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A B S T R A C T

Functional data analysis (FDA) alternatives, based on the classical Mandel h and k statistics, are proposed to
identify the laboratories that supply inconsistent results in interlaboratory studies (ILS). ILS is the procedure
performed by a number of laboratories to test the precision of an analytical method, to measure the proficiency of
laboratories in implementing an analytical procedure, to certify reference materials, and to evaluate a new
experimental standard. The use of outlier tests, such as h and k Mandel statistics proposed by the ASTM E691, is
crucial to assess these aims, estimating inter- and intra-laboratory data position and variability from a univariate
point of view. Considering that experimental results obtained in analytical sciences are often functional, the use of
FDA techniques can prevent the loss of important data information. The FDA approaches of h and k statistics are
presented and point-wise obtained to deal with functional experimental data. Both functional statistics are esti-
mated for each laboratory, their functional critical limits are obtained by bootstrap resampling, and new FDA
versions of h and k graphics are presented. Real and synthetic thermogravimetric data are utilized to assess the
good performance of the proposed FDA h and k statistics and their advantages with respect to the univariate
approach.
1. Introduction

Interlaboratory Studies (ILS) can be defined as the statistical quality
control procedures implemented to evaluate the performance of an
analytical method through collaborative trials, to develop bias tests of a
standard measurement method, to measure the proficiency of labora-
tories that implement a specific analytical procedure, to certify reference
materials, and to validate a new international standard [1–4]. In all cases,
ILS statistical methods evaluate the precision and consistency of testing
results obtained by different laboratories [1]. Two of the most common
ILS are those applied in collaborative trials and bias tests. Collaborative
trials provide estimates of precision, in terms of repeatability, repro-
ducibility, and variability [2,5]. The development of ILS methodologies is
absolutely necessary when a precision estimate of a new analytical
method is required. On the other hand, bias tests are developed with a
standard method. They aim to evaluate a standard measurement method
bias or laboratory bias when they are used as a standard method [2]. The
monographs of [2] and [5] provide more comprehensive information
about experimental method precision, bias, and proficiency studies. The
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ISO standard regulates the implementation of bias tests and also defines
collaborative trials [6]. This work will focus on outlier test applications in
these types of ILS studies. In fact, new functional extensions for outlier
tests are proposed and described.

Both in collaborative trials and bias tests, outlier detection procedures
play a fundamental roll [7–9], where the aim is to detect the laboratories
that provide results that are significantly different from the others and,
thus, to discard the inconsistent data that they provide. Many outlier tests
have been applied in ILS studies. All of them are developed from a scalar
or univariate perspective. They can be classified into those that examine
laboratory result variances and those based on mean differences. Stan-
dards usually propose the implementation of variance-based outlier tests
(one-sided tests) over those based on laboratory mean differences [2].
The Cochran test is by far the most used variance based test in inter-
laboratory studies [2,10]. In addition, the F test is also employed by
comparing intralaboratory variances with respect to repeatability vari-
ance [2]. It is important to stress that, unlike the Cochran test, it is
necessary to discard those laboratories with outlying means before the
application of an F test [2]. There are many more test focused on
ch 2018
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detecting outlying means. Such tests include the Grubbs test (for single or
double outliers) [11,12] and the Graf and Henning test [13]. In addition,
some robust alternatives to classical outlier test approaches have been
proposed. Namely, the median of absolute deviations from the median
(MAD) [14], the robust mean and standard deviation calculation [15],
and Tukey's biweight function [14], based on assigning less importance
(weight) to less reliable data.

The use of graphical methods to interpret the results retrieved in ILS is
closely linked to outlier detection. Thus, the use of diagrams such as box-
plots [16], Youden plots [17], control charts, and bar plots, among
others, is proposed in the different ILS protocols. Among the different
existing graphical methods, Mandel's h and k statistics [18] are inten-
sively used in ILS for detecting laboratories that provide inconsistent
results, using graphical tools such as bar plots. The h statistic accounts for
intralaboratory variability, i.e., the differences of laboratory means with
respect to global mean, whereas the k statistic estimates the intra-
laboratory variability by comparing the repeatability variances corre-
sponding to each laboratory. Thus, they are employed to detect outliers
among the means (type 2) and among the standard deviations (type 3),
but not among the replicates (type 1) [2]. Their use is proposed by
different protocols corresponding to collaborative trials and bias tests
[19], combined with other outlier tests such as Cochran, Grubbs, and F.

It is important to stress that all the outlier detection tests for ILS deal
with scalar data. Nowadays, there are many experimental techniques
related to applied chemistry, physics, and engineering where data are
complexer rather than scalar. They are often high dimensional, even
functional. In fact, spectra [20,21] (e.g. Mass Spectroscopy [22], Nuclear
Magnetic Resonance spectroscopy [23], and Near-Infared Spectroscopy
[24]), thermogravimetric [1,25–29], calorimetric [1,26], or dynamic
mechanical curves [30] are special cases of infinite dimensional data, i.e.,
functional data. In fact, from a physical perspective, could be more
informative to analyze a spectrum as a function rather than a vector of
features due to the presence of high correlation among them, as pointed
out by Saeys et al. [21]. We can find excellent examples of functional data
in the domains of proteomics [22,31], where experimental techniques
such as Mass Spectrometry are used for protein identification or quan-
tification tasks, and metabolomics, where Nuclear Magnetic Resonance
spectroscopy is usually applied [23]. Thus, the application of functional
data analysis (FDA) techniques such as the proposed for ILS could be
useful. FDA is a relatively new branch of statistics that deals with infinite
dimensional data, i.e., those curves, surfaces, and volumes defined
continually such as the time or frequency domain [20,32]. Taking into
account recent advances in computing science and the increasing amount
Fig. 1. TG data obtained by the different emulated laboratories.
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of functional data retrieved by experimental techniques and sensors, FDA
has been a great development in recent years. In fact, a great deal of
exploratory [33,34], regression [35,36], classification [37], analysis of
variance [25,38], and time series [39] statistical methodologies have
been developed and extended to a functional case. These techniques have
been successfully applied in a wide range of scientific domains such as
neuroscience [40], engineering [36], environmental sciences [41], ma-
terial science [28,30], and chemistry [20]. The use of FDA statistical
techniques is facilitated for practitioners by the development of various
packages implemented in R software [42] such as fda [43] and fda. usc
[44,45]. This fact has helped to increase the usability and generalization
of these techniques.

Concerning ILS studies, FDA approaches for outlier detection based
on functional data depth have been introduced in [1]. That work includes
FDA exploratory analysis [33], functional ANOVA based on random
projections (with false discovery rate correction) [38], and an FDA
outlier detection method composed of functional data depth calculation
(mode, Fraiman and Muniz, random projections depths) [33,45], and
bootstrap resampling [34,45]. That approach identifies outliers among
replicates (type 1 outliers), but it does not directly identify laboratories
that provide inconsistent data (type 2 and 3). On the basis of scalar,
Mandel's h and k statistics with their graphical tools are able to identify
outliers of type 2 and 3. The development of functional extensions of h
and k are justified when data obtained by laboratories are functional
(each curve is a datum of infinite dimension). In fact, the application of a
scalar test requires the previous extraction of one representative feature
from curves or surfaces. Important information can be lost in this process,
indeed, depending on the extracted feature, the test result could be
different. In this work, the use of bootstrap resampling provides an
alternative to develop functional extensions for these two statistics, first
briefly introduced in [46].

2. Experimental data collection

Two different real datasets have been used to test the new FDA
approximation for h and k statistics. The first one deals with thermal
analysis analytical techniques such as thermogravimetry, whereas the
second dataset accounts for temperature measurements obtained by
three redundant sensors placed in the same room in a commercial area of
a building.

2.1. Interlaboratory study based on thermogravimetric data

Thermogravimetric (TG) curves obtained from calcium oxalate mono-
hydrate (99.0 þ % purity) by Panreac, Ca(COO)2H2O have been used to
evaluate the new FDA approach of h and k statistics. TG is a thermal
analysis technique that provides information about material thermal
stability by measuring the mass loss as a function of time or temperature.
The goal is to assess the good performance of the proposed FDA exten-
sions for Mandel's h and k by comparing their results with those corre-
sponding to the h and k classical scalar approach. This database has been
obtained and used in the authors' previous work where FDA outliers
detection techniques based on data depth were introduced and compared
with the classical univariate approach [1]. Then, its use is justified in
order to properly assess the FDA h and k performance. As pointed out in
the previous work, calcium oxalate is often used as reference material in
calibration tasks due to its well-defined thermooxidative reactions,
composed of three very well-defined mass loss steps.

In order to simulate a common ILS, 7 different laboratories were
emulated by combining different testing instruments with different in-
strument calibrations. Each emulated laboratory tested 15 samples of
calcium oxalate by thermogravimetric analysis, thus, overall 105 samples
were used. Each sample was tested in a TA Instruments SDT 2960 or,
alternatively, in a Rheometric STA 1500 simultaneous analyzer. TG
curves were obtained heating each sample at a constant heating rate of
20 �C/min, between 20 and 900 �C under air atmosphere (50mL/min).



Table 1
Label and description of each laboratory.

Laboratory 1 STA device with old calibration specifications is used
Laboratory 2 Core group of
Laboratory 3 laboratories that
Laboratory 4 provides consistent
Laboratory 5 data with an SDT device
Laboratory 6 Old calibration specifications are applied to an SDT instrument
laboratory 7 Biased calibration of 2 �C was applied
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Fig. 1 shows the TG curves corresponding to the 7 studied laboratories.
All the TG curves correspond to real data obtained in laboratory, but it is
important to highlight that the ILS shown in this work is simulated. In
fact, as pointed out above, each laboratory is simulated by slightly
varying the instruments calibration, operators, and analyzer. Thus, there
is a group of 4 simulated laboratories (corresponding to 4 different real
operators) that provide the less unbiased and variable results. Moreover,
a simulated laboratory that provides biased results due to a 2 �C biased
temperature calibration with respect to the real value of zinc melting
temperature is used. A Laboratory with higher variability has also been
simulated using a 2-year old calibration. Finally, a seventh lab with
higher bias and variability, using a different instrument, Rheometric STA
1500, with an old calibration, is used. Table 1 shows each laboratory
label and summarizes its main features, indicating which of them should
provide different results due to their differences in experimental testing
procedure.

2.2. Detection of anomalous performance in the case of temperature
sensors in a heating ventilation and air conditioning installation

In this section we present a case study of the study of redundant
sensors [47]. That is, the installation of several sensors in the same area
in order to ensure the correct measurement of a critical quality feature for
the installation. In this case, the objective is to ensure the correct mea-
surement of the temperature in the stores of a Galician textile company.
This is a case study of a recently opened store located in a commercial
center of Panama City. The aim of monitoring the temperature is to
continually improve and control the energetic efficiency and thermal
comfort of the store. Data are retrieved by Σqus, developer of web plat-
forms [48], and Nerxus statistical consulting company for energy data.
Fig. 2 presents the plan of the store and identifyies the three installed
temperature sensors, one for each air conditioning machine (also called
air handled unit, AHU). It is intended to identify if the sensors are
measuring the same, that is, to identify if there is an erroneous operation
or a change in the climatic characteristics in any of the areas of the store
(which is undesirable and possibly related to a malfunction of the cor-
responding AHU). It is therefore a case study in the control of data
monitoring systems through the analysis of sensors. It is intended to
provide an alternative solution through the application of the functional
approach to the Mandels h and k statistics. By means of these techniques,
applied to the daily temperature curves, we intend to identify sensors
that behave atypically. With the help of the maintenance professionals in
Fig. 2. Plan of the store, situation of the three temp

136
the stores, whether the identified sensors have correct performance or
not is verified. In particular, those responsible detected anomalous
behavior in two of the sensors studied, due to technical reasons, during
the time period that data was obtained. The objective of the application
of the ILS FDA methodology will therefore be the detection of this situ-
ation automatically.

3. Functional methodology for inconsistent laboratories
detection

In this section, the scalar h and k statistics, and their functional ex-
tensions, HðtÞ and KðtÞ statistics, are introduced, as well the corre-
sponding dH and dK test statistics. dH and dK , obtained fromHðtÞ and KðtÞ
statistics, permit the detection of laboratories that provide no consistent
data in an ILS. In addition, some brief information about FDA, functional
norm, and functional data depth is also included in order to present as
self-contained a work as possible. The calculation of those measures is
necessary for computing both the location and dispersion functional es-
timates and for outlier detection [33,34,44].

3.1. FDA and functional data depth

Taking into account the proposed methodology structure, functional
data analysis and functional data depth are briefly described here.

Assume that the functional dataset fX1ðtÞ;X2ðtÞ;…;XnðtÞgg was ob-
tained as iid observations from a stochastic process XðtÞ, with continuous
trajectories on the interval ½a; b�, μðtÞ being the functional mean and
σ2ðtÞ > 0 the functional variance. We will consider the L2-norm:

kXk ¼
�
∫ b
aXðtÞ2dt

�1
2
;

The data depth concept explains how a datum is centered with respect
to a set of observations from a given population. Therefore, the deepest
datumwill be that surrounded by the highest number of neighbors. In the
FDA context, deeper curves are identified as those closer to the center,
which are usually estimated by the median [34]. Three of the most
common approaches to calculating the functional depth are the depth of
Fraiman and Muniz (or median depth) [33], the mode depth [34], and
the depth based on random projections [49].

The functional data depth can be used for outlier detection. Febrero-
Bande et al. [44] identify outliers in functional datasets, taking into ac-
count that depth and outlyingness are inverse notions (an outlier curve
will have a significantly low depth). Therefore, a way to detect the
presence of functional outliers is to look for curves with lower depths. In
the present study, we use a procedure based on trimming for detecting
outliers.

3.2. Scalar and functional extensions of Mandel's h and k statistics

In the ILS, a set of observations fXl
1ðtÞ;…;Xl

nðtÞgg are obtained for
each lab l; l ¼ 1;…; p. Each laboratory experimentally tests n samples,
erature sensors associated with the three AHUs.
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obtaining n different curves. The functional HlðtÞ and KlðtÞ statistics are
estimated for each laboratory and the null hypothesis that there is no
statistical difference between laboratory measurements is considered.
The null hypotheses for R & R studies are described below:

The null hypothesis of reproducibility states that

H0 : μ1ðtÞ ¼ μ2ðtÞ ¼ … ¼ μpðtÞ; (1)

where μlðtÞ, l ¼ 1…p are the populational functional mean for each
laboratory l.

To test reproducibility of the laboratory results, the previous calcu-
lation of the HðtÞ statistic is necessary. It is defined as

HlðtÞ ¼ Xl
i ðtÞ � XðtÞ
SlðtÞ ; l ¼ 1;…; p;

where XlðtÞ y SlðtÞ are the mean and functional variance pointwise
calculated for the l laboratory.

The null hypothesis of repeatability states that there are no differ-
ences in the laboratory variability:

H0 : σ21ðtÞ ¼ σ22ðtÞ ¼ … ¼ σ2pðtÞ; (2)

where σlðtÞ, l ¼ 1…p are the theoretical functional variances corre-
sponding to each laboratory l.

The repeatability test is based on the KðtÞ statistic, defined as

KlðtÞ ¼ SlðtÞffiffiffiffiffiffiffiffiffiffi
S2ðtÞ

q ; l ¼ 1;…; p;

where, S2ðtÞ ¼ 1
p

Pp
l¼1S

2
l ðtÞ.

On the one hand, in order to test the reproducibility hypothesis, we
define the dH test statistic as

dH
l ¼ kHlðtÞk ¼

�
∫ b
aHlðtÞ2dt

�1
2
;

considering that dH values corresponding to inhomogeneous laboratories
will tend to be high. On the other hand, to test the repeatability hy-
pothesis, we also define dKl ¼ kKlðtÞk, taking into account that higher
values of dK correspond to non-consistent laboratories.
3.3. Bootstrap algorithm for critical values estimation

A bootstrap algorithm to test if the dHl and dKl are significantly high is
proposed. The proposed bootstrap procedure pretends to reproduce the
distribution of these statistics under the corresponding null hypothesis,
(1) and (2) respectively. Assuming that a significance level α was fixed
(typically α ¼ 0:01), the algorithm consists of the following steps:

1. Remove atypical observations (in this case, curves), grouping all the
curves in a single set (null hypothesis), and applying the procedure
based on trimming for detecting outliers.

2. Using the smoothed bootstrap proposed in [34] to obtain bootstrap
samples of size p⋅n from the overall dataset once outliers are previ-
ously discarded. The bootstrap observations are randomly assigned to
the laboratories in each bootstrap sample.

3. For each bootstrap sample, the H�
l ðtÞ and K�

l ðtÞ functional statistics,
and the corresponding dH*

l and dK*l test statistics, are computed for
each laboratory l ¼ 1;…;p.

4. Approximate the critical values cH and cK of the test statistic (dH*
l and

dK*l ) from the empirical 100ð1� αÞ=p percentile of the distribution of
the corresponding p⋅B bootstrap replicates. In ILS, critical values for
outlier tests are usually calculated for a signification level of α ¼
0:01.
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5. Finally, the confidence bands for the HðtÞ and KðtÞ statistics are
computed. They are determined by the envelope of bootstrap samples
defined by a norm that is less than the corresponding critical value.

It is important to note that, for each laboratory, once dH*
l , dK*l , and

their respective critical values, cH and cK , are calculated, the null hy-
potheses of reproducibility (1) (or repeatability (2)) will be rejected if
dHl ¼ kHðtÞk > cH (alternatively, dKl > cK when repeatability is tested).

3.4. Methodology implementation in the ILS R package

In order to provide direct and easy access to the developed FDA
methodologies, a special emphasis has been placed on programming
computational tools using the statistical software R. The aim is that
practitioners of academia and industry could apply these techniques to
different types of functional data. In particular, the interlaboratory study
package (ILS) [50] has been developed and designed for the detection of
laboratories that provide non-consistent (atypical) data in the field of
interlaboratory studies. The ILS package allows for the application of the
univariate statistical tools recommended by the ASTM standard [19],
among which are the h and k, Grubbs, and Chocran scalar statistics. But,
what is more important in the present case, the ILS package allows for the
estimation of the functional statistics, HðtÞ and KðtÞ, as well as the test
statistics dH and dK . They are used for testing the hypothesis of repeat-
ability and reproducibility based on the critical values ch and ck and
estimated using the bootstrap algorithm described in [46].

4. A simulation study

Two scenarios are considered to observe the performance of the new
FDA approximations for Mandel's h and k statistics. They account for the
mean and variability deviations from the group formed by the consistent
laboratories. Accordingly, the first scenario consists of varying the
Gaussian process mean of one lab with respect to the data simulated for
the consistent laboratories, whereas the second one is defined by fixing a
different result variance for one laboratory. The above-mentioned sce-
narios allow for the evaluation of the dH and dK statistics power and also
to develop new functional control charts for HðtÞ and KðtÞ functional
statistics. The use of the latter provides additional information about the
time/temperature range where curves become outliers, and consequently
about the chemical or physical process and substances involved
(depending on the experimental data analyzed).

Each scenario is composed by p laboratories (each one has tested n
samples). The TG curves, results of each lab, are simulated from a
Gaussian process YðtÞ ¼ μðtÞþ σðtÞεðtÞ, where t 2 ½0;1� is the simulated
time/temperature interval measured in arbitrary units (u.a.). The μðtÞ ¼

c
ð1þexpðbðt�mÞÞÞ1τ

is the trend function and it corresponds with the general-

ized logistic model, whereas σðtÞ2 ¼ c0

�
5þ v

�
1�

�
t

0:5 � 1
�2�3

�
is the

deterministic variance with c0 ¼ 10�6. In addition, ε is a second order
stationary process defined by 0 mean and expð�js� tj=0:3Þ covariance.
The generalized logistic model has been used to model TG data in many
works dealing with kinetic and classification studies [29,51]. These two
scenarios are defined taking into account the meaning of the generalized
logistic parameters. In fact, the m parameter accounts for the time or
temperature corresponding to the maximum curve slope or inflexion
point, c is the initial sample mass (in this case it is fixed to 1, in u. a), b is
related to the rate of change (in the case of TG curves, rate of thermal
degradation), and τ accounts for the asymmetry degree of curves. In the
interest of simplicity, and accounting for previous studies, one symmetric
(τ ¼ 1) degradation process defined by an initial mass of 1 u. a. (c ¼ 1),
and rate of degradation characterized by b ¼ 10 is assumed in the present
simulation study. Summarizing, μðtÞ ¼ 1

1þexpð10ðt�mÞÞ.



Fig. 3. (a) Theoretical means for TG curves simulated under the null hypothesis H0 : m0 ¼ 0:5 and the alternative, H1 : m1 ¼ m0ð1þ δHÞ (δh ¼ 0:005), (b) HðtÞ
functional statistic realizations for each of the 7 simulated laboratories, (c) dh statistical distribution estimated by bootstrap resampling, and (d) dH statistic realization
for each laboratory sample.
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4.1. A simulation study to test reproducibility

In the first simulated scenario, the null hypothesis is formulated in
terms of m parameter. It is defined by H0 : m0 ¼ 0:5, i.e., the results of
laboratories are consistent when μðtÞ ¼ 1

1þexpð10ðt�m0ÞÞ. On the other hand,

the alternative hypothesis is defined by H1 : m1 ¼ m0ð1þ δHÞ, where �
0:005 � δH � 0:005. The theoretical mean for m0 ¼ 0:5 and m1 ¼
m0ð1þ 0:005Þ are presented in Fig. 3 a. As can be observed, there are
very slight differences between the two scenarios.

Accordingly, and taking into account previous studies with real data,
TG curves corresponding to p ¼ 7 laboratories, each obtaining one n ¼
10 replicate, are simulated. The data corresponding to a core of 6 labo-
ratories are simulated under the H0, whereas the results of 7th lab are
obtained under the H1. Considering that interlaboratory differences are
induced, the null hypothesis of reproducibility has to be tested using the
proposed dH and HðtÞ statistics. In this regard, 1000 simulations were
done, each one composed of 500 bootstrap resamples for the purpose of
estimating the dH statistic distribution (Fig. 3c). Once the distribution of
dH statistic is estimated by the bootstrap procedure, the critical value test,
cH , corresponding to α ¼ 0:01, is also calculated and shown in Fig. 3 c
(dotted line).

Note that one of the advantages of Mandel's h and k has currently been
that both statistics provide very intuitive graphical tools for identifying
the laboratories characterized by non-consistent results. Thus, the pre-
sent FDA proposal intends to reproduce and even complete the graphical
outputs corresponding to the univariate approach. Namely, in Fig. 3 b,
the HlðtÞ (with p ¼ 1;2;…;7) sample realizations of functional statistic
are shown. The corresponding dHl are shown in the bar plot of Fig. 3 d,
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following the same style as the univariate approach [1]. It provides a
graphical way to perform the hypothesis test, where cH is a dotted hor-
izontal line that determines the edge above which a laboratory could be
considered an outlier. In fact, the 7th laboratory (of which the data have
been simulated under H1) is successfully identified as an outlier, dH7 > cH
(Fig. 3d). The same result can be achieved by observing Fig. 3 b, where
the central section of theH7ðtÞ curve, shown as a segmented line, is out of
the region defined by the functional quantiles (shown in dashed lines)
obtained from cH . It is important to note that the functional approach,
shown in Fig. 3 b, also provides information about the time/temperature
interval, where the results of lab 7 are different from the others. In this
case, this interval corresponds to the TG step region, where the slope of
the curve varies (related to a simulated degradation process). This in-
formation could be useful not only for thermal analysis curves but to
analyze other analytical technique results.

4.2. A simulation study to test repeatability

The second simulation scenario has been defined in order to test the
behavior of the new methodology in detecting outlier laboratories taking
into account intralaboratory variability. Thus, the null hypothesis is
formulated in terms of variability, modifying the v parameter defined in
section 3. It is defined by H0 : v0 ¼ 5, i.e., the results of laboratories are

consistent when σðtÞ2 ¼ c0

�
5þ 5

�
1�

�
t

0:5 � 1
�2�3

�
. On the other

hand, the alternative hypothesis is defined by H1 : v1 ¼ v0ð1þ δKÞ,
where 0 � δK � 2. The theoretical variance for v0 ¼ 5 and v1 ¼ v0ð1þ 2Þ
are presented in Fig. 4 a. The variances have been chosen accounting for
previous studies dealing with real TG data [1]. As in the case of the first



Fig. 4. (a) Theoretical means for TG curves simulated under the null hypothesis H0 : v0 ¼ 5 and the alternative, H1 : v1 ¼ v0ð1þ δKÞ (δk ¼ 2), (b) HðtÞ functional
statistic realizations for each of the 7 simulated laboratories, (c) dK statistical distribution estimated by bootstrap resampling, and (d) dK statistic realization for each
laboratory sample.

Fig. 5. (a) Power curves (rejection proportion) for the dH statistic corresponding to n ¼ 10 and n ¼ 20 samples per lab, (b) power curves for the dK statistic corre-
sponding to n ¼ 10 and n ¼ 20 samples per lab. Segmented lines correspond to n ¼ 20, whereas solid lines correspond to n ¼ 10.
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Fig. 6. (a) p-values distribution for the dH statistic under the null hypothesis, (b) p-values distribution for the dK statistic under the null hypothesis.
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scenario, the data corresponding to the first 6 laboratories are simulated
under the H0 : v0 ¼ 5, whereas the synthetic curves of the 7th lab are
obtained assuming the alternative hypothesis, H1 : v1 ¼ v0ð1þ 2Þ.

Taking into account that intralaboratory differences are introduced,
the null hypothesis of repeatability is tested using the proposed dK and
KðtÞ statistics. A thousand simulations were performed, each one
composed of 500 bootstrap resamples in order to estimate the dK statistic
distribution (Fig. 4c). The test of critical value, cK , defined by, is also
estimated for α ¼ 0:01 (Fig. 3 c, defined by a dotted line). Moreover, the
KlðtÞ (with p ¼ 1; 2;…;7) sample realizations of functional statistics are
shown in Fig. 4 b. The corresponding dKl are plotted in Fig. 4 d, providing
a graphical tool to perform the hypothesis test, where cK is a dotted
horizontal line above which a laboratory could be considered an outlier,
as is the case of the 7th laboratory, dH7 > cH (Fig. 4d). As in the previous
scenario, the same result can be achieved by observing Fig. 4 b, where the
central section of the K7ðtÞ curve, shown as a dotted line, is out of the
region defined by the functional quantiles (shown in dashed lines) cor-
responding to cK . This interval corresponds to the region surrounding the
TG inflexion point, where the variance is higher.
4.3. Effects of laboratory sample size

For each simulated scenario, the effects of laboratory sample size (n ¼
10;20), using a signification level of α ¼ 0:01, on the new tests perfor-
mance are studied. The aim is to evaluate the consistency of the two
proposed FDA approximations for Mandel's h and k tests. Fig. 5 shows the
rejection proportions under the null hypothesis for both statistics, dH in
the (a) panel, and dK in the (b) panel. The lines of Fig. 5a and 5 b shows
the power of the dH and dK , respectively, corresponding to the two
sample sizes: segmented lines for n ¼ 20 and continuous lines for n ¼ 10.
As can be observed in both panels, the increasing of the sample implies
higher rejection proportions out of the null hypothesis, a higher test
power. This is in accordance with recommendations of ASTM [1] for the
univariate case. In any case, even using small samples (n ¼ 20) the
present FDA approximations show a good performance.
4.4. Statistic p-values study under the null hypothesis

It is important to stress that p-value of the test statistics is a random
variable uniformly distributed over ½0;1� interval, Uð0;1Þ, under the null
hypothesis [52]. Thus, this hypothesis should be checked in order to
verify the validity of the proposed FDA approximations for Mandel's h
and k. Accordingly, a sample with the results for the 7 laboratories has
been obtained in each simulation and, consequently, sample values for dH

and dK and their corresponding p-values have been obtained. By the
application of Kolmogorov-Smirnov test to the resulting p-values and
fixing a signification level of α ¼ 0:01, we find that the null hypothesis
that p-values are uniformly distributed in ½0;1� cannot be rejected. This is
supported by the results of Fig. 6, where the cumulative rejection
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proportion of each test is plotted as a function of different values of α. In
Fig. 6 a, for the dH statistic, the rejection proportion is practically equal to
α. A similar result can be observed in Fig. 6 b. The trend is almost equal to
the bisector, only in the case of small values for α is there a very slightly
higher rejection proportion than expected. These results help to support
the validity of the proposed tests.

4.5. Comparison between FDA and scalar approaches for ILS

The ILS studies have been currently performed using statistical scalar
approaches. A scalar variable of interest is measured and analyzed. As
mentioned in section 1, the univariate tests for detecting outliers are one
of the most used and necessary tools in ILS to detect those laboratories
that provides inconsistent results [1–5,19]. In this regard, there are
several very popular scalar tests prominent among which is Mandel's h
and k [19], described from a computational point of view for practi-
tioners. However, as far as we know, there are no FDA extensions from
the univariate test in order to perform laboratory outlier detection when
experimental data are functional, except for the present proposal. Thus,
to compare this new proposal with respect to the corresponding multi-
variate approaches is mandatory in order to evaluate its performance and
applicability. For this purpose, synthetic functional data are used, in this
case the simulated TG curves. The aim of this subsection is to check if the
use of the proposed FDA extensions provides advantages with respect to
the scalar approach when the data are curves (functional). Therefore, to
be able to calculate univariate Mandel's h and k, extracting a represen-
tative feature of curves is necessary. In the case of TG curves, different
variables have been studied: the temperature/time to lose the 5wt% of
initial mass (initial decomposition temperature/time, IDT) or, alterna-
tively, the temperature/time to lose the 10wt%. These are indices
currently used to estimate the degree of thermal degradation in poly-
meric materials [1]. The consistency of univariate and functional ap-
proaches is compared using two different sample sizes, n ¼ 10 and n ¼
20. As can be observed in Fig. 7, the power of a univariate test depends
on the feature that has been extracted. In fact, for both sample sizes, the
power of the univariate h statistic is higher when the extracted variable is
the time/temperature for losing the 10wt%. In Fig. 7 a, the highest power
corresponds to the univariate approach applied to IDT, as mentioned, but
the power corresponding to the FDA extension dH is also higher than the
power of univariate hwhen the extracted feature is the time/temperature
to lose the 5wt%. Therefore, this supports the application of the FDA
approach, taking into account the performance of the univariate case
depends to a high extent on the chosen feature. Moreover, Fig. 7 b shows
that the tests of the power of the univariate h statistic for 5wt% and
10wt% are higher than the power of the FDA approach when n ¼ 20.
Summarizing, for the case of Mandel's h statistic (applied to the thermal
analysis case), the use of the FDA extension could be recommended when
the number of replicates is relatively small (common case in ILS) and
there is more than one possible representative feature in each curve.

However, when the Mandel's k statistic is studied, we find that the



Fig. 7. (a) Test powers corresponding to univariate (5wt% and 10wt%) an FDA approaches for h statistic, with n ¼ 10, (b) Test powers corresponding to univariate
(5wt% and 10wt%) an FDA approaches for h statistic, with n ¼ 20.

Table 2
dK statistic rejection proportion (with α ¼ 0:01) compared with the univariate k
statistic rejection proportion when calculated from the scalar variables time/
temperature to lose the 5wt% and 10wt% of sample mass.

n n¼ 10 n¼ 20

δK 5 wt% 10wt% FDA 5wt% 10wt% FDA

0 0.001 0.000 0.002 0.000 0.000 0.000
0.2 0.001 0.001 0.021 0.000 0.000 0.021
0.4 0.002 0.001 0.063 0.000 0.000 0.121
0.6 0.003 0.002 0.150 0.003 0.001 0.336
0.8 0.003 0.002 0.251 0.003 0.002 0.561
1 0.004 0.005 0.379 0.004 0.006 0.767
1.2 0.004 0.005 0.496 0.005 0.007 0.884
1.4 0.004 0.006 0.614 0.008 0.007 0.953
1.6 0.004 0.009 0.722 0.009 0.011 0.981
1.8 0.006 0.009 0.802 0.009 0.012 0.998
2 0.008 0.012 0.919 0.009 0.014 1
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FDA approach provides the best performance in terms of power for all the
studied sample sizes. In fact, Table 2 shows the rejection proportion for
each shift from the null hypothesis, δK , corresponding to the univariate k
statistic applied to the time/temperature to lose the 5wt% and 10wt%
and to the FDA extension applied to the whole curves. As can be
observed, the power of the FDA approach is rather higher than the cor-
responding univariate k statistic, independently of sample size and
feature extracted (in the univariate case). Summarizing, the use of the
FDA extension is recommended when intralaboratory variability is
analyzed.

5. Real data application

In addition to simulation studies, the application of real data obtained
by experimental techniques is needed to understand the performance and
utility of the proposed methodology.
5.1. Interlaboratory study using thermogravimetric analysis

In this regard, the present functional procedure for R& R studies,
described in section 3, is applied to the thermogravimetric real of calcium
oxalate, presented in section2. In this real example, there are 4 labora-
tories that provide similar results, whereas the laboratories 1, 6 and 7
provides different results for different reasons (section2). These data
have been deeply studied in [1], where the univariate k and h statistics
had identified different laboratories as outliers depending on the feature
extracted for TG curves. As shown below, the laboratories that provide
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inconsistent data are successfully identified by the application of the FDA
extensions H and K (and their counterparts dH and dK test statistics). This
approach has the goal of using the whole curve, without the feature
extraction step.

As in the previous section, the first step consists of estimating the
functional HðtÞ (Fig. 9a) and KðtÞ (Fig. 10a). From HðtÞ (reproducibility)
and KðtÞ (repeatability) functional sample statistics, the dH and dK test
statistics are calculated and compared with respect the cH and cK critical
values, defined as the quantiles corresponding to α ¼ 0:01 (as usual in ILS
studies), obtained by a bootstrap procedure (section 3). The l laboratory
for which dHl > cH and/or dKl > cK is identified as an outlier. In addition,
it is important to note that the identification of outliers in ILS is a iterative
process, i.e., the univariate procedure is consecutively applied until no
laboratory is identified as an outlier [1,19]. Thus, the present FDA
extension is also iteratively applied, following the scheme of the scalar
approach. It is also important to stress that the present FDA extensions for
h and k Mandel's statistics identify the outlier laboratories, not only the
outlier data within each laboratory, as in other ILS studies to deal with
functional data [1].

Once H and K are calculated, the dH and dK distributions are esti-
mated by bootstrap procedures. In advance, the outlier TG curves within
each laboratory are removed. Thus, the 1% of the TG curves (obtained by
all the laboratories) with the lowest functional mode depth [44,45] are
removed. In the present study case, a TG curve corresponding to labo-
ratory 7 has been removed. Note that laboratory 7 is one of the real
outliers that we intend to detect.

Fig. 8 a shows the dH distribution obtained by the bootstrap pro-
cedure (using B ¼ 500 resamples), in addition to the cH critical value
corresponding to α ¼ 0:01. Fig. 8 b provides the dH test graphical output
corresponding to the first application of the functional approach (first
iteration), where laboratory 7 is correctly detected as an outlier. In fact,
laboratory 7 is defined by using thermogravimetric balance with a biased
calibration of temperature. In the second and third iterations of FDA
methodology, laboratories 1 (STA instrument with old calibration) and 6
(SDT instrument with old calibration) are also successfully detected as
outliers. Fig. 8 c shows the dH distribution in the fourth iteration or fourth
application of the FDA procedure, whereas the corresponding dH test
graphical output is shown in Fig. 8 d, where no outlier laboratories are
detected and the iterative process is stopped. All the outlier laboratories,
from a reproducibility point of view, are successfully detected using the
proposed FDA approach.

The reproducibility hypothesis can also be tested directly using the H
functional statistic as shown in Fig. 9. Also applying an iterative process,
with α ¼ 0:01, laboratory 7 is detected as an outlier (Fig. 9a). The H
statistic provides additional information about the temperature interval



Fig. 8. (a) Histogram for the dH sample statistic (first iteration), (b) dH statistic for each laboratory and CH for α ¼ 0:01 (first iteration), (c) Histogram for the dH

sample statistic (4th iteration), and (d) dH statistic for each laboratory and CH for α ¼ 0:01 (4th iteration).

Fig. 9. (a) HðtÞ functional statistic with 99% confidence bands (first iteration), (b) HðtÞ functional statistic with 99% confidence bands (4th iteration).
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where laboratory 7 becomes outlier: the region corresponding to the first
degradation step of calcium oxalate is outside of the 99% confidence
bands. Laboratories 1 and 6 are detected as outliers in the 2nd and 3rd
methodology iterations. Fig. 9 b shows the H statistic corresponding to
each laboratory in the 4th iteration. These laboratories correspond to the
142
four consistent laboratories from the real data, as expected.
The same procedure is applied to test the hypothesis of repeatability,

but instead using the K functional statistic and dK test statistic. Labora-
tory 6 is detected as an outlier (Fig. 10a and Fig. 10b) with α ¼ 0:01. The
region corresponding to the first, second, and third degradation steps of



Fig. 10. (a) Functional K statistic for each laboratory and confidence band for α ¼ 0:01 (1st iteration), (b) dK test statistic for each laboratory and critical level
corresponding to α ¼ 0:01 (1st iteration), (c) Functional K statistic for each laboratory and confidence band for α ¼ 0:01 (2nd iteration), and (d) dK test statistic for
each laboratory and critical level corresponding to α ¼ 0:01 (2nd iteration).
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calcium oxalate is outside of the 99% confidence bands. The iterative
process stop at this iteration because no outlier laboratories are detected
in the second methodology application (Fig. 10c and Fig. 10d). Although
laboratories 1 and 7 are candidates to be outliers (Fig. 10c), there is not
enough evidence at α ¼ 0:01 (Fig. 10d). Thus, at a confidence level of α ¼
0:01 (commonly used in ILS) only laboratory 6, where a too old
143
calibration had been used, is detected as an outlier taking into account
the intralaboratory variability (repeatability).

In conclusion, laboratories 1, 6, and 7 have been properly identified
as outliers. They provide inconsistent results if compared with the
remaining four laboratories. The FDA H functional statistic and dH test
statistic have detected laboratories 1, 6 and 7 taking into account the



Fig. 11. Plan of the store, situation of the three temperature sensors associated with the three AHUs.
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reproducibility hypothesis, whereas the FDA K and dK statistics detect
laboratory 6 in the context of the repeatability hypothesis. Thus, the
proposed FDA extensions for Mandel's h and k statistics provide a new,
useful way to perform outlier detection in ILS studies when dealing with
functional data, without the additional step of representative feature
extraction. Not only in the context of thermal analysis but in different
domains of analytic chemistry, applied physics and engineering.

5.2. Identification of anomalous sensors

There is a record of the temperature of a room in a store (from August
8, 2017 to October 6, 2017) obtained from the measurements of three
sensors. Taking into account that the three sensors are measuring the
temperature of the same room, the objective is to detect if the results
obtained by the three sensors are comparable. In particular, sensor 1 is
used as a reference for correct operation (by the maintenance managers).
Therefore, it is intended to evaluate whether sensors 2 and 3 provide
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consistent measurements. Fig. 11 shows the original data measured at a
frequency of 5min, the curves of temperature. The timetable of the store
is comprised between 10 and 21, when the ventilation and air condi-
tioning installation are running. The effect is the temperature lowering
during working hours (in Panama the installations are of ventilation and
air conditioning, never heating).

A short FDA descriptive analysis of temperature curves is developed
by means of the ILS R package, developed by the authors so that prac-
titioners could apply the proposed h and k FDA statistics. Functional
means and variances are provided (for each laboratory or sensor, and also
taking into account all the curves) as shown in Fig. 12.

In Fig. 13, the typical output for h and k scalar statistics are emulated
for the functional case. Taking into account the intralaboratory vari-
ability (dh statistic), sensor 1 is identified as an outlier if compared with
sensors 2 and 3, as shown in Fig. 11. Otherwise, there are no differences
when intralaboratory variability is studied (dk statistic). Thus, the results
support the statement of store managers: sensors 2 and 3 are



Fig. 12. Plan of the store, situation of the three temperature sensors associated with the three AHUs.
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Fig. 13. Plan of the store, situation of the three temperature sensors associated with the three AHUs.
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malfunctioning and corrective actions are needed.

6. Conclusions

Functional extensions for Mandel's h and k statistics have been pro-
posed for dealing with curves obtained by experimental techniques. They
identify the non-consistent laboratories in an ILS study using the infor-
mation provided by the whole curve. Accordingly, an alternative
approach to performing the outlier laboratory detection task in ILS
studies when the experimental data are functional (curves) is provided,
as opposed to the current scalar approaches. In fact, using this new
proposed methodology, the feature extraction step from experimentally
obtained curves is prevented. Moreover, another of the goals of the
present FDA ILS procedure for outlier detection is to directly identifies
inconsistent laboratories as outliers, while previous FDA attempts for ILS
only identified atypical curves within each laboratory. Thus, the present
work provides an improvement that works with functional data in the
same manner as the popular scalar h and k approach. The present FDA
approach consists of the calculation of functional (pointwise obtained in
the interval where curves are defined) H and K statistics, from which dH

and dK test statistics are obtained using the L2 distance. The dH test sta-
tistic is defined to test the reproducibility hypothesis, evaluating the
interlaboratory variability, whereas the repeatability hypothesis (intra-
laboratory variability) is tested by dK . The dH and dK probability distri-
butions are estimated by a bootstrap procedure, and thus the test of the
critical values CH and CK can be obtained as the quantiles corresponding
to α ¼ 0:01. Note that, prior to the application of bootstrap resampling,
the computation of functional data depth is required to remove outlier
curves.

The simulation study performed using TG curves has provided in-
formation about the validity and power of the new FDA extensions of the
h and k tests, in addition to the effects of sample size. Namely, the dH and
dK p-values under the null hypotheses of reproducibility or repeatability
are uniformly distributed, supporting the validity of the proposed test
statistics. Further, all the simulated outlier laboratories have been suc-
cessfully identified by the application of, on the one hand, H and dH to
detect interlaboratory changes and, on the other hand, K and dK to
identify intralaboratory differences. Concerning the test power, when the
number of laboratory replicates is not very high (n ¼ 10) the dH test
power is higher than its h scalar counterpart when features such as time/
temperature to lose the 5wt% are extracted. Depending on the feature
extracted, the power of functional approach can be higher or not than the
corresponding scalar approach. However, the dK power is always higher
than the corresponding scalar k statistics, whatever the extracted feature
is. Finally, as expected, increasing the number of laboratory replicates
significantly increases the functional extension tests powers.

The FDA approach application to thermogravimetric real data has
shown that the proposed methodology is able to detect all the real outlier
laboratories. For this task, the use of both dH and dK test statistics or H
and K functional statistics has been necessary. At this point, note that the
use of H and K functional statistics also shows the time/temperature
interval where the laboratories become outliers. The identification of
these intervals can provide relevant information about the physical or
chemical processes that induce more differences between the measure-
ments of the different laboratories.

The application of dH and dK test statistics or H and K functional
statistics to environmental variables that are continuously monitored has
provided for the successful identification of non-consistent indoor tem-
perature sensors. These FDA approximations can be applied in the
context of thermal comfort, energy efficiency, and also variable moni-
toring in environmental science and technology.

The above-mentioned results derived from simulation and real data
studies support the use of this methodology, not only in the context of
thermal analysis, but also in different domains of analytic chemistry,
applied physics, and engineering.
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