
Received 18 April 2023, accepted 7 June 2023, date of publication 14 June 2023, date of current version 28 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3286391

Design, Implementation, and Practical Evaluation
of a Voice Recognition Based IoT Home
Automation System for Low-Resource Languages
and Resource-Constrained Edge IoT Devices:
A System for Galician and Mobile
Opportunistic Scenarios
IVÁN FROIZ-MÍGUEZ , PAULA FRAGA-LAMAS , (Senior Member, IEEE),
AND TIAGO M. FERNÁNDEZ-CARAMÉS , (Senior Member, IEEE)
Department of Computer Engineering, Faculty of Computer Science, Universidade da Coruña, 15071 A Coruña, Spain
Centro de Investigación TIC (CITIC), Universidade da Coruña, 15071 A Coruña, Spain

Corresponding author: Paula Fraga-Lamas (paula.fraga@udc.es)

This work has been funded by the Xunta de Galicia (by grant ED431C 2020/15), and by grants PID2020-118857RA-100 (ORBALLO) and
TED2021-129433A-C22 (HELENE) funded by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR.

ABSTRACT Systems with voice control are an attractive option for increasing technological integration, not
only for people with little knowledge on technology or constrained Internet access, but also for people with
certain disabilities. In addition, devices based on Alexa or Google Home provide an interesting alternative
for interacting with Internet of Things (IoT) devices, but they usually rely on an Internet connection to a
cloud server for their full operation. Furthermore, many voice-recognition systems are only available in a
limited number of languages, which tend to be those with the highest number of speakers, thus excluding
minority-language speakers. To address the previouslymentioned issues, this article presents a solution based
on Edge Computing and voice commands that carries out offline voice processing and that is able to interact
with IoT-based systems. The proposed system performs local speech inference, providing a communication
interface with IoT devices in a Bluetooth mesh, all in a fast way and without the need for an Internet
connection. In addition, the proposed solution can be adapted easily for voice recognition of languages
with few resources. Such a feature is demonstrated with the Galician language, which is spoken by less
than 3 million people worldwide. In particular, different Automatic Speech Recognition (ASR) models
based on three of the most popular ASR development frameworks (wav2vec2, DistilHubert, Whisper) were
developed to transcribe short speech and to translate it into IoT commands that perform specific home-
automation actions. Such models were fine-tuned for Galician with a corpus of approximately 20 hours and
were evaluated in static and mobile opportunistic scenarios in terms of accuracy, energy consumption and
latency on an embedded platform (that acts as an edge device) and on a cloud server. The obtained results
show that inference is performed in less than 2 seconds on a Raspberry Pi 4 for the two smallest models
and in less than 500ms on a high-end Android smartphone when processing all data locally with CPU-only
inference (i.e., without hardware acceleration or external processing). The results of the transcriptions are
accurate enough to be able to use simple text distance algorithms to detect keywords in the speech and
perform commands on IoT devices. In particular, a maximum success rate of 92%was achieved for detecting

The associate editor coordinating the review of this manuscript and

approving it for publication was Aysegul Ucar .

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 63623

https://orcid.org/0000-0003-4068-8842
https://orcid.org/0000-0002-4991-6808
https://orcid.org/0000-0003-2179-5917
https://orcid.org/0000-0002-5253-3779

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

the indicated commands when using models optimized for being executed on embedded devices. For selected home
scenarios, command actions were sent via Bluetooth with average response times of up to 113ms.

INDEX TERMS ASR, machine learning, IoT, voice-assistant, edge AI, edge computing, home automation,
opportunistic communications.

I. INTRODUCTION
With the emergence of the Internet of Things (IoT), more
aspects of everyday life are becoming interconnected and dig-
italized, providing people more comfort and greater control
over their daily activities. However, most of such technologi-
cal progress is only available for specific groups of society
with some technological background. A large part of the
population in developing countries, as well as the elderly, are
usually not able to use traditional computing devices such
as computers, smartphones or tablets. In this regard, voice
recognition based systems are a good enabler for providing
access to IoT technologies to a high percentage of the society.

The mentioned technological adoption, especially in the
case of the elderly, is also beneficial for thewhole society. The
current trend indicates that, on average, people live longer [1],
and, for people with partial loss of autonomy or at risk of
losing it, the access to IoT technologies is able to improve
their independence and to provide a better quality of life,
avoiding premature admission to residential care homes with
the associated healthcare costs. However, nowadays, unfor-
tunately, many IoT solutions provide complex user interfaces
to manage them. In this regard, voice-based interfaces are an
intuitive and an accessible option that allows for a convenient
and simple way to interact with IoT embedded systems.

The implementation of voice-recognition systems still
presents certain challenges [2], [3]. In the last years Auto-
matic Speech Recognition (ASR) systems have increased
their presence in IoT-based Home Automation (HA) systems
[4]. Systems such as Alexa or Google Home, although
they are a reference in the HA market, depend on a con-
stant Internet connection for their full operation. However,
it is common for certain population groups like the elderly
to have reduced or no Internet connection. In addition,
many voice-recognition systems are always listening and the
speech is sent without encryption, which represents a privacy
risk [5], [6].

The main reason to process voice in a remote cloud
is that audio transcription mechanisms are computationally
expensive [7]. However, with the improvement in compu-
tational efficiency of embedded devices, and by reducing
the transcription domain and using short voice commands,
it is possible to obtain good results by doing the processing
locally even though the achieved accuracy is lower than in a
cloud [8].

Another problem is language availability in ASR sys-
tems. Traditionally, such systems need thousands of hours of
labelled audio to train a model that delivers good transcrip-
tion results [9]. Moreover, people usually do not memorize
specific commands and tend to use small variations that are

more natural to them instead of memorizing specific
phrases [10].

There are several approaches to overcome the previously
mentioned two drawbacks. On the one hand, in 2020 a frame-
work for ASR was developed to allow transcription results
to be obtained with near-human precision with much less
transcription hours than the previous systems: wav2vec2 [11].
Keeping in mind that nearly 7,000 languages exist and that
the vast majority of them has few labelled data or any of
them available [12], wav2vec2 approach allows for expand-
ing voice-recognition technology and thus making it more
accessible. On the other hand, in order to overcome the
limitation of imposing a specific grammar for communicating
with a voice assistant, it is necessary to define a language
grammar, since a literal transcription of the voice is actually
not relevant (i.e., what is important is actually the meaning
of the command, not the fact of saying specific words in a
specific order). Thus, sets of keywords can be defined to build
a grammar around them. In addition, it should be considered
that a local or edge implementation requires reducing the
language domain, which involves creating a model with a
lower precision than the one that would be used in a cloud
server.

This article presents a system that considers all the pre-
viously mentioned issues and tackles them by implementing
a voice recognition system developed for the Galician lan-
guage. The proposed system can be run without relying on
an Internet connection and is able to execute specific com-
mands on IoT devices. Galician has been chosen because it
currently has few voice-recognition resources but it is used
as a vehicular language by a high percentage of the elderly
that live in Galicia (northwest of Spain), specifically in rural
areas, where there is a clear lack of access to new technolo-
gies and where poor communications still prevail. Moreover,
Galician population is immersed in an aging process that
affects all Europe [13]. The average age continues to increase
every year, with a total population of less than 2.7 million
inhabitants, currently standing at 47.74 years [14]. The demo-
graphic situation in Galicia also presents a significant gap
between a more urban and dynamic region and a more rural
one where the aging process is even more aggravated and
seems to lead to a depopulation also partly caused by the lack
of economic incentives and services in these areas [15].

The following are the main contributions of this article:
• It describes a novel home IoT system based on low-cost
embedded devices that makes use of Edge Comput-
ing and an optimized speech-recognition system for
low-resource languages. Moreover, since IoT device

63624 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

communications are carried out through a Bluetooth
mesh, it is not necessary to deploy any home infrastruc-
ture connected to the Internet.

• It includes a thorough analysis of the main Machine
Learning (ML)models in the field of ASR to be executed
on edge devices.

• It proposes different optimization techniques to run ML
models on embedded devices.

• It presents a detailed evaluation of the developed IoT
system in terms of response time, accuracy and energy
consumption.

The remainder of this article is structured as follows.
Section II reviews the state of the art of voice assistants
for HAs and healthcare, and continues with an analysis of
the improvements provided by Natural Language Processing
(NLP) in such domains. Moreover, Section II analyzes the
suitability of using ML in Edge Computing devices, as well
as the use of distributed communications for Edge Comput-
ing and the benefits they bring over traditional client/server
architectures. Section III details the design and implemen-
tation of the proposed voice-assisted IoT system. In such a
Section, an exhaustive analysis of the main HA technologies
is carried out by focusing on the proposed use case, as well
as on the main speech recognition development frameworks.
Next, Section IV presents the results for a set of experiments
performed for the two main subsystems (i.e., for the voice
processing and the communications subsystem). Finally,
Sections V and VI summarize the key findings and the most
relevant conclusions.

II. STATE OF THE ART
A. VOICE-BASED SOLUTIONS FOR HAs
There are numerous papers and proposed solutions on the
subject of voice interfaces focused on HA environments [16],
[17], [18]. Many of such papers address the problem of
running voice-based solutions on a server [16], others offer
an edge or offline solution that provides faster response times
and privacy [16], [18], while others include ML strategies for
processing voice-related tasks [16], [17], [18].

The most accurate speech recognition models usually use
billions of input parameters [19], which makes them com-
putationally expensive and not suitable for IoT devices with
power and processing constraints. However, a literal tran-
scription is not necessary for the case of voice assistant
systems [16], [17], [18]. For instance, a solution could consist
in reducing the domain of the language and thus only detect
certain keywords [16], [17], [18]. In this way, the end user
can make use of a more natural language instead of learning
exactly a specific set of commands, thus detecting specific
keywords and building a grammar around these words. For
instance, the SparkFun Edge [20] is a real-time audio anal-
ysis device that runs ML inference to detect keywords and
responds accordingly, constituting a good example of voice
recognition at the edge.

The deployment of ML models on all IoT end-devices
is not adequate, since many of them are specific-task and

low-power oriented. For such a case, an effective alterna-
tive would consist in placing additional computing devices
at the edge of the network with enough computation to be
Artificial Intelligence (AI) capable [21]. Such a strategy is
known as Edge Intelligence (EI) or Edge Artificial Intelli-
gence (Edge AI) [22]. The communication with such devices
is much more immediate than making requests to a cloud,
it considerably reduces Internet traffic, and, if the network
is secured, there are no privacy issues when communicating
within a private network.

B. VOICE-BASED SOLUTIONS FOR HEALTHCARE AND FOR
THE ELDERLY
Advances in technology in recent years have enabled an
improvement in healthcare towards a more specialized model
focused on individual patient management. Moreover, the
COVID-19 pandemic has forced the adoption of certain
aspects of telemedicine [23]. However, accessing and using
such novel technologies is often not straightforward for the
elderly or for people with certain disabilities: it is chal-
lenging for them to adopt, to learn, and to interact with
such tools that can normally only be accessed through mod-
ern Graphical User Interfaces (GUIs). Fortunately, current
voice-based assistants allow users to interact with digital
systems in a more natural way, which is especially useful
for the elderly [17], [24], [25]. Some studies on the use
of voice-based assistant solutions among elder population
resulted on a preference to use voice-based interfaces rather
than GUI-based touch screen inputs or keyboards [26]. Like-
wise, most of the tasks performed by the elderly are related
to health or medical questions [26].

Voice-based assistants, when used in combination with
the latest advances in technology, provide an improvement
in the quality of healthcare services, especially in rural or
remote areas where services are minimal [27]. This kind
of applications normally rely on Edge Computing to deal
with the critical response time of medical devices and data
privacy [28].

In terms of voice-based applications, the healthcare sector
is one with the fastest growing rate [29]. The development
of voice-based healthcare applications is emerging together
with telemedicine and advances in voice processing systems
to provide high quality monitoring care and avoid exces-
sive readmission rates [30]. Combined with IoT devices,
voice-based applications provide smart systems with speed-
up diagnosis, offer more accurate treatment and anticipate
potential symptoms through data collection and processing
thanks to the application of ML techniques for diagnostic
monitoring [31], all leading to a better quality of life.

C. NATURAL LANGUAGE PROCESSING FOR VOICE-BASED
SYSTEMS
When talking about voice assistants interfaces, another
important issue to address is the reply offered by the system
in terms of language semantic. For such a purpose, most

VOLUME 11, 2023 63625

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

virtual assistants are built to automatically answer questions
performed by humans in a natural language, which are trans-
formed into an internal representation. Then, the system
extracts the essential information and delivers a response that
considers the context.

Chatbots are an example of systems usually created with
this kind of NLP technologies, which enable users to com-
municate in a natural and easy way [27], [32]. Most advanced
speech-processing applications, instead of treating speech or
text just as a sequence of symbols or by just looking for
keywords inside the user question, they use pre-programmed
or acquired knowledge to decode meaning from factors such
as sentence structure, context or idioms [33], [34], [35].

There are also voice assistants that use speech recognition
and synthesis in addition to text-processing strategies based
on NLP. Thus, if an embedded ASR model is used, the
limitation of loss of transcription accuracy can be overcome,
as this is not a determining factor for NLP mechanisms. The
current state of the art for task-oriented semantic models
use Bidirectional Encoder Representations from Transform-
ers (BERT) [36] or Robustly Optimized BERT Pretraining
Approach (RoBERTa) [37] as a pre-trained input. However,
such models make use of huge memory footprints and are not
suitable for embedded devices.

Luckily, there is a reduced version of Bert called DistilBert
[38]. Bert based models store knowledge into models
with millions of parameters. DistilBert uses a smaller
general-purpose language representation pre-trained model
that is later fine-tuned, which reduces the size of a BERT
model by 40%, while retaining 97% of its language under-
standing capabilities and being 60% faster. For the fine-tuned
part, there are numerous tasks with which a Bert-based model
can be trained (e.g., question-answering, sentiment analy-
sis) with the help of a training corpus. For instance, Fluent
Speech Commands [39] is a dataset of people that interact
with a smart home system in English spoken language. Such
a dataset is adequate for developing voice-based assistants
and, together with the use of BERT models as a transformer
language model, it is possible to distil knowledge to build an
acoustic model for intent classification [40].

All of the above is particularly interesting for edge devices.
For instance, Lanyu Xu et al. [18] provide an ASR and a
DistilBert model that operate on the edge. By employ-
ing a cache that reduces connections to the cloud and
by pruning a pre-trained language model for using it in
resource-constrained edge devices, latency and accuracy
demands for efficient resource utilization are fulfilled. There
are a fewmodels based on Bert multilingual and monolingual
to finetune a model for downstream grammar tasks with
Galician (e.g., bert-base-multilingual-cased [36], bert-base-
gl-cased [41], bertinho [42]). However, none of them are
finetuned for detecting relevant tasks for the proposed system,
such as question-answering, HA commands or spelling check
(i.e., for the proposed system, the lack of a task-oriented
corpus is a concern that needs to be addressed).

Also wav2vec2 has been ported and tested to be executed
on the edge [8], [43]. In such a scenario the accuracy of the
quantized model is worse than the one of the original model,
but the used memory can be reduced considerably at the cost
of a small increase in error. This type of model is best suited
for systems that have to translate small segments of speech
to commands where even small errors in the transcription
do not impact significantly the performance of the system.
It is worth noting that long transcriptions are not suitable for
the embedded model due to the requirement of using large
amounts of memory.

D. EDGE INTELLIGENCE AND GREEN IoT
The combination of Edge Computing with Machine Learn-
ing allows for collecting data from IoT-based devices and
process them locally while making use of AI techniques,
providing what is known as Edge Intelligence. Thus, Edge
Intelligence enables to deliver an initial data analysis that
avoids network-related problems that are usually present in
cloud-based architectures [44]. In particular, edge processing
allows for providing fast responses off the system, which is
essential for voice-recognition based solutions, since users
tend to quit if they do not receive an immediate response (due
to the time required for processing the sent audio streams, the
response of the cloud may not be immediate, especially in
cases when the Internet connection is not reliable).

Regarding embedded architectures, they have experienced
a major progress in the last years, considerably increasing
their computational power, becoming more economical and
improving their energy efficiency [45], [46]. Such embedded
architectures are widely used in edge devices that perform
tasks that were formerly performed exclusively by the cloud
and which now can alleviate the workload of the growing IoT
device ecosystem [47].

This trend of progressive replacement of cloud server-
performed tasks by Edge Computing devices is also aligned
with the objectives of the Green IoT (G-IoT) paradigm [48].
However, the use of ML in this kind of devices can con-
sume a significant amount of energy [49].While architectures
like BERT or Generative Pretrained Transformer (GPT) [50]
involve a significant consumption footprint, in recent years
similar architectures have risen but with a much lower
resource consumption [51], [52]. Also, the paradigm of AI
acceleration through application-specific integrated circuits
(ASICs) is emerging, providing much better performance
for specific tasks than standard Graphical Processing Units
(GPUs) [53]. For instance, Google has an ASIC-specific
version for TensorFlow (Tensor Processing Unit (TPU)
[54]). Moreover, Google provides TPU hardware specifically
designed to run on the Edge (Coral-AI [55]).

Although ML inference, when performed on embedded
devices, tends to be more efficient, the training of models
remains computationally intensive [56]. Many frameworks
provide several pre-trained models that can be fine-tuned to
perform specific tasks, which need much less computational

63626 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

power but that remain being a heavy task [57]. There are
also training frameworks that provide distributed training,
but data movement between devices needs to be properly
managed, or may otherwise become a performance bottle-
neck [58]. Thus, a properly defined parallelism strategy is
needed in order to schedule computational tasks on inter-
connected devices, thus minimizing communications cost,
maximizing the use of computational and memory resources,
and optimizing the computation-communication overlap for
Large-Scale Training [59].

E. VOICE-BASED EDGE COMPUTING SYSTEMS
The Edge Computing paradigm can enable distributed com-
munications, which has certain benefits for an IoT system,
since it establishes a distributed topology that is ideal for
environments with communications difficulties [60]. Such
difficulties do not only include the fact of having a limited
Internet access, but also the issues related to the imple-
mentation of star topologies, whose use is not efficient in
environments where, to establish a direct connection of all
the nodes with the central node, it is necessary to deploy
numerous access points. In contrast, distributed topologies
are able to overcome this limitation by allowing the dif-
ferent nodes of the network to forward the exchanged
information.

Within a distributed network there may be different roles
for the nodes. Some of them are oriented towards low-power
consumption (mainly sensors and actuators), rely on batteries
and perform specific actions periodically and then go into
sleep or power-down mode. Other nodes operate as relays,
thus forwarding data traffic among them and to the different
low-power nodes of the network. In this latter case, relay
nodes usually need a constant supply of energy to not only
forward information, but to be also able to perform in a
distributed way other tasks that would be performed by the
central node in a star architecture.

This distributed strategy is not the typical approach fol-
lowed by most voice-based assistants, which generally make
use of a centralized star architecture deployed in a cloud or in
a local central device that manages communications and that
relays Internet-related tasks (in the case of locally deployed
devices). This kind of solutions commonly rely on several
smart speakers placed throughout a home or a building [24].
However, this approach implies a higher infrastructure cost,
among other problems [61]. Moreover, even if the task of
sending the audio to the central device is performed on a smart
speaker that is placed in the room where the user is located,
all the speakers are always active and listening, which is not
energy efficient. A more efficient approach would consist in
having only one device listening and always accompanying
the user. For instance, smartphones are usually already carried
by many people, but there are other portable devices with a
minimum of computing capabilities, such as smart watches,
smart bands or other types of wearable devices that are
becoming smarter thanks to the progress made on embedded
hardware and AI.

Finally, it is worth mentioning that some of the most
popular IoT technologies for HA (e.g., Bluetooth, ZigBee,
Thread, Ant+) already make use of a distributed mesh topol-
ogy that includes Low-Power Nodes (LPN) that are asleep
most of the time and relay nodes (among others roles). These
intermediate relay nodes can manage a cache for LPN nodes
with information to be sent to specific nodes when they wake
up [62]. The problem is that this behaviour is intended for
static nodes: if an LPN node wakes up and is in range with
another relay node, the cache that was stored by the first relay
node will be lost.

III. DESIGN AND IMPLEMENTATION
A. MAIN COMPONENTS OF THE PROPOSED SYSTEM
When it comes to designing a voice-based HA system, it is
important to distinguish two parts:

• Voice-processing. It involves the initial preprocessing of
the audio, thus generating the inference related to the
ML model and detecting the specific commands from
the speech. In the system described in this article, all
voice processing will be performed exclusively by the
Voice Assistant Device (VAD). Such a device has the
following characteristics:
– It operates on the edge without needing to connect

to a server.
– It is portable, since it is carried continuously by

every user.
– It is able to interact with the different deployed IoT

devices by using voice commands.
– It can also perform other types of general tasks

that require connectivity (i.e., to search for specific
information on the Internet, to retrieve news or the
weather forecast, or to make phone calls).

• System communications. This part is in charge of man-
aging the information exchanged between the deployed
IoT sensors and the VAD.

Figure 1 shows the general architecture of the proposed
system. Specifically, the different layers of the developed
system are depicted:

• The IoT device layer includes the different sensors/
actuators nodes of the system. It is worth noting that
the layer includes nodes with constant energy sup-
ply that need fast response times while others do not
have critical time-response requirements or have power
supply restrictions (thus prioritizing energy saving
over response time, becoming Low Power-consumption
Nodes (LPN)).

• The gateway layer includes the different intermediate
relay nodes, which provide the desired communications
coverage to a house or building.

• The VAD layer essentially includes the voice assistant
node. Since such a node runs on batteries, it is considered
as an LPN node. The VAD will interact with the nodes
of the gateway and IoT device layers to perform voice-
induced actions. If necessary, it can also perform actions

VOLUME 11, 2023 63627

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

FIGURE 1. Main architecture.

that involve using an Internet connection (e.g., check the
weather, receive news, collect the user e-mail) or making
calls through a cellular network, but, nonetheless, it must
be noted that the presented architecture has been con-
ceived and designed to be deployed in a house without
any infrastructure with Internet access.

B. COMMUNICATIONS TECHNOLOGY SELECTION
Among the different wireless technologies that can be used
for the proposed system, the main options on the market
were analyzed in terms of standardization body, operating
frequency, maximum range, maximum data rate, modulation
scheme, encryption, topology, latency, battery lifetime and
cost. Table 1 analyzes such characteristics with the objective
of allowing them to be compared among the main communi-
cations technologies.

1) STANDARDIZATION BODY
This feature is ideal for maintaining compatibility among
different manufacturers. Most communications technologies
are regulated by standards, companies or alliances that per-
form certification tests to ensure that they satisfy their
requirements.

Some standards are proprietary while others are open,
or even shared between various technologies such as

IEEE 802.15.4. In this respect, open standards used in various
technologies will lead to a higher level of interoperability,
while using proprietary standards can sometimes lead to
problems of compatibility as is the case of Insteon: with the
closure of its services in April 2022, it left all its products out
of operation [63].

2) OPERATING FREQUENCY
This factor has a direct impact on several aspects of
wireless communications such as transmission times, band-
width, range and propagation. Most Wireless Personal Area
Network (WPAN) technologies employ frequencies in the
2.4GHz ISM band. This band do not have as much range
as sub-GHz bands like those used in Low-Power Wide-Area
Networks (LPWANs), but their data transmission rate is much
higher than the latter, enabling its use in fast transmissions
applications (moreover, since HA environments do not need
to cover large communications distances, it is not advanta-
geous to use LPWAN technologies).

Since the 2.4GHz band is widely used, it can present sat-
uration problems, especially in urban environments. In addi-
tion, its propagation through objects is worse than the one
achieved with other technologies that operate in sub-GHz
bands, such as ZigBee, Z-Wave or EnOcean, which usually
provide an easy full coverage of a house. Other technologies
such as WiFi or WiFi 6 can operate at frequencies above
2.4GHz, offering a much wider bandwidth but with a shorter
range and higher energy consumption. Nonetheless, for the
proposed system, only short messages are involved, so a high
bandwidth is not necessary.

3) MAXIMUM RANGE
Range may vary considerably from a few metres (with
short-range networks like BLE) to several kilometres (as
with LPWAN technologies). Short-range networks allow data
streams to be transmitted in real time with reduced energy
consumption, while long-range networks are designed for
punctual short-size transmissions, as the time on air of the
messages is much higher. For instance, BLE is widely used
in wearables or sensors for monitoring body constants due to
its efficiency in short-range transmission streams.

For the system proposed in this article, the transmission of
constant data streams is not required, but neither is it neces-
sary to have a very large range that would considerably reduce
data transmission. As a consequence, an intermediate range is
enough. Luckily, most WPAN technologies are characterized
as medium-range wireless technologies.

4) MODULATION SCHEME
Communications reliability depends mainly on the modu-
lation together with coding rates that allow the creation of
extra error checking bits. By creating a group of modula-
tion and corresponding coding schemes (which is known as
Modulation and Coding Scheme (MCS)), it is possible to
adjust both parameters in order to cover larger distances. The

63628 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

TABLE 1. Most relevant characteristics of the latest protocols and communications technologies for IoT in the HA market.

more reliable options also have the slower transmissions (e.g.,
Binary Phase Shift Keying (BPSK) transmits only one bit per
burst, which makes it an extremely slow but highly reliable
modulation).

For instance, in Bluetooth 5 it is possible to use a Long
Range modulation with two different coding schemes (S2
and S8) that allow the creation of extra bits for error correc-
tion. With respect to the legacy modulation, S2 can decode
a message at twice the distance, while with S8 four times
the distance can be reached. This is achieved at the cost of
lowering the bit rate to 500 and 125Kbps, respectively, for
each coding scheme. Apart from the range, this improves the
link quality and gives a higher sensitivity to the RF module,
which is especially interesting to provide coverage in large
buildings or with considerable shielding.

5) ENCRYPTION
Most of the analyzed technologies provide some sort of
encryption mechanisms, but it is important to mention

that most devices that implement such technologies are
resource constrained while traditional encryption mech-
anisms are computationally expensive [64]. One of the
most used encryption mechanisms is Advanced Encryp-
tion Standard (AES), which is a symmetric algorithm that
provides different key lengths. According to the National
Institute of Standards and Technology (NIST), 128 bit is
still secure for use until 2030 [65]. However, the progress of
quantum computers might significantly reduce the strength
of algorithms not specifically hardened against quantum
computing [65], [66], [67].

6) TOPOLOGY
This parameter primarily affects network architecture and
deployment. For example, the use of a star topology like in
NB-IoT (or in others based on 3GPP) implies that all nodes
must be in direct communication with a central server. Con-
sidering that the system proposed in this article is intended

VOLUME 11, 2023 63629

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

to be used in rural areas with poor coverage, a centralized
topology is not adequate.

Although it is possible to use centralized gateways that
work on Edge or Fog Computing networks [68], [69], [70],
this makes the product more expensive. In this respect, the
best option is to deploy a distributed system with a mesh
topology that allows to broadcast communications among
nodes, thus overcoming range limitations. Most WPAN tech-
nologies enable this type of topology. However, distributed
architectures need certain considerations in their communi-
cations algorithms, since by nature they are more complex
than traditional client-server communications. In this regard,
technologies such as Thread, ZigBee or Ant+ are widely
used in the HA market and make use of algorithms with
routing tables. Thread even implements IPv6 connectivity in
its upper layer, which is really interesting for IoT, specially
in massively interconnected networks.

On the contrary, BLE is able to implement a mesh topology
known as BLE Mesh that does not use routing tables but
makes use of a controlled flooding algorithm that broadcasts
messages throughout the network. This algorithm is simple
and very efficient, especially in the case of one-to-many or
many-to-many communication. Nonetheless, to avoid satura-
tion problems, the deployed BLE Mesh networks must have
minimal hops and deliver very short messages.

Since the system proposed in this article looks for con-
trolling IoT actuators with basic commands (e.g., on/off
commands) and for receiving information from sensors (in
general, numerical values) in networks with a limited number
of nodes, it is not necessary to make use of routing table
algorithms.

Finally, it is worth noting that, in the same way that Thread
provides support for IPv6, BLE can also be used through
6loWPAN, but since the environments contemplated in this
article have limited connectivity, it has not been considered
as a relevant factor in the design (moreover, IPv6 is still not
widely implemented nowadays [71]).

7) LATENCY
Similarly to range or data rate, the technologies that allow
for covering the longest distances with reduced transmissions
also present the largest latencies. In this aspect, most of the
WPAN technologies enable to develop applications with low
latencies, even in real time. For the scenarios proposed in this
article, it is important to note that latency is relevant, since
there are cases in which an immediate response is essential
(for example, lighting controls are expected to have a quick
response).

8) BATTERY LIFETIME
There are numerous factors that directly impact energy con-
sumption, such as transmission power, data rate, modulation
(more time on air implies more consumption) or topology
(in multi-hop or mesh networks, consumption is higher when
data forwarding is required), so it is necessary to consider all

these factors to obtain a good balance between consumption
and performance.

Although certain devices can be powered through the elec-
trical grid, in the case of HA it is common to use devices with
batteries for a simple deployment of the hardware involved.
Since sensors and actuators usually have reduced dimensions,
so is the battery that they incorporate.

Some technologies like EnOcean make use of energy har-
vesting mechanisms, while in other cases these mechanisms
are not enough for the operation of the node, so it is important
to minimize as much as possible the consumption of those
that operate with batteries to maximize the lifespan and min-
imize charging times.

Battery-powered devices are normally used for tasks that
do not require much data updating and consumption can be
minimized by putting the modules in a deep sleep state. This
feature is commonly used in commercial hardware, but it is
also important to consider the consumption of the transmis-
sions. For example,WiFi has a high consumption related to its
transmissions and therefore it is not usual to make use of such
a technology in low-power devices that operate with batteries.

9) COST
It is necessary to consider different types of costs. First, the
cost associatedwith the hardware. For instance, BLEmodules
are widely present in the market and their cost is low. Second,
the cost of the data transmissions, since certain technologies
like NB-IoT involve monthly fees. Third, it is also important
to consider the cost of the required infrastructure (e.g., tech-
nologies like ZigBee make use of relatively cheap transceiver
modules, but its gateways have moderate prices).

10) FINAL CHOICE
Considering all the aspects analyzed in the previous subsec-
tions, it was decided to use Bluetooth 5. The main reason
was the fact that this new version of the standard has better
range, latency, bandwidth and coexistence than its prede-
cessor, despite that it is not yet as widespread. Moreover,
Bluetooth 5 is backward compatible, allowing the coexistence
with other Bluetooth versions. Furthermore, the Bluetooth
standard is open andwidely documented, which enablesmore
accurate and specific developments. In addition, the use of a
mesh topology with BLE suits the proposed system (which
requires a reduced network with simple messages without
many hops), is energetically efficient and provides adequate
response times.

C. BLE MESH COMMUNICATIONS
Internal communications are performed with BLE Mesh.
Such communications are based on topics: performing an
action means publishing a certain value in a specific topic,
and consulting the status of a device means subscribing to
a specific topic. There are nodes connected to a continuous
power supply that require a fast response (such as lights),
where there are also LPN nodes that operate with batteries
or limited power supplies that need to be in periodic sleep

63630 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

cycles (the information addressed to these nodes is stored in
intermediate nodes).

The BLE Mesh standard includes a feature called ‘‘friend
node’’ that allows for storing information for the LPN nodes.
However, friend nodes do not act as a distributed cache: when
an LPN node loses its connection to the associated friend
node, its cache is lost. This is not a problem for most LPNs,
since they are static. Occasionally, in very specific cases, they
may lose the connection to their friend node, in which case
they will look for another one that is in range to store the
cache.

However, the VAD node, which is not an LPN node in the
strict sense of the term, as it is always listening for commands:
from the point of view of the Bluetooth subsystem, it works
as an LPN node, sleeping most of the time and waking up
occasionally to consult the cache or when a voice command
is provided. To overcome this limitation, in the developed
system, when a LPN node needs to send a message to the
VAD node, it sends it to all the friend nodes. Thus, when
the VAD connects to any node, it will read the message and
the rest of the duplicate messages will be discarded.

D. COMMUNICATIONS SUBSYSTEM OPTIMIZATION
The main responsibility of the communications subsystem
is to provide communications to the end device (i.e, to the
device or devices involved in the voice command recogni-
tion process) to perform the operations indicated via voice
commands.

Equation 1 indicates the factors involved in the calculation
of the total latency of the system. As it can be observed,
it is calculated as the processing time of the ASR model to
generate the transcript plus the time to perform the action.
Equation 2 shows the different partial times involved in the
calculation of the time to perform an action, which is com-
posed by the time that is needed to detect the particular
command once the transcript is generated plus the time
required to send it through the communications subsystem
and the time consumed by the destination node to receive it
and to execute the action.

ttotal = ttranscription + taction (1)

taction = tdetection_comm + tsending + texecution (2)

To minimize taction it is necessary to consider that BLE
Mesh communications were provided by Nordic boards
based on a nrf52xxx System-on-Chip (SoC) [72]. BLE is
widely supported by many IoT devices on the market and
is especially efficient for those devices present in HA envi-
ronments [73]. Nordic’s SoC not only supports BLE, but
also ZigBee, Ant+ and Thread, which are some of the most
widely used technologies for HA. Moreover, Nordic’s boards
support diverse Bluetooth 5 modulations and extended adver-
tisements that, although they are not officially supported by
BLE Mesh, they can be used to obtain certain benefits over
the Bluetooth legacy version (part of such benefits have been
previously described in [74] and [75]).

In this article, generic BLE Mesh models were used to
communicate with sensors and actuators [76]. In particular,
the generic On/Off and generic sensor models were used
to represent actuators and sensors, respectively. Such BLE
Mesh standard models are optimized to carry out commu-
nications with minimum overhead: the forwarded frames
have a reduced size and the forwarding algorithm is a con-
trolled flooding without routing algorithms, thus being very
efficient especially for many-to-many and one-to-many com-
munications [77]. However, to avoid system performance
degradation, the following considerations need to be taken
into account:

• The length of the system messages has to be reduced: if
such messages are longer than 15 bytes, the frame would
need to be segmented, which implies that each segment
needs an ACK response and then all the segments need
to be reassembled. Such a segmentation degrades the
performance considerably. Luckily, the frames used for
the selected models are very small (they transmit either
an ‘on/off’ code or a specific numerical value).

• The network topology has to be simple: if there are too
many nodes and hops, the controlled flooding algorithm
is no longer efficient and the network can become
saturated [78]. The only control mechanism that the
algorithm contemplates is the use of a Time To Live
(TTL) value to discard network packets. For the use
case analyzed later in Section IV-B, a domestic network
scenario was selected, where the number of nodes is
usually small and with a few hops, so no issues should
arise in relation to the network topology.

As it was previously described, the behaviour of the VAD
node differs from the way standard BLE mesh nodes operate.
Such a behaviour is related to the fact that the VAD node
acts as an opportunistic node [79] that will move throughout
space and time, so it will be associated to different friend
nodes (which behave as described in Section III-C) [80]. This
fact implies that LPN nodes that have to send information
addressed to the VAD node will have to send it to all the
available friend nodes (or at least to a subset of them that
have a high likelihood of being in the range of the VAD
node). Then, the VAD node will read the cache of the friend
node to which it is associated at a specific moment and the
cache addressed to the VAD of the rest of the friend nodes
will be discarded. This is a very simple approach that implies
redundancy and a higher data flow through the mesh, as there
are no routing tables, and it is justified by the following
assumptions:

• The described behaviour is exclusive for information
addressed to the VAD node. The rest of the LPN nodes
operate following the standard BLE Mesh functionality,
which will be associated to a single friend node as a
general rule.

• The messages addressed to the VAD node are not criti-
cal, so a fast response time is not essential. In fact, LPNs
are designed to operate with batteries or with constrained

VOLUME 11, 2023 63631

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

power sources, which is why the definition of sleeping
periods is a good practice to increase battery life.

E. SPEECH-RECOGNITION FRAMEWORK SELECTION
Speech-recognition frameworks have evolved remarkably
in the last years. In 2011, Daniel Povey et al. [81] intro-
duced a speech recognition toolkit called Kaldi that quickly
became the ASR tool of choice for countless developers
and researchers. Since Kaldi’s introduction, several speech
recognition frameworks have been released: wav2letter++,
openseq2seq, vosk, SpeechBrain, Nvidia Nemo, Fairseq. . .

Despite having existed for more than a decade as a
framework, Kaldi has relatively few open source models
available [82]. This is a common problem in ML models for
speech recognition based on supervised or semi-supervised
learning. In supervised learning, data consist of labelled
objects. An ML model is responsible for learning how to
assign labels or values to objects (inputs), thus learning which
speech audio object (input) is assigned to a specific tran-
scription (output). Considering the complexity and diversity
of different languages, this represents a major challenge for
speech recognition.

In 2020, the wav2vec2 framework was presented [11].
For the first time, good transcriptions were achieved
through self-supervised learning of meaningful represen-
tations of speech audio, followed by fine-tuning on the
transcribed speech. The framework results outperformed
those obtained by semi-supervised methods. The used type of
self-supervised training strategy, used in otherML disciplines
with remarkable results [36], [83], [84], [85], represents
a considerable advance in the generation of models for
languages with few available resources. From a pretrained
self-supervised cross-language training, it is possible to
obtain good results with a second training or fine-tuning, just
using a small number of labeled text.

After the release of wav2vec2, similar stacks based
on Self-Supervised Learning (SSL) were released, like
HuBERT [86] in 2021 and Whisper [87] in 2022. HuBERT
looks very similar to wav2vec2: both models use the same
Convolutional Neural Network (CNN) followed by a trans-
former encoder. However, their training processes are very
different and HuBERT’s performance, when fine-tuned for
ASR, either matches or improves wav2vec2. Whisper is an
encoder-decoder Transformer model with Mel spectrogram
inputs. Whisper’s encoder feds the inputs into two CNN
layers to finally output the Transformer component and the
predicted tokens.

The main difference between the HuBERT/Whisper and
wav2vec is that the pre-training stage, although it is also
cross-lingual, it is not self-supervised. Wav2vec2 has only
been pretrained on speech from audiobooks, which is a
relatively narrow domain of clean, read speech. This has
implications for model accuracy when processing noisy, con-
versational audio. Whisper, on the contrary, was trained in a
supervised fashion on a very large corpus comprising 680,000

hours of crawled multilingual speech data. OpenAI refers to
such a training as ‘‘weakly supervised’’ since the labels have
not been verified by humans and thus are potentially noisy.
The source and domain characteristics of the training data is
unknown. Nevertheless, it is clear that the Whisper training
corpus vastly surpassed the one used by wav2vec both in
terms of scale and diversity.

Due to the previous analysis, for this article, the three men-
tioned architectures (wav2vec2, HuBERT andWhisper) were
tested and adapted to the proposed edge-intelligent speech-
recognition solution. Specifically, this article describes the
different models that were trained, optimized and evaluated
to suit the characteristics and constraints of performing ML
tasks on edge devices.

F. SPEECH-RECOGNITION FRAMEWORK OPTIMIZATION
AND FINETUNING
1) MAIN FEATURES
With respect to the VAD, a wav2vec2 pre-trained model,
a distilled version and a Whisper model were used at the
finetuning stage in order to adapt the final model to the
Galician language and to use it on mobile architectures. Due
to memory limitations and to the characteristics of the use
case, the input audios are limited to 5 seconds. For conve-
nience, themodels were tested on a smartphone (One Plus 8T)
and a Raspberry Pi 4. Nonetheless, the models can be used
on other embedded devices that include a microphone and
a speaker, and that must have a minimum of computational
capacity and memory to be able to execute ML inference.
In order to transform transcribed text into commands that
can be understood by an IoT system, due to the lack of
grammar corpuses in Galician for finetuning with Bert-based
models for this domain, a set of keywords that trigger spe-
cific commands performed through publishing/subscribing
specific topics was defined.

Keywords are detected from input transcription by per-
forming text distance algorithms in order to determine the
score of every word with a specific keyword. Each of such
algorithms can create specific combinations that trigger the
execution of a specific command, allowing as much as possi-
ble a natural speech for the creation of the command.

Overall, the speech-recognition subsystem performs all
audio processing, speech and command detection. All pro-
cessing is performed in the VAD: from the collection of the
raw voice of the user to the decision of the command to be
executed on the IoT system.

In order to carry out a fair evaluation of the speech and
command-recognition inference, three key parameters were
considered: system response time, accuracy and resource
consumption. The following subsections analyze the different
factors that impact such three parameters.

2) INFERENCE RUNTIME
Numerous frameworks exist for using mobile ML models to
perform inference on embedded devices [88], although they

63632 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

are not as mature or functional as standard models. The main
problem is the lack of support for the instruction set used in
the model, as well as the different types of acceleration used
in embedded hardware.

Depending on the type of hardware, there are different
methods for using acceleration. For example, in Android
there is the Android Neural Networks API (NNAPI), which
is a C API designed for running computationally intensive
operations for machine learning on Android devices [89].
NNAPI provides a base layer of functionality for higher-level
machine learning frameworks. CoreML [90] is similar, but for
iOS. It is worth noting that, in the case of the Raspberry PI,
an onboard shared GPU is available (VideoCore VI).

The previously mentioned acceleration mechanisms allow
for parallelizing instructions by reducing considerably the
execution time. However, the set of instructions that they
support is reduced, so, if there is a high number of operations
of the model that are not supported, it will not experience
improvement when executing the inference.

In this article, experiments were performed with four
different ML stacks for mobile platforms: Pytorch Mobile,
Tensorflow Lite, Onnx and NCNN [91], [92], [93], [94].
Pytorchmobile and TensorflowLite are frameworks that have
been adapted formobile platforms departing from some of the
most popular used stacks for ML. Onnx is an open standard
for ML interoperability that supports conversions that enable
AI developers to use models with a variety of frameworks,
tools, runtimes and compilers. NCNN is a high-performance
neural network inference computing framework optimized
for mobile platforms that is focused on an easy deployment
of the most commonly used CNN networks.

3) MODEL OPTIMIZATION
The main way for reducing the size of a model is dynamic
quantization, which consists in reducing the precision of the
weights and/or activation from floating point (fp32) to integer
(int8). This technique can be applied once the model has been
trained and allows for a significant reduction in size and some
improvement in speed of inference [95].

Post-training static quantization involves not just convert-
ing the weights from float to int, as in dynamic quantization,
but also performing the additional step of calibration feeding
with data through the network and computing the resulting
distributions of the different activations. These distributions
are then used to determine how the different activations
should be quantized at inference time. As part of the
wav2vec2 and Whisper feature encoders, the raw audio is
passed to a 1-dimensional convolutional neural network (tem-
poral convolution) followed by layer normalization and by
the application of a Gaussian Error Linear Units (GELU)
activation function, (as of writing, both PyTorch and Onnx
do not support quantization for GELU activation [96], [97]).

Pruning the model is another option for improving the
model efficiency. In general, neural networks are very
over-parameterized, so the process of removing weight

connections in a network can increase inference speed and
decrease model storage size. There are two types of pruning:
structured and unstructured pruning. The difference between
both comes from whether individual weights or groups of
weights are removed together. Pruning generally requires
setting a criteria on the weights of a model, and setting certain
weights to 0 if they match such a criteria. For unstructured
pruning, individual weight connections are removed from
a network by setting them to 0. For structured pruning,
groups of weight connections are removed together, such
as entire channels or filters, thus changing the shape of the
layers.

Setting weights to 0 will only be efficient and will speed
up inference if the number of such weights is high and they
have a large dispersion percentage. Sparsity tensors are still
in beta phase and they are not the best option for speeding
up model inference, being better to compress the size of the
model [98].

The best way to increase the speed of inference is to distil
the model. The original wav2vec2 pre-trained models are
complex, presenting a large number of layers and parameters.
Distilling a model means to generate a simplified model
(student) from a more complex model (teacher) by distilling
the knowledge from the latter to the former. Thus, distilling
generates a model with fewer parameters and with slightly
worse accuracy, but with a considerably increased inference
speed.

As a consequence of the previous analyses, the model
implemented by the system described in this article makes
use of dynamic quantification and distillation as optimization
mechanisms for reducing its size and for speeding up infer-
ence time.

4) WER AND SUCCESS RATE
The Word Error Rate (WER) is a standard metric for ASR
systems [99]. Although the WER is closely related to the
performance of an IoT voice assistant, an exact transcription
is not the expected goal (i.e., the objective is to execute an
IoT command). This fact allows in part for overcoming the
loss of accuracy that results from reducing the size of the
model, since, regardless of the WER obtained by the model,
the reduction and quantification processes will alwaysworsen
the accuracy of the model output slightly.

The main problem that the use of architectures like
wav2vec2 and Whisper solves is the difficulty of performing
speech recognition in different languages. This is a common
problem in NLP: most corpus for specific tasks only support
English. However, with such architectures it is much easier
to obtain a transcription model in different languages. For
example, the fluent speech corpus previously mentioned in
Section II-C allows for building a specific grammar for HAs,
but it needs to map the audio speech to a certain grammar,
which is highly complex when performed for every available
language. So, instead of generating a model that associates
language-specific audios with specific intents related to HA

VOLUME 11, 2023 63633

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

(as it is carried out in Fluent Speech Commands), it is
possible to use a model that associates speech recognition
patterns with specific intents, which ismuchmore straightfor-
ward, as it only involves using grammar, as many DistilBert
models do.

Unfortunately, most of the languagemodels generated with
DistilBert for this kind of task are specific for the English
grammar. Translating the corpus used to a specific language
may be a valid option, but, to simplify the developed system,
it was decided to apply text distance comparison algorithms
to compare the output of the model with keywords defined for
the IoT system. This is a simpler and efficient approach (i.e.,
less computational resources are needed) but it requires to be
adapted to the specific commands and IoT components to be
used. To perform this task, algorithms were used to measure
the distance between texts by comparing the keywords with
what was obtained in the transcription. As it is a speech
recognition system, it is possible that phonetically similar
sounds may be misinterpreted during the transcription stage,
so a phonetic distance algorithm is more accurate than those
based on tokens, which would give the same penalty to any
character.

However, most phonetic-text distance algorithms are
focused on the use of the English language. Phonetically,
Galician has hardly any similarity with English, so other
types of algorithms had to be used to measure distance.
There is a wide range of algorithms used to measure text
distances, falling into several categories with different char-
acteristics [100]: Sequence, Edit or Token-based, Simple,
Phonetic or Hybrid.

The algorithms based on Sequence or Edit have the advan-
tage of simplicity and are suitable for short chains. Their
use is more usual in the field of computer science [101].
Those based on tokens are used in general NLP problems, but
are intended for long texts and take semantics into account,
so they are not very suitable for single words or small
sentences [102]. Hybrid algorithms combine an edit-based
approach with a token-based approach and are also used in
NLP [103]. Regarding the algorithms classified as ‘Simple’,
as their name implies, they are really simple, comparing
prefixes, suffixes or length. Therefore, simple algorithms
are very efficient computationally, but they are too simple
for the use case proposed in this article, which was evalu-
ated by using two algorithms: Levenshtein (for Edit based)
and Longest Common Subsequence (LCS) (for Sequence
based). Both are used to compare the similarity of the writ-
ten words with certain predefined keywords that are used
to detect the commands to be executed. The success rate
represents the number of commands that were detected cor-
rectly. Apart from the success rate, other metrics were used
in the analysis of the command detection, such as the num-
ber of detected keywords or the false positives (representing
the wrong detection of a keyword), as well as the average
time of execution of the command detection for each used
algorithm.

Equation 3 defines the detection of keywords between
strings a and b using the Levenshtein distance and similarity.

det(a, b) =
sim(a, b)
lev(a, b)

(3)

Equation 4 shows the expression used for obtaining the
similarity between two strings a and b.

sim(a, b) = max(|a|, |b|) − lev(a, b) (4)

Equation 5 shows the calculation of Levenshtein distance
between two strings (a, b), where tail(x) is a substring of all
but the first character of x. As it can be observed, the second
block of Equation 5 represents the deletion, insertion and
substitutions performed for all substrings of (a, b).

lev(a, b) =



|a| if |b| = 0,
|b| if |a| = 0,
lev(tail(a), tail(b)) if a[0] = b[0],

1 + min


lev(tail(a), b)
lev(a, tail(b)) otherwise,
lev(tail(a), tail(b)

(5)

Equation 6 defines the condition necessary for a detection,
where α is a predefined threshold.

det(a, b) = 0 ∨ det(a, b) ≥ α H⇒ detection (6)

A simpler approach is applied for the similarity calculation
with the LCS algorithm. Keyword detection is performed for
such an algorithm through Equation 7 for two words a and b,
beingM the number of matches between the longest common
subsequence of strings a and b.

det(a, b) =
2 × (|a| + |b|)

M
(7)

Finally, Equation 8 shows the condition necessary for a
detection when using the LCS algorithm, where α is a pre-
defined threshold normalized between 1 and 0.

det(a, b) ≥ α H⇒ detection | α ∈ [0, 1] ⊂ R (8)

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
In order to test the responsiveness, efficiency and success rate
of the proposed system, different experiments were carried
out by considering that the developed solution is divided into
two subsystems:

• The first subsystem performs speech inference, in which
an ASR ML model is applied to transcribe the com-
mands and then, based on a predefined set of rules
and keywords, the action to be performed is deter-
mined. Accuracy (determined by WER and success
rate), latency and energy/requirement consumption were
measured.

• The second subsystem is the communications subsys-
tem. As it was previously described in Section III-B, the

63634 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

FIGURE 2. Main screen of the developed Android application for testing
purposes.

proposed system has been designed to work over BLE
Mesh, whose performance has been evaluated in dif-
ferent scenarios for the subsystem in terms of response
time.

The tests for both subsystems were carried out on different
devices and with diverse embedded hardware in order to
compare the performance of the created mobile ML models
on different platforms. Specifically, tests were carried out by
using an embedded device (a Raspberry Pi 4 with 2GB of
RAMand a Quad-core Cortex-A72 (ARMv8) 64-bit System-
on-Chip (SoC) at 1.5GHz) and a smartphone (a One Plus
8T with 8GB of RAM and an Octa-core Cortex-A77 (ARM
v8) 64-bit (1 × 2.84 GHz, 3 × 2.42 GHz and 4 × 1.80 GHz
Cortex-A55)). For the sake of fairness, instead of using the
built-in Bluetooth interfaces incorporated on the Raspberry
and the selected smartphone, the communications subsystem
was evaluated by using independent BLE boards fromNordic
Semiconductor (nRF5x based boards [72]).

For the smartphone tests, a basic Android application was
developed. The main screen of the application is shown in
Figure 2. With such an application it is possible to send
voice commands by clicking the start button, which starts a
5 second recording. Then, the application performs the tran-
scription inference with one of the different models exported
to Android. Finally, the application shows at the bottom of
the screen the detected keywords.

B. EVALUATED USE CASE
In order to illustrate the operation of the proposed system
and thus to evaluate its performance, a specific use case was
devised. In such a use case a user sent voice commands in
Galician to activate an IoT heating control. For this purpose,
first, the user provided a sentence that included specific

keywords such as ‘‘activate’’, ‘‘heating’’ or ‘‘temperature’’
(or synonyms of such keywords). Then, the ASR performed
the transcription and, after applying the selected text-distance
algorithm, the keywords were detected and triggered a spe-
cific rule from a set of predefined rules. Each rule executed
one or more actions that sent through the communications
subsystem using BLE mesh.

As an example, Figure 3 shows a sequence diagram that
illustrates the communications performed between a user and
several nodes. In the illustrated case, the rule for activating
the heating through temperature involves two IoT nodes: a
node that controls the heating (smart relay) and a temperature
sensor. Since in the proposed scenario it is assumed that
temperature changes inside a house are not abrupt, both nodes
can operate as LPN, so they can be battery operated and will
remain sleeping most of the time. Therefore, the defined rule
will simply notify the smart relay when it wakes up that it
should subscribe to the temperature topic and be operated
(i.e., it should be able to receive on/off commands) depending
on a specific temperature value.

With a target temperature defined by the user, the heating
(smart relay) will switch on and off over time. It is also
possible to receive a notification on theVADwhen the heating
is switched on or off. For such a purpose, the VAD node has to
be in the range of any of the deployed IoT nodes and it will act
a LPN node of the BLE mesh. Then, when the VAD would
wake up, it would poll a friend node to look for messages
for it.

Since an LPN must establish a friendship relationship with
another node that supports the friend node functionality to
reduce its receiver duty cycles and to save energy, it is impor-
tant to determine which node should be chosen as a friend
when there are several in range. When an LPN publishes
a friend request message, this message is not retransmit-
ted and is therefore only processed by friend nodes within
direct reach. Friend nodes that receive such a message send
certain parameters including the supported ReceiveWindow
size, available message queue size, available subscription
list size and the Received Signal Strength Indicator (RSSI)
value measured by the friend node. The friend node transmits
those parameters in a Friend Offer message back to the LPN.
After receiving a Friend Offer message, the LPN selects a
suitable friend node by applying a specific algorithm devised
by the product developer. The algorithm is likely to consider
various aspects: some devices may prioritize ReceiveWindow
size to reduce power use as much as possible, while others
may be more concerned about the RSSI value in order to
ensure they can maintain a good quality link with the friend
node [104].

However, since the VAD node behaves like a moving LPN
node, any node with the friend node functionality can be its
friend node at any given time, so it is necessary to replicate the
cache of messages addressed to the VAD on all nodes acting
as friends. As it is detailed later in Section IV-G1, the time
degradation involved in propagating these messages across
the mesh has been measured when bypassing the sleep cycles

VOLUME 11, 2023 63635

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

FIGURE 3. Sequence diagram of an example of opportunistic behavior of the Bluetooth subsystem.

times indicated in Figure 3 and thus calculating the time spent
forwarding the messages in scenarios with a different number
of hops.

C. SPEECH-RECOGNITION ACCURACY
In order to find out how the different tested optimization
mechanisms impact the accuracy of the used ASR model,
WER was analyzed for a set of test audios. In particular,
different models were generated by considering the use of
dynamic quantization. In addition, since the used test audios
have a fixed duration of 5 seconds but it is possible that the
full 5 seconds are not used to provide a command, a prepro-
cessing of the audio was carried out to trim the silences based
on a silence length and a volume (in decibels) threshold,
which such silences impact the obtained WER. Thus, four
different models were created:

• A large model based on Facebook’s multi-language pre-
train: Wav2Vec2-XLSR-53 [105].

• A base model based on the multi-language pre-train
Wav2Vec2-Base-VoxPopuli [106].

• A distilled pre-train model generated with Distil-
HuBERT, a novel teacher-student framework for
speech-representation learning by multi-task knowledge
distillation [107]. Even distilled, the generation of a
pre-train acoustic model is a computationally expensive
task that requires high-end Graphical Purpose Units
(GPUs), so it was distilled on a student model via

s3prl framework [108] with more than 1300 hours of
unlabelled audio for Spanish, Italian and Portuguese
from LibriSpeech [109], which are languages closely
related to Galician.

• A tiny model based on the pre-trained model from
openAI, trained on 680,000 hours of multi-language
labelled data [110].

After creating the pre-trained models for acoustic rep-
resentation, each model was finetuned with approximated
20 hours of Galician labelled data [111], [112]. The final
finetuned models can be found ready to test on Hugging
Face [113], [114], [115], [116]. In such a webpage, the result
of the training can be observed on the Training Metrics
section. It is important to note that the WER results shown
there are for the training dataset, so they are better than
the WER results obtained in the experiments presented in
this article, which are depicted in Table 2 together with the
number of parameters and the size occupied in disk by each
model.

Specifically, Table 2 shows that the large model is
heavy and complex, so it is not adequate for most current
battery-operated IoT devices. Table 2 also shows that the
simple fact of applying dynamic quantization (see the mod-
els with optimization ‘QINT8’) reduces considerably model
size and allows for using it in devices with memory con-
straints. However, quantization does not reduce the number
of used parameters. The base model is lighter and more

63636 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

TABLE 2. Number of parameters, size and WER for the different models.

suitable for embedded devices, however it is still heavy for
low-performance IoT embedded devices.

Luckily, the distilled model reduces even more the com-
plexity of the model and makes it more efficient, although
trimming does not affect the structure of the model, since it
is a very simple pre-processing that allows for reducing the
size of the audio and therefore to accelerate the inference.
Nonetheless, it can be observed that trimming can impact
the transcription of certain words, as it is configured with a
predefined threshold. The decibel threshold will depend on
the noise of the environment: if there is too much ambient
noise, setting a low threshold will not trim the audio at all,
while if it is too high, it may cut certain words from the
speech.

Regarding theWER, it can be observed how applying opti-
mization methods progressively reduces the accuracy of the
system, being the distillation with quantization and trimming
the most imprecise but also the most efficient model. This is
analyzed in the next section, where the created models are
compared from the point of view of their inference time.

D. INFERENCE TIMES
1) INFERENCE TIME WITH EDGE DEVICES
Apart from accuracy, another determining factor that impacts
the proposed system performance is the ASR model infer-
ence time. All the models described in Section IV-C support
dynamic quantification and are optimized for mobile plat-
forms, allowing the use of NNAPI on Android or CoreML
on iOS. However, such solutions present a common problem:
the support for ML on Edge devices is still in beta and is
limited for NNAPI and CoreML. In the case of NNAPI,
its execution is efficient when the required operations are
supported (otherwise execution is slower than when using
the CPU).

In the case of the Raspberry, one option to use GPU accel-
eration is the use of Vulkan [117]. The NCNN framework

offers support for Vulkan, but the problem is the same as in the
previous cases: the lack of support for some of the operations
of the particular model. For this reason, CPU-based inference
was used on both platforms.

The stack eventually chosen for the inference runtime was
ONNX [94], since it was the one that provided the best results
and it is widely portable, enabling to import/export from a
wide range of ML frameworks, thus allowing the interop-
erability with many of the most popular frameworks (e.g.,
pytorch, tensorflow) and abstracting about the downstream
inferencing implications.

For the experiments presented in this article, the following
configuration was used for ONNX runtime execution:

• options.graph_optimization_level: it enables all opti-
mizations. It was set to ORT_ENABLE_ALL.

• options.intra_op_num_threads: it controls the number
of threads to use to run the model. It was set to the
maximum cores available on the device.

• options.execution_mode: it controls whether the oper-
ators in the graph run sequentially or in parallel. It was
set to ORT_SEQUENTIAL.

Usually, when a model has many branches, setting the
option execution_mode to ORT_PARALLEL together with
inter_op_num_threads to parallelize the execution of the
graph (across nodes) will provide better performance. How-
ever, the used models do not present too many branches and
no improvement was appreciated when using this execution
mode.

Thus, using the previous runtime configuration, three dif-
ferent inference sessions were carried out (one for eachmodel
with quantification) for the transcription of a single audio and
when executed on the Raspberry Pi. For each session, the
different computational operations performed by the model
were analyzed, including their total number and the amount
of time dedicated to each one.

Figures 4a, 4b, 4c and 5 show, respectively, the results
for the inference sessions for the Distilled, Tiny, Base and
Large models. For the Base and Distilled models the convo-
lution operations are the most critical. This is normal, since
wav2vec2 is a CNN, so the Convolutional Layers are the
most important layers in the ML model where the important
features from the input are extracted and where most of the
computational time is spent. In fact, apart from having a
notable impact in these models, these layers are very sensitive
to quantification (for CNNs it is recommended applying static
quantization [118]). The results also show that, for the Base
and Distilled models, quantifying the mentioned layers offers
worse performance, especially in the distilled model. Thus,
in the quantified version of the Base and Distilled models, all
layers except the convolutional ones were quantified (a total
of 8 layers for both models are convolutional). In contrast,
Whisper is a RNN, which also has convolutional layers, but,
as it can be observed in Figure 4b, the time consumed in them
is much less than for the wav2vec2-based models.

The results for the inference session of the Large model on
the Raspberry Pi show the amount of time spent on inference

VOLUME 11, 2023 63637

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

FIGURE 4. Total time and number of occurrences for each model operation in reduced models. Distilled (a), Tiny (b), Base (c).

FIGURE 5. Total time and number of occurrences for each model
operation in Large model.

operations in comparison to the other three reduced models.
Looking at Table 2 and Figures 4a, 4c and 5, it can be seen
how the reduction of the model is what most impacts infer-
ence times. For instance, on the Raspberry Pi it is possible
to achieve an improvement in the speed of more than 2.4x
and 3.5x over the Large model in the Base and Distilled,
respectively. The Tiny model, despite being slightly slower
than the distilled model (approx. 100 ms), does not have the
bottleneck related to the convolutional layers of the distilled
model, which represent more than 58% of the inference time.
Thus, in the case of the Tiny model, the operation that takes
most of the inference time consumes less than 20% of the
total.

The obtained results can be complemented by comparing
the performance of the two evaluated devices (the Raspberry
Pi and the smartphone) when carrying out the same tasks.
In such a case, it is worth noting that, for the calculation of
the inference time, there is an identical pre-processing time
for the different used models and a loading time that depends

TABLE 3. Times obtained for the Raspberry Pi 4.

on each model. These two times elapse at the beginning of
the execution only, therefore, for each inference, only the
transcription time goes by. Thus, Table 3 shows the average
time for load and transcription for the Raspberry Pi, while
Table 4 shows the same times for the selected Android smart-
phone. To judge the results, it is important to remember that
all audios have a 5 seconds duration except in the models with
Trimmed options, where they are in general smaller.

Both for the Raspberry Pi and the smartphone, for the
Large model it is indicated ‘N/A’ because without quantifi-
cation it is not possible to execute inference due to memory
limitations (even on the selected smartphone, which has 8GB
of RAM). Therefore, the quantization of the model increases

63638 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

TABLE 4. Times obtained for the Android smartphone.

the inference speed significantly, especially when loading
the model, partly due to the considerable reduction in space.
In the case of trimming audio, improvement is achieved, but
only in transcription times.

For the selected Android smartphone, the quantified Large
model can be used in real applications in light of the times
obtained. However, that is not the case of the Raspberry Pi,
which has less processing capacity, especially considering
that inference runs on the CPU. For a platform with hardware
similar to the one of the Raspberry Pi, the best option would
definitely be to use a lighter model like the Distilled, whose
inference times are under 2 seconds.

2) INFERENCE TIMES WHEN USING A CLOUD SERVER
The inference times obtained in the previous section are
local times (i.e., times related to the execution on the mobile
devices). To quantify the impact of Edge Computing on the
response delay, in this Section, inference time is measured
when the models are hosted in a cloud server. Since the cloud
was a powerful server (with 2 AMDEPYC 7763 cores, 32GB
of RAM and an Nvidia TITAN A100 64GB GPU), no opti-
mization mechanisms were applied, so the Large model was
used to provide high precision at the output. To carry out
inference on the cloud, two API calls were performed against
the remote server: one was in charge of sending the audio
to the server, while the second one requested the processing
of the audio and returned its transcription.

The tests were performed with a WiFi connection using
IEEE 802.11n in the 2.4GHz band. Figure 6 shows the
channel occupancy (the access point for the connection to
the server is represented in the figure as ‘‘SSID1’’; the rest
of the network identifiers have been renamed to protect their
privacy).

The REST API tests were performed in two different sce-
narios: one with good connectivity (Scenario A) and another
one with poor connectivity (Scenario B). The quality of
the connection was measured through the Round-Trip Time
(RTT) of the desired server. Scenario A was considered as
‘‘good’’ since the performed tests showed 0 packet losses
of a total of 50 delivered in 49,067ms with a RTT whose
minimum was 38ms, the maximum was 50.7ms and the

FIGURE 6. WiFi channel occupation for the 2.4 GHz band.

average was 41.27ms. The ‘‘poor’’ connectivity scenario (B)
achieved the same packet reception in 49,079ms with higher
RTTs: the minimum was 44.15 ms, the maximum was
143.68ms and the average was 56.38ms.

Table 5 shows the times required to perform the two queries
and the total time needed by the whole inference process for
the scenarios A and B indicating the RTT of the connections.
A total of 50 measures were performed.

As it can be observed in Table 5, as expected, times are
smaller for the good connectivity scenario, being close to
those obtained locally for the Android smartphone when
using the distilled model (this is also in part due to the short
duration of the audios). However, in scenario B times are
clearly larger.Moreover, in scenario B, due to poor connectiv-
ity, significantly high values occur (e.g., for the 50 measure-
ments performed, one of them reached 15,735ms; without
such a measurement the average decreases to 1212.15ms).

E. COMMAND DETECTION
In the previous subsections the performance of speech infer-
ence process has been analyzed, but, as it was mentioned
before, the ultimate goal of the proposed system is not to
transcribe a speech literally, but to perform an action after
processing the speech. It is therefore essential to measure
the effectiveness and latency for detecting a command. For
such a task, 25 voice commands with a 5 second duration
were tested. Such commands represented a subset of the
available commands. Each of the tested commands belonged
to one of 8 different categories (turn on/off lights, turn on/off
heating, turn on/off smart heating, show actual temperature,
show notifications, turn on/off alarm, increase/decrease vol-
ume, call phone number) and all of them were expressed
differently with natural spontaneous language and with a total
of 28 different keyword predefined for the system, whose
appearances in the utterance make it possible to determine
the command to execute. For instance, the sentence ‘‘Non
escoito ben, fala máis alto’’ (I do not hear well, speak
louder) would be an example of a speech that includes several
keywords. Specifically, the sentence includes two keywords
‘‘fala’’ (speak) and ‘‘alto’’ (louder), which fall under the
category ‘‘increase/decrease volume’’.

VOLUME 11, 2023 63639

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

TABLE 5. Latency results obtained for transcription inference with large model hosted on the cloud when tested in scenarios A and B.

It is worth mentioning that, as indicated in [119], the gener-
ated Galician model has some problems in the segmentation
of words that can be improved by using a beam decoder with
a language model [43]. However, since the default greedy
decoder is more efficient, it was the one used. To overcome
the mentioned problem, the system simply compares each
word with the possible keywords and then the selected key-
word is joined to the next and previous words. This provides
a better comparison when a possible keyword is segmented
into two words.

On the other hand, Whisper models add punctuation and
accents that are not relevant for the selected home IoT sce-
nario, so all these unwanted characters were escaped in the
resulting transcription.

It should be noted that the detection of false positives
does not necessarily imply an error in detecting a command.
Likewise, there are commands that may be recognized with-
out detecting all the keywords in the phrase. It should be
also considered that certain keywords can also trigger other
keywords that are synonyms.

Tables 6 and 7 show the number of errors, the number of
detected false positive keywords and the processing times in
relation to the execution of the model on the Raspberry Pi
when using the Levenshtein and LCS algorithms.

As it can be observed in Tables 6 and 7, the large model,
despite detecting several false positives, did not make any
mistakes. In the case of LCS (Table 7) two different values
are shown for the two model tests (i.e., for the quantified
and quantified trimmed models): this is because one was
performed with the same ratio as the rest of the tests (i.e.,
Base, Distilled and Tiny)while the other with a slightly higher
ratio for the Largemodel. Thus, since the Largemodel ismore
accurate, with a lower ratio it detects more false positives,
only making one error.

For quantified and quantified with trimming algorithms
and for the large model, the results are almost identical.
For the lower precision models, errors and lower keyword
detection occur, but there are also no significant differences
between using one or both optimizations or the original
floating point model. With respect to the distance algorithm,
in terms of time, there is a relevant difference between

TABLE 6. Command detection results obtained with Levenshtein
algorithm.

TABLE 7. Command detection results obtained with LCS algorithm.

Levenshtein and LCS. Moreover, it can be concluded that the
operation of the LCS algorithm is simpler but it also requires
a finer adjustment of the detection rate.

F. POWER CONSUMPTION
Another interesting aspect to be considered in the proposed
system is power consumption, since the inference will be

63640 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

FIGURE 7. Regular operation of the Distilled model with 2 speech inferences.

performed on battery-powered devices. Figure 7 shows the
power consumption of the Raspberry Pi 4 when executing
the distilled model. Measures were taken with a Joulescope
[120], which is a high precision power meter device with a
1.5 nA resolution and which is able to obtain measurements
of voltage and current at 2 million samples per second and
with a 250KHz bandwidth.

Figure 7 depicts power consumption by distinguishing the
different execution stages:

• Stage 1 - Pre-processing. It is common to all models, and
requires an approximate average current of 675mA.

• Stage 2 - Loading of the model. During the first part
of this stage the system remains in idle, consuming
approximately 520mA. The second part is related to the
actual model loading, which consumes an average of
731mA.

• Stage 3 - First inference and transcription. For the sake
of clarity, Figure 7 represents a first inference and
transcription event, which requires an average of 1.2A,
followed by a 5-second delay that consumes roughly
525mA (such a delay was included for visualization
purposes, to distinguish more clearly the two performed
inferences).

• Stage 4 - Second inference and transcription. The con-
sumption of this stage varies significantly for the four
tested models. Figure 8 shows the consumption for each
of the reduced models while Figure 9 shows the values
obtained for the quantified large model. The difference
in consumption is noticeable: the event has a power
consumption of approximately 3.13Wh (626mA) and
4.22Wh (844mA) for the Distilled and Base models,
respectively, while the large model presents a consump-
tion of 11.04Wh (2207.9mA). Therefore, in terms of
consumption, the first two models are more adequate
for embedded devices like the Raspberry Pi. The infer-
ence event of the tiny model, despite being less than
100ms slower on average, has a lower average current

consumption than the base one (1.13A versus 1.23A),
being both adequate for low-resource devices.

Regarding the power consumption on the tested smart-
phone, unfortunately, it is not possible to use the Joulescope
to obtain precise power consumption measurements as on the
Raspberry Pi due to the embedded battery load regulator (i.e.,
it is not easy to measure the real power consumption without
bypassing the battery-load regulator). Nonetheless, Android
allows for exporting the system power consumption traces,
which provide a general overview of the overall consumption.
Thus, Figures 10 and 11 show such traces for battery and CPU
usage, respectively.

In particular, Figure 10 shows the evolution of the bat-
tery on an execution of 22 inferences of 5 seconds when
making use of the distilled model every 10 seconds. As it
can be observed, a quite intensive use of the battery occurs.
The results of the estimated power use of the developed
application indicate that roughly 0.03% of the battery was
consumed. Considering that the battery capacity of the
selected smartphone is 4500mA, an approximate consump-
tion of 1.35mA was required for the total execution (similar
to which is observed in Figure 7 for the Raspberry Pi but with
more speech inferences) and 0.061mA for every individual
inference event, which implies a battery level decrease of
approximately 0.0013%.

Figure 11 shows the CPU usage required by the Android
system during the execution of the application. In particu-
lar, an inference event for the distilled model of 556.4ms
is highlighted. It can be seen how the first 4 CPU cores
manage Android internal tasks (which show a relatively high
usage outside of the inference event interval), while the
other 4 CPUs are dedicated specifically to the execution of
the developed application, showing an intensive use during
the inference events.

The obtained results, which should be considered as rough
approximations, show a power consumption of 0.0411mWh
for the distilled model, which, compared to the 3.13Wh

VOLUME 11, 2023 63641

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

FIGURE 8. Inference event current on reduced ASR models.

FIGURE 9. Inference event current consumption for the large model.

obtained for the Raspberry Pi for the same model, suppose
a noticeable difference. However, it is important to note that:

• Both platforms make use of completely different
hardware.

• No specific optimization mechanisms were imple-
mented on the base OS.

• Measurements were taken in a very different way.
The measurements for the Raspberry Pi 4 are more
accurate than the estimations obtained for the Android
smartphone.

• The Raspberry Pi 4 is more oriented towards a general
use as a desktop computer and is not optimized for being
used in low-power consumption solutions that run on
batteries. Its consumption in idle is between 400 and
550mA, which is quite high in comparison to the current
consumed in idle by devices like Raspberry Pi Zero
(around 80mA). Nonetheless, there are several adjust-
ments that can be made to optimize power consumption
without limiting CPU frequency (e.g., by disabling the
USB/Ethernet ports), but, since the performed tests were
essentially focused on measuring the current consumed
by inference events, the previously suggested improve-
ments would not contribute to minimizing the overall
solution energy consumption.

G. BLE MESH LATENCY
The use of BLE Mesh introduces communications laten-
cies that have been estimated. For such an estimation,
three different scenarios were considered and thus determine

TABLE 8. Results obtained for the Bluetooth communications subsystem
when testing and executing IoT commands in the three selected
scenarios.

how BLE Mesh impacts latency when carrying out direct
communications.

To perform this set of experiments, RSSI was used to
distinguish among the scenarios. According to Nordic’s
datasheet for the used BLE Mesh board [121], the sensitivity
in BLE 1M mode is -96 dBm. It is worth noting that, since
the used board has a Power Amplifier/Low-Noise Amplifier
(PA/LNA) module, the obtained range is better than the usu-
ally achieved with most Bluetooth devices.

It must be indicated that the three selected BLE Mesh sce-
narios are not related to the ones described in Section IV-D2.
In this case, the scenario A had the best signal reception,
with an RSSI equal to or higher than -55 dBm. Scenario B
had a medium signal reception, thar was between -70 and
-77 dBm. Finally, scenario C had the worst signal strength,
with an RSSI equal or under -87 dBm.

Regarding themeasured latency, it includes the period from
the sending of the IoT command (once it has been deter-
mined) until the completion of the requested action by the
sensor/actuator node. Times were obtained through a serial
connection to the VAD and IoT nodes, which were previously
synchronized through Network Time Protocol (NTP).

The results shown in Table 8 indicate that, on aver-
age, in the scenario with the worst signal (C) a latency of
113.41ms was required, while only 78.49ms for the best sig-
nal scenario (A). In any case, less than 282mswere necessary.

These results show that BLE Mesh is an efficient proto-
col for performing communications with IoT devices when
short messages are involved and when considering the total

63642 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

FIGURE 10. Android battery history for the distilled model.

FIGURE 11. Android system trace analyzer for the distilled model.

time as the time of transcription and command detec-
tion. For instance, in an Android-based system it would
be possible with the fastest models to perform an action
in less than 1 second, which is a reasonable latency for
immediate-response tasks such as lighting control. For com-
pletion purposes, the next section goes further and analyzes
latency for opportunistic scenarios, where no direct commu-
nications are available.

1) VAD OPPORTUNISTIC COMMUNICATIONS
a: OPPORTUNISTIC SCENARIO
Opportunistic systems complement traditional infrastructure-
based communications by allowing mobile devices to com-
municate directly with each other when in range [122]. Due to
their design, they are considered beneficial in urban systems
where the network is overloaded, as well as in scenarios
where no communications infrastructure is available [123].

VOLUME 11, 2023 63643

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

This last aspect is interesting for HA environments, since
the cost of infrastructure to sensorizing a house can be
high. By design, opportunistic systems are infrastructure-
free, in which human-carried mobile devices (nodes) store
and relay data when the opportunity arises.

In this case, the VAD node acts as a mobile node that can
receive messages opportunistically from other devices. This
occurs in contrast to the usual approach in HA environments,
where voice assistants consist in smart speakers distributed
throughout the different rooms of a house and whose com-
munications are all centralized in a hub or server, with the
involved costs. This approach is not usually considered by
the main wireless HA protocols, which are focused on the
use of static IoT devices that communicate with a specific
relay/gateway node. In this case, being the VAD a mobile
device, the solution is to replicate the information between
the different relay nodes.

b: OPPORTUNISTIC PERFORMANCE
In order to test how the opportunistic message strategy
impacts the system, the delay involved in redirecting a mes-
sage through several intermediate gateways was measured.

In this case, the total latency of the system is not a relevant
performance indicator, since LPN nodes are most of the time
asleep due to operating on battery or with a limited power
supply and since the type of information they send to the VAD
node is not critical. The example described in Section IV-B is
a clear case of this kind of scenario: the activation of the intel-
ligent heating system does not involve an intensive polling
of the house temperature since there will not be significant
variations in a short time (i.e., the heating will not raise the
temperature quickly).

The total system response latency will be conditioned by
the sleep cycles of the LPN node. However, it is possible
to measure the time it takes to circulate an end-to-end mes-
sage addressed to the VAD node when requiring a different
number of hops (ignoring the sleep times). Table 9 shows the
transmission times according to the number of hops (with a
maximum of three) in different scenarios. These three sce-
narios are not physically the same as those considered in
Table 7, since they contemplate opportunistic scenarios, but
they follow the same RSSI ranges indicated in Section IV-G.
In fact, another aspect to take into consideration for testing

is the increase of the number of intermediate nodes. It is
necessary to take into account that the nodes are in range
forming a daisy chain. This is important, since BLE Mesh
does not make use of routing tables and it is possible that
in the communication some intermediate nodes are skipped
(when another node is in range). To avoid this issue and
thus make sure that intermediate hops are not skipped, the
transmission power levels of certain nodes were lowered.

c: EXPERIMENTS
To calculate the time it takes from source to destination (being
the origin the VAD node and the destination any LPN node
in the system), a serial connection was used in the source and

FIGURE 12. Node and gateway locations for the indoor tests.

destination node as in the previous section and also in the
next hop to the source node (VAD) to obtain the RSSI value.
In this case, the different RSSI values for each scenario refer
only to the source node, since is the only that is in movement
and could experiment notable variations.

In order to calculate the time it takes from the source to
the destination when several intermediate hops are involved,
a serial connection is used to obtain the timestamp from the
source node (i.e., the VAD node) to the destination node (i.e.,
a specific LPN node). In addition, this mechanism is also used
to obtain the RSSI of the intermediate node that receives the
message from the VAD and thus to correlate it with the three
RSSI ranges defined in Section IV-G. Regarding the RSSI
of the rest of the intermediate nodes, it is not specifically
analyzed in the tests since they remain static, so they do not
experience variations as remarkable as for the VAD node.

The tests were carried out indoors in a house and through-
out 8 different rooms. A map of the indoor scenario in which
the tests were carried out is shown in Figure 12. In such
a Figure, GW1, GW2 and GW3 represent the intermediate
gateways employed in the different scenarios (the gateway
antenna orientation is also depicted). The destination node
(LPN Dst) remained for all tests in the same position, while
the intermediate gateway position varied according to the
number of hops: for one hop only GW2 was used; with two
hops, GW2 and GW1 were employed; and for three hops all
the represented gateways were used. In addition, the inter-
mediate gateways of the different scenarios were static, with
stable RSSI values that ranged between -66 and -82 dBm.
In contrast, the VAD node was placed in different positions
depending on the scenario and considering the RSSI ranges
defined in Section IV-G.

The results showminimal differences between the different
levels of RSSI, similar to those shown in Table 8. However,

63644 VOLUME 11, 2023

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

TABLE 9. Latency results obtained in multi-hop communication between the VAD and the IoT node.

as the number of hops increases, there is a noticeable increase
in the measured times. In particular, increases in latency
ranging from 20% to 42% are observed as the number of hops
grows.

Finally, it should be considered that, when using the BLE
Mesh standard, as a network grows in terms of complexity, its
communications tend to become saturated. In such a case, the
only control mechanism that is provided consists in sending
addressed messages and in defining a TTL value. However,
to avoid potential saturation problems, it is better to avoid the
deployment of BLE Mesh networks that require a complex
topology.

V. KEY FINDINGS AND FUTURE CHALLENGES
From all the tests and developments carried out throughout
this article, the following conclusions were obtained:

• Most of the speech recognition models are heavy on
resources and need to be run on a server, which leads to
a potential lack of privacy, high costs and security prob-
lems. Themain supported languages are the most widely
spoken, which traditionally require the use of corpuses
with thousands of hours of audio associated with texts,
which complicates the generation of language-specific
corpuses.

• The main literature and solutions for NLP problems
are specific for the English language, which makes it
difficult to perform specific language processing tasks
for different languages (mainly due to the lack of corpus
in other languages).

• The latest ASR solutions allow for generating
multi-language transcriptions with few labelled data
hours for training, which enables to obtain an accurate
acoustic model in specific languages with few resources.

• Text-distance algorithms are an elegant and efficient
solution to overcome the lack of NLP corpuses for non-
English grammars. However, for an acoustic model like
the one generated, the ideal option would be to use
phonetic-based algorithms, which are mostly based on
English phonetics.

• The portability of embedded models for audio tasks is
still low. They are too complex for being used in embed-
ded architectures, at least in comparison to the most
popular computer visionmodels formobile architectures

(e.g., MobilNet, Yolo), which are much lighter and
can perform CPU inference with reduced times. For
instance, the small model of MobileNetV3 has 1.7M
parameters [124], much less than for the Tiny and Dis-
tilled models generated for this article.

• The main technologies that allow for using embedded
models on mobile platforms fail to support acceleration
in many of the instructions for the generated models. For
instance, the use of NNAPI acceleration with ONNX
library lacks support for 7 different instructions with
generated models [125]. One of such instructions is the
convolution, which is the most critical in terms of pro-
cessing time. In fact, acceleration in ONNX for Android
only supports the 2-dimensional convolution (wav2vec2
and Whisper use 1-dimensional convolutions). More-
over, devices that are not based on Android suffer from
a similar problem. For instance, the Raspberry Pi can
make use of acceleration for inference through Vulkan,
but the number of supported instructions is still limited.

• The obtained results are good when it comes to short
audios, despite performingCPU inference. Evenwithout
the use of hardware accelerators like Google Coral, the
Distilled, Base and Tiny models are undoubtedly the
most suitable for an embedded devicewith low resources
in terms of consumption and latency (like a Raspberry
Pi). Specifically, the Distilled model is the most effi-
cient. For the Android platform, even the large model
with quantification produces acceptable inference times.
Reduced models are more suitable for low-end smart-
phones, since such smartphones have larger capacity
batteries (nonetheless, all of the generated models are
valid in terms of energy consumption).

• The distillation of the Large model obtained the best
results to speed up inference. Although applying quan-
tification also provided a slight increase in speed, the
most remarkable speed-up was obtained by distilling the
knowledge of a large model into a small model with a
much lower number of parameters and connections.

• Whisper-based model presents a better WER than the
wav2vec2 and distilHubert based models. Despite using
the same corpus for finetuning every model developed
in the system, in relation to the number of parameters,
Whisper provides better results. In this case, the fact that

VOLUME 11, 2023 63645

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

the Whisper pretraining is supervised (weak supervision
with labelled text from different domains (not only read
text) with a higher number of hours than wav2vec2)
makes it more robust. However, the time spent on tran-
scription by Whisper is higher. This is in part due to
the fact that it performs more tasks than wav2vec2 (e.g.,
capitalization, accents). Such tasks may be relevant for
an ASR model, but they are not for a voice assistant.

• Although all developed models employ multi-language
pre-training, those based on wav2vec2 (and gener-
ally SSL-based models) are limited in this respect,
as the pre-train is based on a unsupervised train-
ing for masked prediction of unlabelled audio that
does not learn a speech-to-text mapping (this map-
ping is only learned during fine-tuning). On the
other hand, Whisper is pre-trained with a large
amount of labelled audio-transcription data (680,000
hours against 60,000 hours for wav2vec2). Therefore,
Whisper requires additional fine-tuning to achieve
the same WER results of wav2vec2 and preserv-
ing multi-language knowledge from the pre-training
phase, thus making it more suitable for multi-language
solutions.

VI. CONCLUSION
In this paper, an IoT home automation system with voice
assistance has been presented. The system operates exclu-
sively on the edge, without the need for an Internet connec-
tion, requiring a reduced deployment in infrastructure and
allowing the use of low-resource languages like Galician.
The system has been tested in static and mobile opportunistic
scenarios, providing relatively fast and efficient response
times, performing CPU-only inference for transcriptions,
being suitable for edge devices with minimal computational
capabilities and implementing a distributed architecture with-
out the need for expensive gateways or hubs to manage the
communications with the deployed IoT nodes.

Specifically, different multi-language ASR models were
developed, validated and optimized for being used with
a voice assistant. A relevant effort was put on the opti-
mization and performance evaluation of reduced models
that can be used by Android devices or by other types
of resource-constrained embedded hardware. Moreover, the
proposed system considers the use of mobile opportunistic
devices, which is beneficial from the infrastructure point of
view. Such an opportunistic approach was evaluated in terms
of latency, obtaining the system response times in different
scenarios. In terms of latency, with themost limited hardware,
inferences of less than 2 s were achieved for the best case
while accuracy for the worst case reached a success rate
of 76%. Specific details have been provided regarding the
energy consumption required by the transcriptions of each
tested model. Finally, transmission latency was measured
between the VAD and an IoT nodes, showing that it never
exceeded 300ms for the worst case in direct connection and
600ms with 3 hops.

REFERENCES
[1] United Nations. World Population Ageing 2020 Highlights. Accessed:

Feb. 2023. [Online]. Available: https://www.un.org/development/
desa/pd/news/world-population-ageing-2020-highlights

[2] P. Kaur, P. Singh, and V. Garg, ‘‘Speech recognition system; challenges and
techniques,’’ Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 3, pp. 3989–3992,
2012.

[3] S. F. N. Zaidi, V. K. Shukla, V. P. Mishra, and B. Singh, ‘‘Redefining home
automation through voice recognition system,’’ in Emerging Technologies
in Data Mining and Information Security (Advances in Intelligent Systems
and Computing), vol. 1300, A. E. Hassanien, S. Bhattacharyya, S. Chakra-
bati, A. Bhattacharya, and S. Dutta, Eds. Singapore: Springer, 2021, doi:
10.1007/978-981-33-4367-2_16.

[4] Global Automatic Speech Recognition Market 2022. Accessed: Feb. 2023.
[Online]. Available: https://www.linkedin.com/pulse/global-automatic-
speech-recognition-market-2022-

[5] Voice Recognition Tech Privacy and Cybersecurity Concerns.
Accessed: Feb. 2023. [Online]. Available: https://www.natlawreview.
com/article/voice-recognition-technology-market-surges-organizations-
face-privacy-and

[6] J. Lau, B. Zimmerman, and F. Schaub, ‘‘Alexa, are you listening?’’ Proc.
ACM Hum.-Comput. Interact., vol. 2, pp. 1–31, Nov. 2018.

[7] A.-L. Georgescu, A. Pappalardo, H. Cucu, and M. Blott, ‘‘Performance vs.
hardware requirements in state-of-the-art automatic speech recognition,’’
EURASIP J. Audio, Speech, Music Process., vol. 2021, no. 1, pp. 1–30,
Jul. 2021.

[8] S. Gondi and V. Pratap, ‘‘Performance evaluation of offline speech recog-
nition on edge devices,’’ Electronics, vol. 10, no. 21, p. 2697, Nov. 2021.

[9] C. Yi, J. Wang, N. Cheng, S. Zhou, and B. Xu, ‘‘Applying wav2vec2.0
to speech recognition in various low-resource languages,’’ 2020,
arXiv:2012.12121.

[10] E. Guglielmi, G. Rosa, S. Scalabrino, G. Bavota, and R. Oliveto, ‘‘Sorry,
I don’t understand: Improving voice user interface testing,’’ in Proc. 37th
IEEE/ACM Int. Conf. Automated Softw. Eng., Oct. 2022, pp. 1–12.

[11] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, ‘‘Wav2vec 2.0: A frame-
work for self-supervised learning of speech representations,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 12449–12460.

[12] Language Diversity Index. Accessed: Feb. 2023. [Online]. Available:
https://education.nationalgeographic.org/resource/language-diversity-
index-map

[13] Ageing Europe—Statistics on Population Developments. Accessed:
Feb. 2023. [Online]. Available: https://ec.europa.eu/eurostat/statistics
-explained/index.php?title=Ageing_Europe__statistics_on_population
_developments

[14] Instituto Galego de Estatística. Accessed: Feb. 2023. [Online]. Available:
https://www.ige.gal/web/index.jsp

[15] F. N. Valverde and M. Labianca, ‘‘Depopulation and aging in rural areas
in the European Union: Practices starting from the LEADER approach,’’
Perspect. Rural Develop., vol. 2019, no. 3, pp. 223–252, 2019.

[16] I. B. C. Irugalbandara, A. S. M. Naseem, M. S. H. Perera, and
V. Logeeshan, ‘‘HomeIO: Offline smart home automation system with
automatic speech recognition and household power usage tracking,’’ in
Proc. IEEE World AI IoT Congr. (AIIoT), Jun. 2022, pp. 571–577.

[17] N. Chumuang, M. Ketcham, S. Tangwannawit, W. Yimyam, S. Hiranchan,
M. Rattanasiriwongwut, and P. Pramkeaw, ‘‘Development a home electri-
cal equipment control device via voice commands for elderly assistance,’’
in Proc. 15th Int. Joint Symp. Artif. Intell. Natural Lang. Process. (iSAI-
NLP), Nov. 2020, pp. 1–7.

[18] L. Xu, A. Iyengar, and W. Shi, ‘‘CHA: A caching framework for home-
based voice assistant systems,’’ in Proc. IEEE/ACM Symp. Edge Comput.
(SEC), Nov. 2020, pp. 293–306.

[19] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goyal, K. Singh,
P. von Platen, Y. Saraf, J. Pino, A. Baevski, A. Conneau, and M. Auli,
‘‘XLS-R: Self-supervised cross-lingual speech representation learning at
scale,’’ in Proc. Interspeech, Sep. 2022, pp. 2278–2282.

[20] SparkFun Edge Development Board—Apollo3 Blue MCU—DEV-
15170—SparkFun Electronics. Accessed: Feb. 2023. [Online]. Available:
https://www.sparkfun.com/products/15170

[21] A. Ghosh, D. Chakraborty, and A. Law, ‘‘Artificial intelligence in Internet
of Things,’’ CAAI Trans. Intell. Technol., vol. 3, no. 4, pp. 208–218,
Dec. 2018.

[22] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, ‘‘Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,’’ Proc.
IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

63646 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-981-33-4367-2_16

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

[23] L. C. Schünke, B. Mello, C. A. da Costa, R. S. Antunes, S. J. Rigo,
G. D. O. Ramos, R. D. R. Righi, J. N. Scherer, and B. Donida, ‘‘A rapid
review of machine learning approaches for telemedicine in the scope of
COVID-19,’’ Artif. Intell. Med., vol. 129, Jul. 2022, Art. no. 102312.

[24] M. Vacher, B. Lecouteux, and F. Portet, ‘‘Multichannel automatic recog-
nition of voice command in a multi-room smart home: An experiment
involving seniors and users with visual impairment,’’ in Proc. Interspeech,
Sep. 2014, pp. 1008–1012.

[25] C. Chen, J. G. Johnson, K. Charles, A. Lee, E. T. Lifset, M. Hogarth,
A. A. Moore, E. Farcas, and N. Weibel, ‘‘Understanding barriers and
design opportunities to improve healthcare and QOL for older adults
through voice assistants,’’ in Proc. 23rd Int. ACM SIGACCESS Conf.
Comput. Accessibility, Oct. 2021, pp. 1–16.

[26] A. Pradhan, A. Lazar, and L. Findlater, ‘‘Use of intelligent voice assistants
by older adults with low technology use,’’ ACM Trans. Comput.-Hum.
Interact., vol. 27, no. 4, pp. 1–27, Aug. 2020.

[27] S. Ashwini, N. R. Rajalakshmi, P. V. Paul, and L. Jayakumar, ‘‘Dynamic
NLP enabled chatbot for rural health care in India,’’ in Proc. 2nd Int. Conf.
Comput. Sci., Eng. Appl. (ICCSEA), Sep. 2022, pp. 1–6.

[28] N. Mani, A. Singh, and S. L. Nimmagadda, ‘‘An IoT guided healthcare
monitoring system for managing real-time notifications by fog computing
services,’’ Proc. Comput. Sci., vol. 167, pp. 850–859, Jan. 2020.

[29] S. Latif, J. Qadir, A. Qayyum, M. Usama, and S. Younis, ‘‘Speech tech-
nology for healthcare: Opportunities, challenges, and state of the art,’’
IEEE Rev. Biomed. Eng., vol. 14, pp. 342–356, 2021.

[30] P. Suter, W. N. Suter, and D. Johnston, ‘‘Theory-based telehealth and
patient empowerment,’’ Population Health Manage., vol. 14, no. 2,
pp. 87–92, Apr. 2011.

[31] S. U. Amin and M. S. Hossain, ‘‘Edge intelligence and Internet of Things
in healthcare: A survey,’’ IEEE Access, vol. 9, pp. 45–59, 2021.

[32] E. Kasthuri and S. Balaji, ‘‘Natural language processing and deep learning
chatbot using long short term memory algorithm,’’ Mater. Today, Proc.,
vol. 81, pp. 690–693, May 2023.

[33] J. Baptista, G. Fernandes, R. Talhadas, F. Dias, and N. Mamede,
‘‘Implementing European Portuguese verbal idioms in a natural language
processing system,’’ in Proc. Europhras, 2015, pp. 102–115.

[34] Y.-C. Zhou, Z. Zheng, J.-R. Lin, and X.-Z. Lu, ‘‘Integrating NLP
and context-free grammar for complex rule interpretation towards auto-
mated compliance checking,’’ Comput. Ind., vol. 142, Nov. 2022,
Art. no. 103746.

[35] Q. Liu, M. J. Kusner, and P. Blunsom, ‘‘A survey on contextual embed-
dings,’’ 2020, arXiv:2003.07278.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ in Proc.
NAACL-HLT, 2019, pp. 4171–4186.

[37] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, ‘‘RoBERTa: A robustly optimized BERT
pretraining approach,’’ 2019, arXiv:1907.11692.

[38] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, ‘‘DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper and lighter,’’ 2019,
arXiv:1910.01108.

[39] L. Lugosch, M. Ravanelli, P. Ignoto, V. S. Tomar, and Y. Bengio, ‘‘Speech
model pre-training for end-to-end spoken language understanding,’’ in
Proc. Interspeech, G. Kubin and Z. Kacic, Eds., Sep. 2019, pp. 814–818.

[40] Y. Jiang, B. Sharma, M.Madhavi, and H. Li, ‘‘Knowledge distillation from
BERT transformer to speech transformer for intent classification,’’ in Proc.
Interspeech, Jun. 2021, pp. 4713–4717.

[41] M. Garcia, ‘‘Exploring the representation of word meanings in context:
A case study on homonymy and synonymy,’’ in Proc. 59th Annu. Meeting
Assoc. Comput. Linguistics, 11th Int. Joint Conf. Natural Lang. Process.,
vol. 1. Stroudsburg, PA, USA: Association for Computational Linguistics,
2021, pp. 3625–3640.

[42] D. Vilares, M. Garcia, and C. Gómez-Rodríguez, ‘‘Bertinho: Galician
BERT representations,’’ Procesamiento del Lenguaje Natural, vol. 66,
pp. 13–26, Sep. 2021.

[43] S. Gondi, ‘‘Wav2Vec2.0 on the edge: Performance evaluation,’’ 2022,
arXiv:2202.05993.

[44] W. Sun, J. Liu, and Y. Yue, ‘‘AI-enhanced offloading in edge computing:
When machine learning meets industrial IoT,’’ IEEE Netw., vol. 33, no. 5,
pp. 68–74, Sep. 2019.

[45] S. Sen, J. Koo, and S. Bagchi, ‘‘TRIFECTA: Security, energy efficiency,
and communication capacity comparison for wireless IoT devices,’’ IEEE
Internet Comput., vol. 22, no. 1, pp. 74–81, Jan. 2018.

[46] Arm’s New Cortex-A77 CPU Micro-Architecture, Evolving
Performance. Accessed: Feb. 2023. [Online]. Available: https://www.
anandtech.com/show/14384/arm-announces-cortexa77-cpu-ip

[47] How the IoT Ecosystem Will Look Like in 2025. Accessed: Feb. 2023.
[Online]. Available: https://medium.com/@sophiamcleod99/how-the-iot-
ecosystem-will-look-like-in-2025-eb81af07402c

[48] P. Fraga-Lamas, S. I. Lopes, and T. M. Fernández-Caramés, ‘‘Green IoT
and edge AI as key technological enablers for a sustainable digital transi-
tion towards a smart circular economy: An industry 5.0 use case,’’ Sensors,
vol. 21, no. 17, p. 5745, Aug. 2021.

[49] M. Brandalero, M. Ali, L. Le Jeune, H. G. M. Hernandez, M. Veleski,
B. da Silva, J. Lemeire, K. Van Beeck, A. Touhafi, T. Goedemé,
N. Mentens, D. Göhringer, and M. Hübner, ‘‘AITIA: Embedded AI
techniques for embedded industrial applications,’’ inProc. Int. Conf. Omni-
Layer Intell. Syst. (COINS), Aug. 2020, pp. 1–7.

[50] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Sys., vol. 33, 2020, pp. 1877–1901.

[51] K. Song, H. Sun, X. Tan, T. Qin, J. Lu, H. Liu, and T.-Y. Liu, ‘‘LightPAFF:
A two-stage distillation framework for pre-training and fine-tuning,’’ 2020,
arXiv:2004.12817.

[52] W. Liu, P. Zhou, Z. Zhao, Z.Wang, H. Deng, and Q. Ju, ‘‘FastBERT: A self-
distilling BERTwith adaptive inference time,’’ inProc. 58th Annu.Meeting
Assoc. Comput. Linguistics, 2020, pp. 6035–6044.

[53] Cloud Tensor Processing Units. Accessed: Feb. 2023. [Online]. Available:
https://cloud.google.com/tpu/docs/tpus

[54] An in-Depth look at Google’s First Tensor Processing Unit (TPU).
Accessed: Feb. 2023. [Online]. Available: https://cloud.google.com/
blog/products/ai-machine-learning/
an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

[55] Products | Coral. Accessed: Feb. 2023. [Online]. Available: https://
www.coral.ai/products/

[56] K. Palanisamy, V. Khimani, M. H. Moti, and D. Chatzopoulos, ‘‘SplitEasy:
A practical approach for training ML models on mobile devices,’’ in Proc.
22nd Int. Workshop Mobile Comput. Syst. Appl. New York, NY, USA:
Association for Computing Machinery, 2021, pp. 37–43.

[57] Fine-Tune a Pretrained Model. Accessed: Feb. 2023. [Online]. Available:
https://huggingface.co/docs/transformers/training

[58] S. Alqahtani and M. Demirbas, ‘‘Performance analysis and comparison of
distributed machine learning systems,’’ 2019, arXiv:1909.02061.

[59] X. Han et al., ‘‘Pre-trained models: Past, present and future,’’ AI Open,
vol. 2, pp. 225–250, Jan. 2021.

[60] M. Elkhodr, S. Shahrestani, and H. Cheung, ‘‘Emerging wireless technolo-
gies in the Internet of Things : A comparative study,’’ Int. J. Wireless,
Mobile Netw., vol. 8, no. 5, pp. 67–82, Oct. 2016.

[61] L. Schönherr, M. Golla, T. Eisenhofer, J. Wiele, D. Kolossa, and T. Holz,
‘‘Unacceptable, where is my privacy? Exploring accidental triggers of
smart speakers,’’ 2020, arXiv:2008.00508.

[62] Low Power Node Example (Experimental). Accessed: Feb. 2023.
[Online]. Available: https://infocenter.nordicsemi.com/index.jsp?
topic=%2Fcom.nordic.infocenter.meshsdk.v3.2.0%2Fmd
_examples_experimental_lpn_README.html‘I&’cp=5_2_3_6_1

[63] The Verge | Insteon Customers Turned Insteon’s Lights Back on.
Accessed: Feb. 2023. [Online]. Available: https://www.theverge.
com/2022/6/9/23161803/insteon-customers-bought-company-restored-
service

[64] M. Suárez-Albela, T. M. Fernández-Caramés, P. Fraga-Lamas, and
L. Castedo, ‘‘A practical performance comparison of ECC and RSA for
resource-constrained IoT devices,’’ inProc. Global Internet Things Summit
(GIoTS), 2018, pp. 1–6.

[65] E. B. Barker and A. L. Roginsky, ‘‘Transitioning the use of cryptographic
algorithms and key lengths,’’ Nat. Inst. Standards Technol., Gaithers-
burg, MD, USA, Tech. Rep. 800-131A Rev. 2, 2019. [Online]. Avail-
able: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
131Ar2.pdf

[66] T. M. Fernández-Caramès and P. Fraga-Lamas, ‘‘Towards post-quantum
blockchain: A review on blockchain cryptography resistant to quantum
computing attacks,’’ IEEE Access, vol. 8, pp. 21091–21116, 2020.

[67] T. M. Fernández-Caramés, ‘‘From pre-quantum to post-quantum IoT secu-
rity: A survey on quantum-resistant cryptosystems for the Internet of
Things,’’ IEEE Internet Things J., vol. 7, no. 7, pp. 6457–6480, Jul. 2020.

[68] P. Fraga-Lamas, P. Lopez-Iturri, M. Celaya-Echarri,
O. Blanco-Novoa, L. Azpilicueta, J. Varela-Barbeito, F. Falcone, and
T. M. Fernández-Caramés, ‘‘Design and empirical validation of a
Bluetooth 5 fog computing based industrial CPS architecture for
intelligent industry 4.0 shipyard workshops,’’ IEEE Access, vol. 8,
pp. 45496–45511, 2020.

[69] T. M. Fernández-Caramés and P. Fraga-Lamas, ‘‘Design of a fog comput-
ing, blockchain and IoT-based continuous glucose monitoring system for
crowdsourcing mHealth,’’ Proceedings, vol. 4, no. 1, p. 37, 2018.

VOLUME 11, 2023 63647

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

[70] P. Fraga-Lamas, D. Barros, S. I. Lopes, and T. M. Fernández-Caramés,
‘‘Mist and edge computing cyber-physical human-centered systems for
industry 5.0: A cost-effective IoT thermal imaging safety system,’’ Sensors,
vol. 22, no. 21, p. 8500, Nov. 2022.

[71] Google Statistics on IPv6Usage. Accessed: Feb. 2023. [Online]. Available:
https://www.google.com/intl/en/ipv6/statistics.html

[72] nRF52 Series. Accessed: Feb. 2023. [Online]. Available: https://
infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct
%2Fnrf52.html

[73] 2022 Bluetooth Market Update. Accessed: Feb. 2023. [Online].
Available: https://www.bluetooth.com/2022-market-update/?utm
_campaign=bmu&utm_source=internal&utm_medium=web&utm
_content=2022bmu-resourcepopup

[74] D. Pérez-Díaz-De-Cerio, Á. Hernández-Solana, M. García-Lozano,
A. V. Bardají, and J. Valenzuela, ‘‘Speeding up Bluetooth mesh,’’ IEEE
Access, vol. 9, pp. 93267–93284, 2021.

[75] I. Froiz-Míguez, P. Fraga-Lamas, and T. M. Fernández-Caramés, ‘‘Power
consumption analysis for the development of energy efficient Bluetooth
5 based real-time industrial IoT systems,’’ in Science and Technologies
for Smart Cities. SmartCity (Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering), vol
442. Cham, Switzerland: Springer, Dec. 2022, doi: 10.1007/978-3-031-
06371-8_13.

[76] Bluetooth Mesh Models—A Technical Overview. Accessed:
Feb. 2023. [Online]. Available: https://www.bluetooth.com/bluetooth-
resources/bluetooth-mesh-models

[77] A. Aijaz, A. Stanoev, D. London, and V. Marot, ‘‘Demystifying the perfor-
mance of Bluetooth mesh: Experimental evaluation and optimization,’’ in
Proc. Wireless Days (WD), Jun. 2021, pp. 1–6.

[78] Bluetooth Mesh Network Performance. Accessed: Feb. 2023. [Online].
Available: https://www.silabs.com/documents/public/application-
notes/an1137-bluetooth-mesh-network-performance.pdf

[79] M. Conti and M. Kumar, ‘‘Opportunities in opportunistic computing,’’
Computer, vol. 43, no. 1, pp. 42–50, Jan. 2010.

[80] Bluetooth Mesh Networking, Friendship Feature Overview and
Examples. Accessed: Feb. 2023. [Online]. Available: https://www.
bluetooth.com/blog/bluetooth-mesh-networking-series-friendship/

[81] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P.Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer,
and K. Vesely, ‘‘The Kaldi speech recognition toolkit,’’ in Proc. IEEE
Workshop Autom. Speech Recognit. Understand. Piscataway, NJ, USA:
IEEE Signal Processing Society, Sep. 2011, pp. 1–4.

[82] Kaldi ASR. Accessed: Feb. 2023. [Online]. Available: https://kaldi-
asr.org/models.html

[83] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Tech-
nol., vol. 1, 2018, pp. 2227–2237.

[84] I. Misra and L. van der Maaten, ‘‘Self-supervised learning of pretext-
invariant representations,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2020, pp. 6707–6717.

[85] O. Henaff, ‘‘Data-efficient image recognition with contrastive predictive
coding,’’ in Proc. 37th Int. Conf. Mach. Learn., 2020, pp. 4182–4192.

[86] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, ‘‘HuBERT: Self-supervised speech representation learning
by masked prediction of hidden units,’’ IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 29, pp. 3451–3460, 2021.

[87] A. Radford, J. Wook Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, ‘‘Robust speech recognition via large-scale weak supervi-
sion,’’ 2022, arXiv:2212.04356.

[88] T. Sipola, J. Alatalo, T. Kokkonen, and M. Rantonen, ‘‘Artificial intelli-
gence in the IoT era: A review of edge AI hardware and software,’’ in Proc.
31st Conf. Open Innov. Assoc. (FRUCT), Apr. 2022, pp. 320–331.

[89] Neural Networks API | Android NDK. Accessed: Feb. 2023. [Online].
Available: https://developer.android.com/ndk/guides/neuralnetworks/

[90] CoreML Overview—Machine Learning. Accessed: Feb. 2023. [Online].
Available: https://developer.apple.com/machine-learning/core-ml/

[91] An Overview of the PyTorch Mobile Demo Apps. Accessed: Feb. 2023.
[Online]. Available: https://pytorch.org/blog/mobile-demo-apps-
overview/

[92] TensorFlow Lite | ML for Mobile and Edge Devices. Accessed: Feb. 2023.
[Online]. Available: https://www.tensorflow.org/lite

[93] Tencent/NCNN. Accessed: Feb. 2023. [Online]. Available: https://github.
com/Tencent/ncnn

[94] ONNX | The Open Standard for Machine Learning Interoperability.
Accessed: Feb. 2023. [Online]. Available: https://onnx.ai/

[95] Introduction to Quantization on PyTorch. Accessed: Feb. 2023. [Online].
Available: https://pytorch.org/blog/introduction-to-quantization-on-
pytorch/

[96] GitHub PyTorch / PyTorch. Accessed: Feb. 2023. [Online]. Available:
https://github.com/pytorch/pytorch/pull/34396

[97] GitHub Microsoft / Onnxruntime. Accessed: Feb. 2023. [Online]. Avail-
able: https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/
python/tools/quantization/registry.py

[98] Torch.Sparse—PyTorch 1.13 Documentation. Accessed: Feb. 2023.
[Online]. Available: https://pytorch.org/docs/stable/sparse.html#why-and-
when-to-use-sparsity

[99] R. Errattahi, A. El Hannani, and H. Ouahmane, ‘‘Automatic speech recog-
nition errors detection and correction: A review,’’ Proc. Comput. Sci.,
vol. 128, pp. 32–37, Jan. 2018.

[100] Textdistance—PyPi. Accessed: Feb. 2023. [Online]. Available:
https://pypi.org/project/textdistance/

[101] Comparison of the Text Distance Metrics. Accessed: Feb. 2023.
[Online]. Available: https://activewizards.com/blog/comparison-of-the-
text-distance-metrics/

[102] D. D. Prasetya, A. P.Wibawa, and T. Hirashima, ‘‘The performance of text
similarity algorithms,’’ Int. J. Adv. Intell. Inform., vol. 4, no. 1, pp. 63–69,
2018.

[103] S. Jimenez, C. J. Becerra, A. F. Gelbukh, and F. A. González, ‘‘Gener-
alized Mongue–Elkan method for approximate text string comparison,’’
in Computational Linguistics and Intelligent Text Processing (Lecture
Notes in Computer Science), vol. 5449, A. Gelbukh, Ed. Berlin, Germany:
Springer, 2009, doi: 10.1007/978-3-642-00382-0_45.

[104] Bluetooth MeshNetworking, Friendship. Accessed: Feb. 2023. [Online].
Available: https://www.bluetooth.com/blog/bluetooth-mesh-networking-
series-friendship/

[105] Hugging Face | AI Repository. Accessed: Feb. 2023. [Online]. Available:
https://huggingface.co/facebook/wav2vec2-large-xlsr-53

[106] Hugging Face | AI Repository. Accessed: Feb. 2023. [Online]. Available:
https://huggingface.co/facebook/wav2vec2-base-100k-voxpopuli

[107] H.-J. Chang, S.-W. Yang, and H.-Y. Lee, ‘‘DistilHuBERT: Speech repre-
sentation learning by layer-wise distillation of hidden-unit BERT,’’ 2021,
arXiv:2110.01900.

[108] GitHub S3PRL, A Toolkit for Self-Supervised Speech Pre-Training
and Representation Learning. Accessed: Feb. 2023. [Online]. Available:
https://github.com/s3prl/s3prl

[109] V. Pratap, Q. Xu, A. Sriram, G. Synnaeve, and R. Collobert, ‘‘MLS:
A large-scale multilingual dataset for speech research,’’ in Proc. Inter-
speech, Oct. 2020, pp. 2757–2761.

[110] Hugging Face | AI Repository—Openai/Whisper-Tiny. Accessed:
Feb. 2023. [Online]. Available: https://huggingface.co/openai/whisper-
tiny

[111] Mozilla Common Voice. Accessed: Feb. 2023. [Online]. Available:
https://commonvoice.mozilla.org/gl/datasets

[112] O. Kjartansson, A. Gutkin, A. Butryna, I. Demirşahin, and C. Rivera,
‘‘Open-source high quality speech datasets for Basque, Catalan and Gali-
cian,’’ in Proc. SLTU CCURL, Marseille, France, May 2020, pp. 21–27.

[113] Hugging Face | AI Repository. Accessed: Feb. 2023. [Online]. Available:
https://huggingface.co/ifrz/gl_wav2vec2-large-xlsr-53

[114] Hugging Face | AI Repository. Accessed: Feb. 2023. [Online]. Available:
https://huggingface.co/ifrz/glwav2vec2_base

[115] Hugging Face | AI Repository. Accessed: Feb. 2023. [Online]. Available:
https://huggingface.co/ifrz/gl_wav2vec2_distilled

[116] Hugging Face | AI Repository. Accessed: Feb. 2023. [Online]. Available:
https://huggingface.co/ifrz/whisper-gl-tiny

[117] The Khronos Group—NCNN Brings Neural Network Inference
Acceleration Using Vulkan. Accessed: Feb. 2023. [Online]. Available:
https://www.khronos.org/news/permalink/ncnn-brings-nerual-network-
inference-acceleration-using-vulkan-5c9200795dbf06.59317995

[118] Quantize ONNX Models | Onnxruntime, Model Optimizations.
Accessed: Feb. 2023. [Online]. Available: https://onnxruntime.
ai/docs/performance/quantization.html

[119] I. Froiz-Míguez, Ó. Blanco-Novoa, P. Fraga-Lamas, D. Fustes,
J. C. D. Vázquez, J. Pereira, and T. M. Fernández-Caramés, ‘‘Design
and evaluation of a cross-lingual ML-based automatic speech recognition
system fine-tuned for the Galician language,’’ in Proc. V XoveTIC Conf.,
vol. 30, 2022, pp. 152–155.

63648 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-3-031-06371-8_13
http://dx.doi.org/10.1007/978-3-031-06371-8_13
http://dx.doi.org/10.1007/978-3-642-00382-0_45

I. Froiz-Míguez et al:. Design, Implementation, and Practical Evaluation of a Voice Recognition

[120] Joulescope, High Precision DC Meter | User Guide. Accessed:
Feb. 2023. [Online]. Available: https://download.joulescope.
com/docs/JoulescopeUsersGuide/JoulescopeUsersGuide_v1_1.pdf

[121] nRF52833—Product Specification. Accessed: Feb. 2023. [Online]. Avail-
able: https://infocenter.nordicsemi.com/pdf/nRF52833_PS_v1.5.pdf

[122] S. Trifunovic, S. T. Kouyoumdjieva, B. Distl, L. Pajevic, G. Karlsson, and
B. Plattner, ‘‘A decade of research in opportunistic networks: Challenges,
relevance, and future directions,’’ IEEE Commun. Mag., vol. 55, no. 1,
pp. 168–173, Jan. 2017.

[123] A. Martín-Campillo, J. Crowcroft, E. Yoneki, and R. Martí, ‘‘Evaluating
opportunistic networks in disaster scenarios,’’ J. Netw. Comput. Appl.,
vol. 36, no. 2, pp. 870–880, Mar. 2013.

[124] GitHub | MobileNetV3-PyTorch, Computer Vision Model (Speci-
fications). Accessed: Feb. 2023. [Online]. Available: https://github.
com/leaderj1001/MobileNetV3-Pytorch/blob/master/README.md

[125] Android—NNAPI: Supported Operations | Onnxruntime. Accessed:
Feb. 2023. [Online]. Available: https://onnxruntime.ai/docs/execution-
providers/NNAPI-ExecutionProvider.html#supported-ops

IVÁN FROIZ-MÍGUEZ received the M.Sc. degree
in computer engineering from the University of A
Coruña (UDC), in 2016, where he is currently pur-
suing the Ph.D. degree. From 2013 to 2019, he was
a DevOps and Technical Support Engineer for
companies, such as Inditex, Sergas, and Euskaltel.
Since 2019, he has been with the Group of Elec-
tronic Technology and Communications (GTEC),
Department of Computer Engineering, UDC. His
current research interests include industry 4.0,

wireless technologies, Internet of Things (IoT), deep/machine learning, fog
and edge computing, cybersecurity, Distributed Ledger Technology (DLT),
and blockchain.

PAULA FRAGA-LAMAS (Senior Member, IEEE)
received the M.Sc. degree in computer engineer-
ing from the University of A Coruña (UDC),
in 2009, the M.Sc. and Ph.D. degrees from five
Spanish universities: University of the Basque
Country, University of Cantabria, University of
Zaragoza, University of Oviedo, and UDC, in
2011 and 2017, respectively, through the joint
Mobile Network Information and Communication
Technologies Program. She holds the M.B.A. and

postgraduate studies in business innovationmanagement (JeanMonnet Chair
in European Industrial Economics, UDC), and in sustainability and social
innovation (Inditex-UDC Chair of Sustainability). Since 2009, she has been
with the Group of Electronic Technology and Communications (GTEC),
Department of Computer Engineering, UDC. She is a Senior Researcher
and Lecturer with the University of A Coruña (UDC). She has published
over 100 contributions in indexed international journals, conferences, and
book chapters. She holds four patents. She has been included, in 2019,
2020, and 2021, in the world’s top 2% scientists, a study led by Stanford
University that lists the 161,000 scientists worldwide with the highest impact
publications. She has also been participating in over 40 research projects
funded by the regional and national government and research and devel-
opment contracts with private companies. She is actively involved in many
professional and editorial activities, acting as a reviewer, an advisory board
member, a topic/guest editor of top-rank journals, and a TPC member of
international conferences. Her current research interests include mission-
critical scenarios, industry 4.0/5.0, Internet of Things (IoT), cyber-physical
systems (CPS), augmented/mixed reality (AR/MR), fog and edge computing,
blockchain and distributed ledger technology (DLT), and cybersecurity.

TIAGO M. FERNÁNDEZ-CARAMÉS (Senior
Member, IEEE) received the M.Sc. and Ph.D.
degrees in computer science from the Univer-
sity of A Coruña (UDC), Spain, in 2005 and
2011, respectively. He is currently an Associate
Professor at UDC. His current research interests
include IoT/IIoT systems, RFID, wireless sen-
sor networks, extended reality, embedded systems
and blockchain, and the different technologies
involved in the Industry 4.0/5.0 paradigms. In such

fields, he has contributed to more than 110 papers for JCR-indexed journal
articles, peer-reviewed conferences, and book chapters. Due to the impact
of his publications, he has been included, in 2019, 2020, and 2021, in the
world’s top 2% scientists, which lists the 2% scientists with most impact
according to a study led by Stanford University (only 161,000 worldwide
scientists are listed in the rank). In the same study, since 2020, he has been
among the 2% of scientists with more impact throughout their entire career.
Moreover, due to his expertise in the previously mentioned fields, he has
acted as a peer reviewer and a guest editor for different top-rank journals and
a project reviewer for the European Union and for national research bodies
from Austria, Croatia, Latvia, or Argentina.

VOLUME 11, 2023 63649

