope (E-ELT),”TheMessenger, vol. 127, no. 3, 2007.

[3] S. K. Ramsay, M. M. Casali, J. C. González, and N. Hubin,
“The E-ELT instrument roadmap: a status report,” in Ground-
based and Airborne Instrumentation for Astronomy V, 91471Z,
Proceedings of SPIE, 2014.

[4] J. M. Beckers, “Adaptive Optics for Astronomy: Principles,
Performance, and Applications,” Annual Review of Astronomy
and Astrophysics, vol. 31, no. 1, pp. 13–62, 1993.

[5] D. R. Andersen, K. J. Jackson, C. Blain et al., “Performancemod-
eling for the RAVENMulti-Object Adaptive Optics demonstra-
tor,” Publications of the Astronomical Society of the Pacific, vol.
124, no. 915, pp. 469–484, 2012.

[6] O. Lardière, D. Andersen, C. Blain et al., Multi-object adaptive
optics on-sky results with Raven, 91481G, E. Marchetti, L. M.
Close, and J.-P. Véran, Eds., International Society forOptics and
Photonics, 2014.

[7] B. L. Ellerbroek, “First-order performance evaluation of adapt-
ive-optics systems for atmospheric-turbulence compensation in
extended-field-of-view astronomical telescopes,” Journal of the
Optical Society of America A: Optics and Image Science, and
Vision, vol. 11, no. 2, pp. 783–805, 1994.

[8] T. Fusco, J.-M. Conan, G. Rousset, L. M. Mugnier, and V.
Michau, “Optimal wave-front reconstruction strategies formul-
ticonjugate adaptive optics,” Journal of the Optical Society of
America A: Optics and Image Science, and Vision, vol. 18, no. 10,
pp. 2527–2538, 2001.

[9] M. C. Roggemann, “Optical performance of fully and partially
compensated adaptive optics systems using least-squares and
minimum variance phase reconstructors,” Computers and Elec-
trical Engineering, vol. 18, no. 6, pp. 451–466, 1992.

[10] F. Vidal, E. Gendron, and G. Rousset, “Tomography approach
for multi-object adaptive optics,” Journal of the Optical Society
of America A: Optics and Image Science, and Vision, vol. 27, no.
11, pp. A253–A264, 2010.

[11] F. J. de Cos Juez, F. S. Lasheras, N. Roqueñı́, and J. Osborn,
“AnANN-based smart tomographic reconstructor in a dynamic
environment,” Sensors, vol. 12, no. 7, pp. 8895–8911, 2012.

[12] J. Osborn, F. J. De Cos Juez, D. Guzman et al., “Using artificial
neural networks for open-loop tomography,”Optics Express, vol.
20, no. 3, pp. 2420–2434, 2012.

[13] A. G. Basden, D. Atkinson, N. A. Bharmal et al., “Experience
with wavefront sensor and deformable mirror interfaces for
wide-field adaptive optics systems,”Monthly Notices of the Royal
Astronomical Society, vol. 459, no. 2, pp. 1350–1359, 2016.

[14] D. Romero-Laorden, J. Villazon-Terrazas, O. Martinez-Graul-
lera, A. Ibanez,M. Parrilla, andM. S. Penas, “Analysis of Parallel
Computing Strategies to Accelerate Ultrasound Imaging Pro-
cesses,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 12, pp. 3429–3440, 2016.

[15] D. Romero-Laorden, J. Villazón-Terrazas, M. Santos Peñas, M.
A. Garćıa-Izquierdo, and O. Mart́ınez-Graullera, “Analysis of a
software implementation of an ultrasonic signal beamformer
in real-time,” RIAI - Revista Iberoamericana de Automatica e
Informatica Industrial, vol. 13, no. 4, pp. 462–471, 2016.

[16] H. Ltaief and D. Gratadour, “Shooting for the Stars with
GPUs,” 2016, http://on-demand.gputechconf.com/gtc/2015/video/
S5122.html.

[17] J. Marichal-Hernández, L. F. Rodŕıguez-Ramos, F. Rosa, and J.
M. Rodŕıguez-Ramos, “Atmospheric wavefront phase recovery
by use of specialized hardware: Graphical processing units and
field-programmable gate arrays,” Applied Optics, vol. 44, no. 35,
pp. 7587–7594, 2005.

[18] D. Guzmán, F. J. De Cos Juez, R. Myers, A. Guesalaga, and F.
S. Lasheras, “Modeling a MEMS deformable mirror using non-
parametric estimation techniques,” Optics Express, vol. 18, no.
20, pp. 21356–21369, 2010.

[19] D. Guzmán, F. J. C. De Juez, F. S. Lasheras, R. Myers, and
L. Young, “Deformable mirror model for open-loop adaptive
optics using multivariate adaptive regression splines,” Optics
Express, vol. 18, no. 7, pp. 6492–6505, 2010.

[20] J. Osborn, D. Guzman, F. J. de Cos Juez et al., “First on-sky
results of a neural network based tomographic reconstructor:
Carmen on Canary,” in SPIE Astronomical Telescopes + Instru-
mentation, 91484M, E. Marchetti, L. M. Close, and J.-P. Véran,
Eds., International Society for Optics and Photonics, 2014.

[21] J. Osborn, D. Guzman, F. J. D. C. Juez et al., “Open-loop tomo-
graphy with artificial neural networks on CANARY: on-sky
results,” Monthly Notices of the Royal Astronomical Society, vol.
441, no. 3, pp. 2508–2514, 2014.

[22] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[23] C. Gulcehre, “Deep Learning - Software Links,” 2017, http://
deeplearning.net/software links/.

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://on-demand.gputechconf.com/gtc/2015/video/S5122.html
http://on-demand.gputechconf.com/gtc/2015/video/S5122.html
http://deeplearning.net/software_links/
http://deeplearning.net/software_links/

Complexity 9

[24] C. González-Gutiérrez, J. D. Santos, M. Mart́ınez-Zarzuela et
al., “Comparative study of neural network frameworks for the
next generation of adaptive optics systems,” Sensors, vol. 17, no.
6, article no. 1263, 2017.

[25] C. González-Gutiérrez, J. D. Santos-Rodŕıguez, R. Á. F. Dı́az, J.
L. C. Rolle, N. R. Gutiérrez, and F. J. de Cos Juez, “Using GPUS
to speed up a tomographic reconstructor based on machine
learning,” Advances in Intelligent Systems and Computing, vol.
527, pp. 279–289, 2017.

[26] S. L. Suárez-Gómez, C. González-Gutiérrez, J. D. Santos-
Rodŕıguez et al., “Analysing the performance of a tomographic
reconstructor with different neural networks frameworks,” in
Proceedings of the 16th International Conference on Intelligent
SystemsDesign andApplications, A.M.Madureira, A. Abraham,
D. Gamboa, and P. Novais, Eds., pp. 1051–1060, Springer
International Publishing, Cham, Switzerland, 2017.

[27] O. Yadan, K. Adams, Y. Taigman, and M. Ranzato, “Multi-GPU
Training of ConvNets,” https://arxiv.org/abs/1312.5853.

[28] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” https://arxiv.org/abs/1404.5997.

[29] H. Ltaief, D. Gratadour, A. Charara, and E. Gendron, “Adaptive
optics simulation for the world’s largest telescope on multicore
architectures with multiple GPUs,” in Proceedings of the 3rd
Conference on Platform for Advanced Scientific Computing,
PASC 2016, Switzerland, June 2016.

[30] B. C. Platt and R. Shack, “History and principles of Shack-
Hartmannwavefront sensing,” Journal of Refractive Surgery, vol.
17, no. 5, pp. S573–S577, 2001.

[31] R.M.Myers, Z. Hubert, T. J.Morris, E. Gendron, andN. A. Dip-
per, “CANARY: the On-Sky NGS/LGS MOAO Demonstrator
for EAGLE,” in Adaptive Optics Systems, 70150E, Proceedings
of SPIE, pp. 1–9, 2010.

[32] E. Gendron, F. Vidal, M. Brangier et al., “MOAO first on-sky
demonstration with CANARY,” Astronomy & Astrophysics , vol.
529, article no. L2, 2011.

[33] A. P. Reeves, R. M. Myers, T. J. Morris et al., “The Durham
real-time, tomographic adaptive optics test bench: progress
and results,” in SPIE Astronomical Telescopes + Instrumentation,
91485U, E. Marchetti, L. M. Close, and J.-P. Véran, Eds., Inter-
national Society for Optics and Photonics, 2014.

[34] A. G. Basden and A. O. Durham, “Simulation Platform,” 2017,
https://gitlab.com/agb32/dasp.

[35] J. Osborn, F. J. DeCos Juez, D.Guzman et al., “Open-loop tomo-
graphy using artificial nueral networks,” in Proceedings of the
2nd International Conference on Adaptive Optics for Extremely
Large Telescopes, AO for ELT 2011, September 2011.

[36] M. G. Victoria, Research of The Tomographic Reconstruction
Problem by Means of Data Mining And Artificial Intelligence
Technologies, Universidad de Oviedo, 2014.

[37] J. Dean, G. S. Corrado, R. Monga et al., Large Scale Distributed
Deep Networks.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Class-
ification with Deep Convolutional Neural Networks,” in Ad-
vances in Neural Information Processing Systems 25, F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q.Weinberger, Eds., pp. 1097–
1105, Curran Associates, Inc., 2012.

[39] S. Zhang, C. Zhang, Z. You, R. Zheng, andB. Xu, “Asynchronous
stochastic gradient descent for DNN training,” in Proceedings of
the 38th IEEE International Conference onAcoustics, Speech, and
Signal Processing (ICASSP ’13), pp. 6660–6663, May 2013.

[40] T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang, “GPU Asyn-
chronous Stochastic Gradient Descent to Speed Up Neural
Network Training,” https://arxiv.org/abs/1312.6186.

[41] T. Dettmers, “Making deep learning accessible,” 2017, http://
timdettmers.com/.

[42] A. Parvat, J. Chavan, S. Kadam, S. Dev, and V. Pathak, “A survey
of deep-learning frameworks,” in Proceedings of the 2017 Inter-
national Conference on Inventive Systems and Control (ICISC),
pp. 1–7, January 2017.

[43] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-
the-art deep learning software tools,” in Proceedings of the 7th
International Conference on Cloud Computing and Big Data,
CCBD 2016, pp. 99–104, China, November 2016.

[44] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah,
“Comparative study of deep learning software frameworks,”
https://arxiv.org/abs/1511.06435.

[45] P. Lamblin, “Theano 0.9.0 documentation,” 2017, http://deep-
learning.net/software/theano/.

[46] Y. Jia, E. Shelhamer, J. Donahue et al., “Caffe: convolutional
architecture for fast feature embedding,” in Proceedings of the
ACM International Conference on Multimedia, pp. 675–678,
ACM, Orlando, Fla, USA, November 2014.

[47] “Google Brain TeamConvolutional Neural Networks - Training
a Model using Multiple GPU Cards — TensorFlow,” 2017,
https://www.tensorflow.org/tutorials/deep cnn#training a model
using multiple gpu cards.

[48] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323,
no. 6088, pp. 533–536, 1986.

[49] “The HDF Group Introduction to HDF5,” 2016, https://www
.hdfgroup.org/HDF5/doc/H5.intro.html#Intro-WhatIs.

[50] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y.
Lecun, “Integrated recognition, localization anddetection using
convolutional networks,” in Proceedings of the International
Conference on Learning Representations (ICLR2014), 2014.

[51] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with convolu-
tions,” inProceedings of the IEEEConference onComputer Vision
and Pattern Recognition (CVPR ’15), pp. 1–9, Boston, MA, USA,
June 2015.

[52] A. Graves, “Generating sequences with recurrent neural net-
works,” Tech. Rep., 2013.

[53] A.Graves, A.-R.Mohamed, andG.Hinton, “Speech recognition
with deep recurrent neural networks,” in Proceedings of the 38th
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’13), pp. 6645–6649, May 2013.

[54] S. L. Suárez-Gómez, M. L. Sánchez, F. Blanco, J. Ayala, and F. J.
de Cos Juez, “Successful sulfur recovery in low sulfurate com-
pounds obtained from the zinc industry: Evaporation–conden-
sation method,” Journal of Hazardous Materials, vol. 336, pp.
168–173, 2017.

[55] S. L. S. Gómez, J. D. S. Rodŕıguez, F. J. I. Rodŕıguez, and F. J.
D. C. Juez, “Analysis of the temporal structure evolution of phy-
sical systems with the self-organising tree algorithm (SOTA):
Application for validating neural network systems on adaptive
optics data before on-sky implementation,” Entropy, vol. 19, no.
3, article no. 103, 2017.

 8503, 2018, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2018/5348265 by U

niversidade D
e La C

oruña, W
iley O

nline Library on [25/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://arxiv.org/abs/1312.5853
https://arxiv.org/abs/1404.5997
https://gitlab.com/agb32/dasp
https://arxiv.org/abs/1312.6186
http://timdettmers.com/
http://timdettmers.com/
https://arxiv.org/abs/1511.06435
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/tutorials/deep_cnn#training_a_model_using_multiple_gpu_cards
https://www.tensorflow.org/tutorials/deep_cnn#training_a_model_using_multiple_gpu_cards
https://www.hdfgroup.org/HDF5/doc/H5.intro.html#Intro-WhatIs
https://www.hdfgroup.org/HDF5/doc/H5.intro.html#Intro-WhatIs

