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BACKGROUND: We explored the changes in gene expression correlating with dysfunction and graft 
failure in endomyocardial biopsies.
METHODS: Genome-wide microarrays (19,462 genes) were used to define mRNA changes correlating with 
dysfunction (left ventricular ejection fraction [LVEF] ≤ 55) and risk of graft loss within 3 years postbiopsy. 
LVEF data was available for 1,013 biopsies and survival data for 779 patients (74 losses). Molecular 
classifiers were built for predicting dysfunction (LVEF ≤ 55) and postbiopsy 3-year survival.
RESULTS: Dysfunction is correlated with dedifferentiation—decreased expression of normal heart 
transcripts, for example, solute carriers, along with increased expression of inflammation genes. Many 
genes with reduced expression in dysfunction were matrix genes such as fibulin 1 and decorin. Gene 
ontology (GO) categories suggested matrix remodeling and inflammation, not rejection. 

Genes associated with the risk of failure postbiopsy overlapped dysfunction genes but also included 
genes affecting microcirculation, for example, arginase 2, which reduces NO production, and en
dothelin 1. GO terms also reflected increased glycolysis and response to hypoxia, but decreased VEGF 
and angiogenesis pathways. T cell-mediated rejection was associated with reduced survival and an
tibody-mediated rejection with relatively good survival, but the main determinants of survival were 
features of parenchymal injury. 

Both dysfunction and graft loss were correlated with increased biopsy expression of BNP (gene NPPB). 
Survival probability classifiers divided hearts into risk quintiles, with actuarial 3-year postbiopsy 

survival > 95% for the highest versus 50% for the lowest.
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CONCLUSIONS: Dysfunction in transplanted hearts reflects dedifferentiation, decreased matrix genes, 
injury, and inflammation. The risk of short-term loss includes these changes but is also associated with 
microcirculation abnormalities, glycolysis, and response to hypoxia.
J Heart Lung Transplant 2024;43:508–518 
© 2023 The Authors. Published by Elsevier Inc. on behalf of International Society for Heart and Lung 
Transplantation. This is an open access article under the CC BY-NC-ND license (http://creative
commons.org/licenses/by-nc-nd/4.0/).

Despite the success of heart transplantation, heart 
transplants often experience suboptimal outcomes. Many 
late hearts have impaired function, including diastolic 
dysfunction with preserved ejection fraction.1 Survival is 
currently estimated to be at about 90% at 1 year, 80% at 
5 years, and 50% at 10 years post-transplant.2,3 A recent 
review of survival predictive models found insufficient data 
to recommend the use of one risk model over the others for 
the prediction of post-heart transplant outcomes.4

Genome-wide measurement of gene expression in the 
biopsy offers an opportunity to explore the mechanisms asso
ciated with dysfunction and failure. The Molecular 
Microscope Diagnostic System (MMDx)5-11 (reviewed re
cently6) measures the expression of 19,462 genes using clas
sifiers and archetypal analysis to identify rejection and injury 
phenotypes.12 MMDx first analyzed T cell-mediated rejection 
(TCMR) and antibody-mediated rejection (ABMR) based on 
expression of rejection-associated transcripts (RATs)10,13,14 and 
later characterized transcripts associated with parenchymal in
jury12,15 and related rejection to injury and risk of graft failure.16

TCMR and injury scores were associated with increased rates 
of graft loss whereas ABMR scores predicted relatively good 
short-term survival.17

The present study directly explored the molecular basis 
of heart dysfunction and risk of failure, exploring the 
changes in gene expression and pathways that correlate 
with left ventricular ejection fraction (LVEF) ≤ 55 at the 
time of biopsy and with risk of failure 3 years postbiopsy.

For a glossary of abbreviations, see Table S1.

Materials and methods

Population

MMDx assessments were available for 3,230 biopsies, including 
1,641 INTERHEART biopsies and 1,589 service biopsies from the 
Kashi Clinical Laboratories (Figure 1). INTERHEART biopsies 
(ClinicalTrials.gov #NCT02670408) included biopsies from con
senting patients at 10 centers (Table S2). The combined set of 
INTERHEART and service biopsies permitted an increase in the 
sample size to update all the machine learning algorithms and to 
generate a new MMDx-Heart report, which will be published 
separately (in preparation). For the present paper, although the 
service biopsies had minimal phenotype data, the combined 
INTERHEART and service biopsy sets were used to analyze the 
classifier-gene set correlations (see Results).

Examine relationships between dysfunction 
and survival classifiers, and the rejection 

and injury scores in 3230 biopsies

Update the existing rejection and injury 
archetypes in 3230 biopsies:

• Five rejection archetypes :
• NR, Minor, TCMR, ABMR, Early injury1,3

• Five injury archetypes:
• No-injury; Mild-injury; Moderate-injury;

Severe-injury; Late-injury2,3

New classifiers:
• Dysfunction classifier score

(LoLVEFProb, 1013 biopsies)
• Survival classifier score (779

biopsies including 74 failures)

Define genes associated with 
dysfunction (LVEF≤55) by t-tests in 

1013 biopsies

Define genes associated with 3y graft 
survival by Cox regression in 779 

biopsies (including 74 failures)

1589 anonymized service biopsies
Analyzed at the Kashi service laboratory 
(Portland, OR) with time posttransplant

1641 Clinicaltrials.gov biopsies
From INTERHEART (ClinicalTrials.gov 

#NCT02670408), with clinical and
histologic phenotype

Genome-wide microarray measurements 
from 3230 endomyocardial biopsies

Figure 1 Study design. A flowchart describes how the molecular diagnostic classes were developed. The genes and pathways associated 
with dysfunction and survival were defined, dysfunction and survival classifiers were developed, and the relationship of the rejection and 
injury archetypes and other gene sets to the survival and injury classifiers were mapped. ABMR, antibody-mediated rejection; LVEF, left 
ventricular ejection fraction; NR, no-rejection; TCMR, T cell-mediated rejection.
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Of patients with available patient identifier information 
(N = 2,054 from the INTERHEART study and from the service 
laboratory), 566 had repeat biopsies submitted to MMDx-Heart 
for analysis. Twenty transplants were noted as retransplant in this 
population. However, we note that this information is not always 
transmitted from the centers, and thus may underrepresent the 
number of retransplants present.

The demographics (Table 1) and case mix (Table S3) were 
similar to previous analyses.17

Microarray analysis

Biopsies were submitted to the study as 1 to 2 pieces. Extracted 
total RNA was labeled and hybridized to PrimeView microarrays 
(Applied Biosystems), as previously described.7,11,15,16,18,19 CEL 

files are available on the Gene Expression Omnibus website 
(GSE150059). Biopsy processing was identical between the re
search and service laboratory.

Pathogenesis-based transcript sets (PBTs)

PBTs (Table S4) were previously annotated.20 PBT scores are 
mean fold changes compared to controls (371 biopsies with no 
rejection and > 30 days post-transplant), calculated using the ori
ginal log2 raw data.

Dysfunction (LVEF ≤ 55) classifier

The dysfunction classifier score (LoLVEFProb) was developed as 
the median score from 12 different machine learning methods, as 
previously described.7 All scores in this paper are from the left-out 
folds in 10-fold cross-validation. Our goal was to predict any- 
cause low LVEF; therefore, we did not exclude samples with re
jection from the classifier development stage.

The dysfunction classifier is not meant to predict clinically 
measured LVEF per se, but to identify patterns of gene expression 
characteristic of heart transplants with low LVEF (≤55). In INT
ERHEART, N = 1,013 biopsies had recorded LVEF values: 214 
with LVEF ≤ 55, 799 with LVEF  >  55.

Survival analysis

Analyses were based on death-censored graft survival, usually to 
3-years postbiopsy. Patients surviving longer were censored at 3 
years. Only biopsies with a valid follow-up status and follow-up 
time > 0 days were included, based on 1 random biopsy per 
transplant, leaving 779 biopsies from the original 1,181 eligible, 
with 74/779 failing before 3 years postbiopsy.

Random forest (RF) analyses for 3-year survival were per
formed using the “randomForestSRC” package in R.21 Inputs were 
chosen based on our prior experience in other transplanted or
gans—largely kidney biopsies. In total, 33 variables were used for 
the full model including updated rejection and injury archetypal 
scores previously published12,19: 

• Five injury archetype scores (No Injury, Severe-Recent, Late 
Atrophy-Fibrosis, Moderate-Recent, Mild-Recent)

• Three injury principal component (PC) scores (injury PC1, 
PC2, PC3).

• Five rejection archetype scores—No Rejection (NR), TCMR, 
Early injury, ABMR, and Minor rejection

• Three rejection PCs (rejection PC1, PC2, PC3)
• One classifier: LoLVEFProb (this classifier is trained on the 

LVEF values recorded in the population: 214 with LVEF ≤ 55, 
799 with LVEF  >  55.)

• TxBx (time of biopsy posttransplant in days)
• Biopsy indication status (one random biopsy per patient: 156 for 

cause, 588 protocols, 35 missing but imputed within the RFs)
• Fourteen transcript set (PBT) scores: mast cell transcripts 

(MCAT),22 IRRAT30,23 IRITD3,24 QCMAT,25 AMAT1,25

DSAST,26 immunoglobulin transcripts,27 HT1,12,14 HT2,12,14

NKB,28 GRIT3,13,29 ABMR-RAT,10,13 TCMR-RAT,10 and 
Rejection-RAT.10

All-cause LVEF was used for training the LoLVEFProb clas
sifier, and biopsies were not removed unless LVEF data was un
available. Other abnormalities such as restrictive allograft failure 

Table 1 Biopsy Characteristics and Patient Demographics 
(N = 3,230) 

Biopsy characteristics All biopsies N = 3,230

Days to biopsy posttransplant (TxBx)
Mean 1,181
Median (range) 350 (1, 11,007)

Days to most recent follow-up after biopsy
Mean 610
Median (range) 313 (1, 3,854)

Indication for biopsy
Clinical including follow-up (% of 
known)

259 (18.5)

Protocol biopsy (% of known) 1,142 (81.5)
Not stated (% of total) 1,829 (56.6)

Patient demographics All patients N = 1,091
Mean patient age at transplant 

(range)
49.6 (2, 80)

Age at transplant  > 65 years (%) 110 (10.1)
Mean donor age (range) 39.8 (6, 71)
Patient sex

Male (% of known) 700 (66.1)
Female (% of known) 359 (33.9)
Unknown 32 (2,171 including the 

service laboratory 
biopsies)

Donor sex
Male (% of known) 521 (65.5)
Female (% of known) 275 (34.5)
Not available (% of total) 296 or 2,434

Patient had a previous failed heart 
transplant

*24/670 with data 
available (3.6%)

Heart status at last follow-up
Alive at last follow-up (% of 
known)

806 (90.6)

Deceased (% of known) 84 (9.4)
Not available (% of total) 202 (18.5)

Primary diseasea

Other cardiomyopathies 509 (65%)
Congenital heart defect (% of 
known)

39 (5%)

Coronary artery disease (% of 
known)

86 (11%)

Other (% of known) 145 (19%)
Not available (% of total) 312
a Some patients received more than 1 primary diagnosis. 
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and diastolic dysfunction not captured by a decreased LVEF were 
not a focus of these analyses, but will be included in future studies.

A truncated RF survival model was used for all final analyses, 
selected by a minimal depth method using the “var.select” func
tion from the “randomForestSRC” package.21 Error rates are 
calculated in out-of-bag (OOB) biopsies from bootstrapping, 
analogous to test set statistics calculated in cross-validation.

We also predicted survival using cv.glmnet from the R glmnet 
package,30 a regression method designed to combine automatic 
feature selection with prediction; 12,500 interquartile range-fil
tered probe sets were used as input (after standardization), and 
alpha set to 1.0 for lasso regression. In the full model (using all 
779 biopsies), 77 probe sets were selected.

For both the RF and glmnet survival classifiers, 100 bootstraps 
were performed. In each bootstrap, the 779 biopsies were sampled 
779 times at random, with replacement. Therefore, in any given 
bootstrap, a biopsy may be present 0, 1, 2, 3, etc. times. On 
average, ∼37% of the biopsies (N ≈ 287) are present 0 time
s—these, the OOB sample, become the test set for that bootstrap. 
The remaining ∼492 constitute that bootstrap sample’s training 
set. Classifiers were built in the training set, and survival predic
tions were made for the test set. Survival probability scores for 
each biopsy were averaged over the ∼37/100 bootstrap iterations 
in which that biopsy was in a test set. The final survival probability 
was then calculated as the mean of the RF and glmnet prob
abilities, each of which used the above bootstrapping procedure. 
The C-statistic was calculated using this final set of 779 averaged 
test set probabilities.

Differential gene expression

The Bayesian t-test in R’s “limma” package31 was used to find the 
genes most differentially expressed between high (> 55) and low 

(≤55) LVEF biopsies. Gene expression changes correlating with 
survival were analyzed using univariate Cox regression using the 
“coxph” function from the R “survival” package.32 All 49,495 
probe sets on the array were assessed and selected by p-value.

Results

Population

The median time posttransplant was 349 days (range 1- 
11,007 days, Table 1). Of 1,641 INTERHEART biopsies, 
259 biopsies were for indications (including follow-up) and 
1,142 by protocol. As expected, dysfunction and failure 
were more frequent in indication biopsies (Table S5).

Gene expression changes associated with 
dysfunction (LVEF ≤ 55)

(The choice of LVEF ≤ 55 as the definition of dysfunction is 
elaborated in discussion.)

The top 20 dysfunction-associated genes (by t-test p- 
value)—16 decreased and 4 increased—are shown in 
Table 2. None of the top 20 genes were strongly related to 
rejection. The 16 top genes with decreased expression in 
hearts with dysfunction (LVEF ≤ 55) included many related 
to matrix, for example, FBLN1, ADAMTSL3, PTN, and 
DCN. Four genes with increased expression with dysfunc
tion included 2 related to macrophages (IGFBP2 and 
PTPN1) and 2 expressed in cardiomyocytes (RCAN1, 
ENO2). RCAN1 is the regulator of calcineurin 1. ENO2 is 
involved in glycolysis.

Table 2 Top 20 Dysfunction Genes Associated With LVEF ≤ 55 Versus  > 55 (by P-Value; N = 1,013)1 

Gene Symbol t P Value Adjusted P 
Value Gene PBT

Mean expression in 
biopsies

Low LVEF
(≤55)

High LVEF
(>55)

DENND2A 11.82 2.7E-30 1.3E-25 DENN/MADD domain containing 2A 107 134
FBLN1 10.21 2.4E-23 5.9E-19 fibulin 1 282 492

ADAMTSL3 10.12 5.5E-23 9.0E-19 ADAMTS like 3 94 133
ABCA8 10.04 1.1E-22 1.3E-18 ATP binding cassette subfamily A member 8 HT1 324 515

DCN 9.90 3.9E-22 2.9E-18 decorin IRITD5 2629 4525
AMOT 9.83 7.3E-22 4.5E-18 angiomotin 89 127
FEZ1 9.64 4.2E-21 2.1E-17 fasciculation and elongation protein zeta 1 HT2 333 428

ABCA9 9.55 9.2E-21 3.8E-17 ATP binding cassette subfamily A member 9 157 260

PRTFDC1 9.52 1.2E-20 4.7E-17 phosphoribosyl transferase domain containing 1 79 101

PTPN1 -9.32 7.2E-20 2.2E-16 protein tyrosine phosphatase, non-receptor type 1 cIRIT,HT1 627 541
NEGR1 9.27 1.1E-19 3.2E-16 neuronal growth regulator 1 94 142
IGFBP2 -9.25 1.3E-19 3.6E-16 insulin like growth factor binding protein 2 1139 682
ENO2 -9.20 1.9E-19 5.0E-16 enolase 2 (gamma, neuronal) 185 152

RCAN1 -9.20 2.0E-19 5.0E-16 regulator of calcineurin 1 cIRIT 927 723
PHACTR3 9.15 3.0E-19 7.1E-16 phosphatase and actin regulator 3 58 84

DLK1 9.09 5.0E-19 1.1E-15 delta-like 1 homolog (Drosophila) 178 442
SCN4B 9.06 6.8E-19 1.5E-15 sodium channel, voltage gated, type IV beta subunit 124 166

EGFLAM 9.04 8.0E-19 1.7E-15 EGF-like, fibronectin type III and laminin G domains HT1,IRITD5 125 151
PTN 8.97 1.4E-18 2.9E-15 Pleiotrophin 359 567

ABCA6 8.92 2.1E-18 3.8E-15 ATP binding cassette subfamily A member 6 183 247

Selected relevant gene not present in the top 20

NPPB -4.90 1.1E-06 1.7E-05 natriuretic peptide B “NPB” 2620 1298
1.Grey shading indicates transcripts increased in hearts with dysfunction.
Abbreviations: IRITD5 - injury-repair induced transcripts day 5, cIRIT- cardiac injury and repair transcripts, ENDAT – endothelial transcripts, HTs – heart normal transcripts
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Table 3 shows gene ontology (GO) terms associated with 
the top 200 genes with decreased expression in hearts with 
dysfunction. Eight were associated with matrix remodeling. The 
pathways included many of the top dysfunction genes, for ex
ample, FBLN1, ADAMTSL3, DCN, and PTN. As an internal 
control, and because of the clinical role of BNP blood levels, 
we included the gene for BNP (NPPB), which was significantly 
increased in hearts with dysfunction.

Table S6 shows GO terms associated with the 200 genes 
with the most significantly increased expression in dys
function. These terms reflect TCMR-like inflammation, 
including genes increased in TCMR such as CTLA4, CD8A, 
CD8B, and IFNG-inducible genes such as ICOS and HLA 
genes. Arginase 2 (ARG2), a top survival gene (see below), 
was also associated with some dysfunction pathways. 
IGFBP2, one of the top 4 genes increased in hearts with 
dysfunction, appeared in several GO terms associated with 
inflammation and immune response.

Dysfunction classifier

Figure 2A shows the AUC = 0.73 for the ROC curve for the 
dysfunction classifier (LoLVEFProb). Figure 2B plots the 
dysfunction classifier score (LoLVEFProb) against recorded 
LVEF. Most hearts with LVEF  >  55 had low dysfunction 
classifier scores. Hearts with LVEF ≤ 55 usually had high 
classifier scores.

The dysfunction classifier correlated with the recorded 
LVEF, with Spearman correlation coefficient (SCC) of −0.29 
(p  <  2.2E−16) in all hearts. The correlations were stronger in 
hearts with LVEF ≤ 55 (SCC = −0.39, p = 3.9E−09) than in 

hearts with LVEF >  55 (SCC = −0.07, p = 0.04). Thus, the 
dysfunction-related molecular changes were present in some 
hearts with LVEF  >  55 but not correlated with LVEF in those 
hearts.

Genes associated with survival

There were 1,181 biopsies with available follow-up times 
> 0 days, documented graft status, and TxBx  >  0 days, and 
survival analysis was based on 1 random biopsy per 
transplant—779 cases with 74 failures by 3 years post
biopsy—53 of which occurred before 1 year. The median 
follow-up time postbiopsy was 313 days (range 1-3,854 
days, Table 1).

Cox regression identified genes most differentially ex
pressed in 74/779 hearts that failed within 3 years post
biopsy (Table 4). Of the top 20 genes sorted by p-value, 15 
had decreased expression and 5 had increased expression in 
hearts that failed.

The top genes decreased in hearts that failed included 
matrix-related genes—SMOC2, ECM2, LUM, PTN, and 
ADAMTSL3. Other decreased genes—LAMA4, ALDH1A2, 
LHFP, and RGS5—were highly expressed in endothelial 
cells (HUVECs in our cell panel).

The top 2 increased genes in hearts that failed were 
ARG2 and enolase 2 (ENO2). Although not in the top 20, en
dothelin 1 (EDN1) and BNP (NPPB) were also increased in 
failing hearts.

Three top survival genes overlapped with top dysfunc
tion genes: ENO2 (increased in hearts that failed and hearts 
with dysfunction) and PTN and ADAMTSL3 (decreased in 
hearts that failed and hearts with dysfunction).

Table 3 GO Terms for Top 200 Genes Decreased in Hearts With Dysfunction (1,013 EMBs) 
ONTOLOGY1 ID Description2 P value Q value Gene ID3 Count

CC GO:00 62023 collagen-containing extracellular matrix 4.8E-12 1.1E-09
FBLN1/DCN/EGFLAM/VIT/LAMA4/OGN/AGT/DPT/COL6A6/

FREM1/TNXA/CDON/LAMC1/COL15A1/FBLN5/LUM/
PCSK6/WNT5A/MATN2/GPC4/PCOLCE/ITIH5/LTBP4/PODN

13

MF GO:0PTN005201 extracellular matrix structural constituent 1.6E-10 5.3E-08 FBLN1/DCN/LAMA4/OGN/DPT/COL6A6/LAMC1/COL15A1/
FBLN5/LUM/MATN2/ANOS1/PCOLCE/LTBP4/PODN 13

BP GO:0030198 extracellular matrix organization 2.8E-07 2.6E-04 FBLN1/ADAMTSL3/EGFLAM/VIT/TLL2/AGT/PDGFRA/DPT/COL6A6/
TNXA/LAMC1/COL15A1/FBLN5/LUM/DDR2 13

BP GO:0043062 extracellular structure organization 2.9E-07 2.6E-04 FBLN1/ADAMTSL3/EGFLAM/VIT/TLL2/AGT/PDGFRA/DPT/COL6A6/
TNXA/LAMC1/COL15A1/FBLN5/LUM/DDR2 4

BP GO:0045229 external encapsulating structure organization 3.2E-07 2.6E-04 FBLN1/ADAMTSL3/EGFLAM/VIT/TLL2/AGT/PDGFRA/DPT/COL6A6/
TNXA/LAMC1/COL15A1/FBLN5/LUM/DDR2 7

MF GO:0015399 primary active transmembrane transporter 
activity 4.7E-06 7.9E-04 ABCA8/ABCA9/ABCA6/ABCA10/ABCC9/ABCD2/CYC1/CYBRD1/

NDUFS2/NDUFB10 8

MF GO:0140359 ABC-type transporter activity 8.2E-06 9.2E-04 ABCA8/ABCA9/ABCA6/ABCA10/ABCC9/ABCD2 6

BP GO:2000027 regulation of animal organ morphogenesis 3.4E-05 2.1E-02 AGT/AR/WNT5A/GPC4/FGF7/ANKRD6/LGR4/APCDD1 4

MF GO:0030021 extracellular matrix structural constituent
conferring compression resistance 5.8E-05 4.9E-03 DCN/OGN/LUM/PODN 4

BP GO:0060571 morphogenesis of an epithelial fold 6.2E-05 2.7E-02 BMP5/AR/EGFR/WNT5A 3

BP GO:0030539 male genitalia development 7.4E-05 2.7E-02 PDGFRA/BMP5/AR/LGR4 3

BP GO:0048806 genitalia development 7.6E-05 2.7E-02 PDGFRA/BMP5/AR/WNT5A/LGR4 4

BP GO:0048146 positive regulation of fibroblast proliferation 9.3E-05 2.8E-02 AGT/PDGFRA/EGFR/WNT5A/DDR2 9

MF GO:0005539 glycosaminoglycan binding 1.1E-04 6.9E-03 DCN/EGFLAM/PTN/VIT/PCSK6/ANOS1/PCOLCE/FGF7/ LTBP4/SLIT2 5

BP GO:0048145 regulation of fibroblast proliferation 1.1E-04 2.8E-02 AGT/PDGFRA/EGFR/WNT5A/DDR2/DACH1 9

BP GO:0060688 regulation of morphogenesis of a branching
structure 1.3E-04 2.8E-02 AGT/AR/WNT5A/FGF7/LGR4 20

BP GO:0048144 fibroblast proliferation 1.3E-04 2.8E-02 AGT/PDGFRA/EGFR/WNT5A/DDR2/DACH1 6

MF GO:0019199 transmembrane receptor protein kinase activity 1.3E-04 6.9E-03 PDGFRA/EPHA3/EGFR/DDR2/LTBP4/PDGFRL 5

MF GO:0051287 NAD binding 1.4E-04 6.9E-03 IDH3B/RNLS/SIRT3/NUDT6/NDUFS2 2

BP GO:0050679 positive regulation of epithelial cell proliferation 2.0E-04 4.2E-02 PTN/LAMC1/BMP5/AR/EGFR/WNT5A/APLNR/FGF7/BAD 4
1. BP – Biological Process, CC – Cellular Component, MF – Molecular Function
2. Grey shading indicates terms related to matrix.
3. Bold and underlined indicates genes that are in the top 20 dysfunction genes in Table 2
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Table 5 shows the GO categories overrepresented by the 
top 200 genes decreased in hearts that failed, with 11 re
lated to extracellular matrix structural constituents or 
basement membrane.

Table S7 shows the GO categories overrepresented by the 
top 200 genes increased in hearts that failed: 4 related to re
sponse to hypoxia and reactive oxygen species and 4 related to 
glycolysis (all including ENO2). Endothelin 1 (EDN1) was 
associated with 7/20 survival-related GO categories.

Survival classifiers

We used the survival data set to build two types of classi
fiers for predicting 3-year postbiopsy survival.

The RF classifier was given 33 previously published variables, 
including 2 clinical variables (time posttransplant and indication 
vs protocol status). Figure 3A shows the relative importance of the 
33 features. Figure 3B shows a trimmed RF model using the 
selected top 8 variables (see Methods). Note that the relative 

Figure 2 Characteristics of the dysfunction classifier (LoLVEFProb). (A) The ROC curve for the dysfunction classifier (LoLVEFProb, 
AUC = 0.73) (y axis) plotted against the actual LVEF (x axis). (B) Plotting the dysfunction classifier (LoLVEFProb) score (y axis) against the 
actual LVEF recorded (x axis). Most hearts with LVEF  >  55 had low dysfunction classifier scores. Hearts with low LVEF usually had high 
classifier scores. The Spearman correlation of the classifier with recorded LVEF was: Spearman correlation coefficient (SCC) = −0.29 
(p  <  2.2E−16) in all hearts; SCC = −0.39 (p = 3.9e−09) in hearts with LVEF ≤ 55; and SCC = −0.07 (p = 0.04) in hearts with 
LVEF  >  55. LVEF, left ventricular ejection fraction.

Table 4 Top 20 Unique Genes Associated With Graft Survival in Cox Regression Analyses (N = 779 EMBs With 74 Postbiopsy Failures 
Within 3 Years) 

Gene Symbol1 Gene Name PBT P-value
(3 yr) HR 3yr Mean 

Failures 3yr
Mean 

Censor 3yr
ARG2 arginase 2 IRITD3 4.0E-21 0.728 38 23
ENO2 enolase 2 (gamma, neuronal) 2.8E-19 1.551 204 157

SMOC2 SPARC related modular calcium binding 2 IRITD5 1.9E-17 -0.731 353 563
ALDH1A2 aldehyde dehydrogenase 1 family, member A2 cIRIT 3.1E-17 -0.734 97 182

PDE5A phosphodiesterase 5A, cGMP-specific 3.7E-16 -1.14 235 355
LHFP lipoma HMGIC fusion partner IRITD3 5.2E-16 -1.349 1406 1810

SCN4B sodium channel, voltage gated, type IV beta subunit KT1 7E-16 -0.974 102 157
ECM2 extracellular matrix protein 2, female organ/adipocyte specific 9.3E-16 -0.938 258 402
LUM lumican IRITD5 1.1E-15 -0.485 1183 2252
PTN pleiotrophin 3.1E-15 -0.666 286 539
TRIL TLR4 interactor with leucine-rich repeats KT1 4.1E-15 -1.263 35 56

KITLG KIT ligand 4.7E-15 -1.317 362 497
ERO1A endoplasmic reticulum oxidoreductase alpha cIRIT 8.4E-15 1.439 190 157

ADAMTSL3 ADAMTS like 3 1.2E-14 -0.918 79 124
SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 cIRIT 2.2E-14 1.456 458 363
APLNR apelin receptor KT1 2.5E-14 -0.872 245 402
LAMA4 laminin, alpha 4 3.0E-14 -0.944 571 727
AATF apoptosis antagonizing transcription factor 3.5E-14 3.534 260 236

FNDC1 fibronectin type III domain containing 1 3.7E-14 -0.687 108 207
RGS5 regulator of G-protein signaling 5 KT1 3.7E-14 -0.538 1688 2818

Selected relevant genes not present in the top 20

NPPB natriuretic peptide B 4.0E-05 0.2 3164 1353

EDN1 endothelin 1 ENDAT, IRITD3 1.4E-12 0.964 138 103
1. Grey shading indicates genes increased in hearts that failed.

Bolding indicates P-values, hazard ratios, mean expression in heart transplants that failured, and mean expression in heart transplants that were censored at 3 years for genes increased in hearts that failed.
Abbreviations: IRITD3 – injury-repair induced transcripts day 3, IRITD5 - injury-repair induced transcripts day 5, MCAT- mast cell transcripts, cIRIT- cardiac injury and repair transcripts, ENDAT – endothelial 
transcripts, KT1 – kidney transcripts
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importance does not indicate the direction of the effect of the 
variable. The top four variables were biopsy indication (indication 
versus protocol), scores for the dysfunction classifier (LoL
VEFProb), mast cell transcripts (MCAT), and immunoglobulin 
transcripts (IGT). The ordering in the trimmed model was similar 
to the top of the 33-feature model. The only clinical variable used 
in the trimmed RF model was indication status.

The glmnet classifier was gene-based, using lasso regression 
to select a limited number of probes sets from the 12,500 in
terquartile range-filtered probe sets it was given as inputs. The 
predictive value of the glmnet classifier (C-statistic = 0.773 
from the combined OOB predicted scores) was similar to that 
of the trimmed RF model (0.779, same OOB biopsies eval
uated). No clinical variables were used in the glmnet model.

The added predictive value of the 7 molecular variables 
used in Figure 3B is highly significant. Using Cox regres
sion analysis, the likelihood ratio test p-value assessing the 
significance of the added value of the 7 molecular variables 
to biopsy indication alone is p = 4.4E−16. Adding the 
7 molecular variables to a model with biopsy indication and 
measured LVEF is p = 4.3E−7.

Combining both classifiers to create a survival score

We used the mean of the RF and glmnet classifiers as the 
survival score for each biopsy. Figure 3C and D shows 
Kaplan-Meier plots for the survival scores when biopsies 
were divided into quintiles. The mean score strongly cor
related with risk for survival in the OOB biopsies: the 

lowest survival quintile had mean survival estimates of 50% 
versus  > 95% for the highest quintile. Graft loss within one 
year was concentrated in the lowest quintile. The numbers 
of biopsies at risk per time period are tallied in the table 
below each panel.

The best survival predictions (based on concordance) were 
with the survival score based on the combination (mean) of the 
RF and glmnet scores for each biopsy (Table S8).

Relating the dysfunction score and the survival 
probability score to other rejection and injury 
scores in 3,230 biopsies

We evaluated the correlation between previously annotated 
molecular rejection and injury transcript set scores and the 
dysfunction and survival classifier scores in the complete 
set of 3,230 biopsies. We calculated the SCC of the dys
function classifier score and the survival probability clas
sifier scores with the rejection archetype scores and various 
transcript sets (Table 6).

The TCMR archetype score, macrophage score, cardiac in
jury score, and the atrophy-fibrosis score correlated with in
creased dysfunction scores and decreased survival probability.

The ABMR archetype score and related transcript sets 
had minimal correlations with dysfunction scores but strong 
positive correlations with survival probability.

Normal heart transcripts (HTs) are correlated with lower 
dysfunction scores and higher survival probability. The dys
function classifier score was strongly correlated with decreased 

Table 5 GO Terms Associated With the Top 200 Unique Survival Genes That Are Decreased in Hearts That Failed (N = 779 EMBs With 74 
Postbiopsy Failures Within 3 Years) 
ONTOLOGY1 ID Description2 P value Q value Gene ID

3 Count

CC GO:0062023 collagen-containing extracellular 
matrix 1.65E-16 3.55E-14

SMOC2/ECM2/LUM/LAMA4/DCN/COL15A1/OGN/COL6A6/ASPN/EGFLAM/ITIH5/
MATN2/LAMC1/CXCL12/FREM1/SPARC/LEFTY2/EMILIN3/LTBP4/DPT/TGFB3/

FBLN1/LAMB3/VIT/CILP/COL4A4/COL9A1/TNXA/THBS4
29

MF GO:0005201 extracellular matrix structural
constituent 3.18E-15 8.83E-13 LUM/LAMA4/DCN/COL15A1/OGN/COL6A6/ANOS1/ASPN/MATN2/LAMC1/SPARC/

EMILIN3/LTBP4/DPT/FBLN1/LAMB3/CILP/COL4A4/COL9A1 19

CC GO:0005604 basement membrane 1.32E-10 1.42E-08 SMOC2/LAMA4/COL15A1/EGFLAM/LAMC1/FREM1/SPARC/FBLN1/LAMB3/
COL4A4/COL9A1/THBS4 12

BP GO:0030198 extracellular matrix organization 8.92E-10 7.38E-07 SMOC2/ECM2/LUM/ADAMTSL3/COL15A1/TLL2/COL6A6/EGFLAM/LAMC1/TCF15/DPT/
FBLN1/LAMB3/VIT/COL4A4/COL9A1/TNXA/DDR2 18

BP GO:0043062 extracellular structure organization 9.40E-10 7.38E-07 SMOC2/ECM2/LUM/ADAMTSL3/COL15A1/TLL2/COL6A6/EGFLAM/LAMC1/TCF15/DPT/
FBLN1/LAMB3/VIT/COL4A4/COL9A1/TNXA/DDR2 18

BP GO:0045229 external encapsulating structure
organization 1.04E-09 7.38E-07 SMOC2/ECM2/LUM/ADAMTSL3/COL15A1/TLL2/COL6A6/EGFLAM/LAMC1/TCF15/DPT/

FBLN1/LAMB3/VIT/COL4A4/COL9A1/TNXA/DDR2 18

BP GO:0060485 mesenchyme development 1.19E-06 6.33E-04 ALDH1A2/KITLG/APLNR/EPHA3/SEMA6A/BMP5/PDGFRB/FRZB/NRP1/TCF15/IL17RD/
MEOX1/SEMA6D/TGFB3 14

CC GO:0005581 collagen trimer 1.88E-06 1.34E-04 LUM/COL15A1/COL6A6/C1QTNF9/C1QTNF7/C1QTNF9B/COL4A4/ COL9A1 8

BP GO:0038084 vascular endothelial growth factor 
signaling pathway 7.69E-06 3.27E-03 SMOC2/DCN/SEMA6A/ADGRA2/PDGFRB/NRP1 6

MF GO:0008083 growth factor activity 2.40E-05 3.33E-03 PTN/KITLG/OGN/BMP5/CXCL12/LEFTY2/NTF3/TGFB3/ THBS4 9
MF GO:0005518 collagen binding 4.41E-05 3.43E-03 ECM2/LUM/DCN/ASPN/SPARC/DDR2 6

BP GO:0031589 cell-substrate adhesion 4.80E-05 1.70E-02 ECM2/EPHA3/EGFLAM/ATP1B2/DLC1/LAMC1/FREM1/SGCE/NRP1/
FBLN1/LAMB3/VIT/TTYH1 13

MF GO:0030021
extracellular matrix structural

constituent conferring 
compression resistance

4.94E-05 3.43E-03 LUM/DCN/OGN/ASPN 4

BP GO:0050920 regulation of chemotaxis 6.12E-05 1.86E-02 SMOC2/PTN/SEMA6A/ADGRA2/PDGFRB/CXCL12/NRP1/NTF3/ SEMA6D/THBS4 10

BP GO:0035924 cellular response to vascular 
endothelial growth factor stimulus 7.42E-05 1.97E-02 SMOC2/DCN/SEMA6A/ADGRA2/PDGFRB/NRP1 6

MF GO:0005539 glycosaminoglycan binding 7.95E-05 4.42E-03 SMOC2/ECM2/PTN/DCN/ANOS1/EGFLAM/NRP1/LTBP4/VIT/ THBS4 10
MF GO:0140359 ABC-type transporter activity 9.70E-05 4.49E-03 ABCA9/ABCA8/ABCA6/ABCA10/ABCC9 5

BP GO:1900746 regulation of vascular endothelial
growth factor signaling pathway 1.18E-04 2.33E-02 SMOC2/DCN/SEMA6A/ADGRA2 4

BP GO:0048762 mesenchymal cell differentiation 1.20E-04 2.33E-02 ALDH1A2/KITLG/EPHA3/SEMA6A/BMP5/FRZB/NRP1/IL17RD/ SEMA6D/TGFB3 10

BP GO:0045765 regulation of angiogenesis 1.21E-04 2.33E-02 SMOC2/APLNR/DCN/SEMA6A/RHOJ/ADGRA2/SPARC/NRP1/AMOT/
ADGRB3/ISM1/THBS4 12

1. BP – Biological Process, CC – Cellular Component, MF – Molecular Function
2. Shading indicates terms related to VEGF or angiogenesis.
3. Bold and underlined indicates genes that are in the top 20 dysfunction genes in Table 2 or survival genes in Table 4
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expression of those transcripts expressed in normal hearts, 
particularly the solute carriers (HT2) with SCC = −0.63. The 
survival probability classifier correlated negatively with ex
pression of the HTs. Thus, dedifferentiation plays a major role 
in dysfunction and a significant role in predicting future 
graft loss.

Discussion

This study of endomyocardial biopsies (EMBs) defined the 
molecular features associated with depressed LVEF and re
duced postbiopsy survival. Dysfunction, defined as LVEF ≤ 55, 
correlated most strongly with genes and GO terms associated 
with decreased expression of many matrix-related genes, plus 
loss of normal heart transcripts—parenchymal dedifferentiation, 
accompanied by inflammation. Survival analysis found that 
short-term failure shared features with dysfunction genes but 
also included increased expression of genes related to response 
to hypoxia and glycolysis and reduced expression of genes 
related to VEGF pathways and angiogenesis. In the expanded 
set of 3,230 biopsies, dysfunction was strongly associated with 
decreased expression of normal heart genes such as solute 
carriers and increased expression of genes related to TCMR, 

injury, and macrophages. The survival probability classifier 
correlated with high expression of ABMR-related transcripts as 
expected10,12 and normal heart transcripts, and anticorrelated 
with TCMR, inflammation, and injury transcripts. Expression 
of the natriuretic peptide B gene (NPPB)33 was strongly asso
ciated with dysfunction and graft loss, serving as an internal 
control, given the strong association of blood BNP levels with 
dysfunction and failure in cardiology.

The use of LVEF ≤ 55 as the cutoff for dysfunction was to 
some extent arbitrary but was guided by the desire to have a 
group with unquestionably good LVEF to compare with a 
somewhat heterogeneous group that had lower LVEF, as illu
strated in Figure 2B. However, based on our unpublished ex
perience and the distribution of values (Figure 2B), the classifier 
and the conclusions about dysfunction would have been similar 
regardless of the cutoff selected.

As expected from earlier INTERHEART analyses,10

ABMR-related molecular changes had little association with 
dysfunction but were strongly associated with relatively good 
short-term graft survival. However, ABMR probably poses late 
risks and we have shown that ABMR is associated with 
atrophy-fibrosis in late EMBs.12 It is likely that ABMR slowly 
increases fibrosis in heart transplants, similar to the findings in 

Figure 3 Models predicting the survival of heart transplants after biopsy. (A) 33-variable random forest model, showing the relative 
importance of each of the 33 variables given to the RF model. Relative importance does not indicate the direction of the effect of these 
variables. (B) The trimmed RF model using only 8 top variables from the 33 variable model. The 8 variables were selected based on the 
minimal depth method using the “var.select” function. (C-D) Kaplan-Meier plots for the survival scores using the survival probability score: 
the mean of the RF and glmnet classifier scores. The scores for each biopsy were used to divide the biopsies into quintiles. All scores are 
those assigned to out-of-bag biopsies. The lowest survival quintile had mean survival estimates of only 50% by 3 years postbiopsy, whereas 
the highest had greater than 95% survival. ABMR-RATs, antibody-mediated rejection-associated transcript set; AMAT1, alternatively 
activated macrophage transcript set; DSAST, donor-specific antibody-selective transcripts; HT1 and HT2, heart transcripts set 1 and set 2; 
IGT, immunoglobulin transcripts; IRITD3, injury and repair-induced transcripts, day 3; IGT, immunoglobulin transcripts; IRRAT30, injury 
and repair-associated transcripts; loLVEFprob, low left ventricular ejection fraction probability classifier; LVEF, left ventricular ejection 
fraction; MCAT, mast cell transcripts; PC, principal component; TCMR-RATs, T cell-mediated rejection-associated transcripts.

Table 6 Spearman Correlation Coefficients (SCC) Showing the Relationship Between Transcript Set Scores (PBTs) With the Dysfunction 
Probability Classifier Score (LoLVEFProb) and the Heart 3-Year Postbiopsy Survival Probability in All Biopsies (N = 3,230). 

Molecular feature 
category Abbreviation

SCC between features and
LoLVEFProb (N=3230)

SCC between features and 3-year 
survival probability (N=3230)

SCC1 P-value SCC1 P-value

TCMR-related TCMR archetype 
score 0.34 <2.2E-16 -0.10 1.9E-09

ABMR-related

ABMR archetype 
score 0.14 4.1E-15 0.23 <2.2E-16

DSAST 0.06 0.0015 0.35 1.2E-93

NKB 0.09 9.9E-07 0.40 4.8E-130

Macrophage-related AMAT1 0.39 1.1E-117 -0.17 9.5E-22

Recent injury Cardiac injury (cIRIT) 0.38 4.9E-111 -0.16 8.0E-20

Atrophy-fibrosis IGT 0.30 2.2E-68 -0.13 6.9E-13

Normal heart transcripts
HT1 (except SLCs) -0.57 3.5E-275 0.26 8.6E-50

HT2 (SLCs) -0.63 3.5E-275 0.34 5.6E-87

Time posttransplant 0.14 8.7E-16 0.09 1.1E-07

1. Shaded indicates variables that correlate both with increased dysfunction and decreased survival probability. Bold indicates SCC≥ (+0.3) or ≤(-0.3) 
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kidney transplants, where short-term survival in early-stage 
ABMR is good but slow deterioration follows.34

The top dysfunction genes and GO pathways were related to 
matrix (and strongly expressed in fibroblasts per the Human 
Protein Atlas35) but surprisingly were decreased, whereas a 
priori we would have expected dysfunction to be associated 
with fibrogenesis. These decreased matrix genes were asso
ciated with loss of expression of normal heart genes and some 
increases in cardiomyocyte genes: for example, regulator of 
calcineurin 1 (RCAN1), which is of interest given the role of 
calcineurin in cardiac hypertrophy36-40 and skeletal muscle 
hypertrophy.41,42 TCMR, inflammation, injury, and atrophy-fi
brosis were also correlated with dysfunction, and presumably 
indicate the source of some damage to the parenchyma and 
matrix, but these associations were weaker.

The survival genes and GO pathways offer insights into the 
role of the microvasculature in hearts at risk, indicating the 
importance of ARG2, endothelin, and the VEGF and angio
genesis pathways, which in turn may be related to the response 
to hypoxia and glycolysis pathways. This recalls the micro
circulation changes described in hearts with chronic allograft 
vasculopathy (CAV), with decreased capillary density but in
creased capillary wall thickness.43 While TCMR undoubtedly 
causes extensive damage,12 the primary association with risk 
was not related to rejection activity, which reflects parenchymal 
states that persist after TCMR is treated. ARG2 is a mi
tochondrial enzyme that degrades L-arginine, the substrate for 
nitroc oxide synthase (NOS), and thus depresses nitric oxide 
synthesis. ARG2 is broadly expressed in macrophages, en
dothelial cells, and cardiomyocytes. ENO2 is involved in gly
colysis and is expressed in cardiomyocytes but is also broadly 
expressed. In experimental studies, increased ARG2 creates 
substrate limitation for NOS, leaving uncoupled NOS to pro
duce superoxide anions and contribute to contractile dysfunc
tion.44 The survival genes and GO pathways also overlapped 
the dysfunction genes: for example, both dysfunction and sur
vival were related to increased expression of ENO2, a regulator 
of glycolysis.

In RF, expression of MCATs was unexpectedly asso
ciated with improved survival; the basis for this is currently 
under investigation. MCAT expression (particularly 
FCER1A) is increased in heart ABMR, perhaps because 
MCATs are expressed in NK cells as well as mast cells.

As with all observational studies, the genes described re
present associations and correlations with the underlying dis
ease process, and none of the relationships are necessarily 
causative in nature. Another limitation to this study is the small 
number of events in the survival analysis, although it is greater 
(74 versus 52) than in the earlier study.12,17 We need to con
tinue to examine the long-term determinants of survival in 
larger studies, such as the ongoing Trifecta-Heart study. We 
note the interesting change in regulator of calcineurin 1 
(RCAN1) expression between patients with high versus low 
LVEF. However, the limited detail of the available im
munosuppression data and the overwhelming use of calcineurin 
inhibitors in the population made the relationship to calcineurin 
inhibitors impossible to assess. While single-cell sequencing 
may present additional results of interest and is now shown to 
be possible with frozen EMB specimens,45 it is not suitable for 

routine diagnostics. Microarrays remain the most suitable and 
stable technology for our purposes in this study. While no 
single-cell data is currently available in this study, we are ac
tively incorporating the application of insights gained from 
single-cell studies in our ongoing analyses.

It will be of interest to pursue the relationship between 
the dysfunction and survival genes and major features of the 
late heart transplant population such as CAV and diastolic 
dysfunction. CAV has a major microcirculation compo
nent,43 and the survival genes were related to reduced ex
pression of genes in the VEGF and angiogenesis pathways 
and increased ARG2 expression—indicating possible dys
function in nitric oxide production and increased endothelin 
expression. Dysfunction-related molecular changes also 
occurred in some hearts with LVEF  >  55, indicating mo
lecular abnormalities in hearts with preserved LVEF, with 
possible relevance to diastolic dysfunction and the problem 
of heart failure with preserved ejection fraction.1
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