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Abstract: The increasing importance of water quality has led to optimizing the operation of Wastew-
ater Treatment Plants. This implies the monitoring of many parameters that measure aspects such
as solid suspension, conductivity, or chemical components, among others. This paper proposes
the use of one-class algorithms to learn the normal behavior of a Wastewater Treatment Plants and
detect situations in which the crucial parameters of Chemical Oxygen Demand, Ammonia, and
Kjeldahl Nitrogen present unexpected deviations. The classifiers are tested using different deviations,
achieving successful results. The final supervision systems are capable of detecting critical situation,
contributing to decision-making and maintenance effectiveness.

Keywords: WWTP; one class; faul detection; supervision system; kmeans; autoencoder; Gaussian
model; NCBoP

1. Introduction

The current reality of water scarcity, influenced by factors like climate change, is
widely acknowledged [1]. Simultaneously, the global population is steadily increasing [2],
and with an improved standard of living, there is a noticeable rise in water consumption [3].
Predictably, this heightened water usage leads to an upsurge in wastewater production.
The increased wastewater production poses a challenge for treatment plants, as they often
struggle to keep up with the growing energy and resource demands needed to process
these substantial water quantities [4].

In light of these challenges, optimizing the operation of Wastewater Treatment Plants
(WWTPs) becomes crucial [5]. Various efforts have been made to enhance the efficiency
of these facilities through different approaches. Depending on the sewer network type,
WWTPs may receive either domestic and industrial wastewater in separative sewer net-
works or a combination of rainwater, domestic, and industrial wastewater in combined
sewer networks. In the latter case, although the pollution level in wastewater is generally
lower during rainfall events, the volume of water significantly increases, occasionally
surpassing the treatment capacity of WWTPs [6,7].

The unique characteristics and location of each WWTP, along with temporal varia-
tions in the quantity and quality of the wastewater, necessitate thorough monitoring in
various treatment processes to optimize their operation and comply with water purification
regulations [8,9]. Monitoring in WWTPs is crucial for several reasons:

1. Real-time control of treatment processes by tracking key parameters.
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2. Optimization of energy consumption based on treatment demands.
3. Early detection of anomalies and implementation of predictive maintenance strategies.
4. Optimization of sludge generation and management.
5. Adjustment of WWTP operation in response to changes in pollutant load due to

climatic factors or temporal patterns in water consumption.
6. Ensuring the quality of treated water discharged into water bodies.

Despite the numerous benefits in efficiently managing WWTPs, the initial economic
investment required for extensive monitoring in all treatment processes is often substantial.
Therefore, minimizing the number of sensors, identifying crucial variables for measurement,
or employing virtual sensors is vital in optimizing management and cost savings associated
with WWTP operation [10–12]. For instance, monitoring parameters like total nitrogen in
WWTPs, which quantifies the amount of organic matter, proteins, and amino acids in water,
is crucial for understanding contamination levels and serves as an indicator to optimize
various treatment processes. Additionally, measuring this variable extends beyond the
use of a simple sensor, requiring focus, experience, and specific measurement methods for
reliable results [13–15].

The investigation of approaches to enhance the energy efficiency of WWTPs is a crucial
area of study, as evidenced by a study outlined in [16]. This research explores various
options for optimizing the energy consumption of Italy’s largest WWTP, acknowledging
that energy usage constitutes a significant operational cost for these facilities and that
efficiency improvements can result in substantial economic advantages.

In a complementary modeling approach, as discussed in [17], determining the optimal
solid retention time is identified as a key aspect of effectively reducing operating expenses.
The optimization of solid retention time contributes to the efficient removal of pollutants
from wastewater, streamlining the treatment process and enhancing cost-effectiveness.

Additionally, the enhancement of ozonation processes by eliminating standard sub-
stances is addressed in [18]. This approach is crucial for improving the overall treatment
efficiency of WWTPs by focusing on optimizing a specific treatment step, ultimately leading
to more effective pollutant removal and reduction in operational costs.

Multiple studies support the idea that optimizing WWTPs brings tangible benefits [19].
For example, in [20], an index is presented that allows evaluating the monitoring and
diagnostic performance of fault detection methods which takes into account several char-
acteristics such as false alarms, false acceptances, and undesirable changes from correct
detection to non-detection during a fault event.

Considering that many wastewater treatment facilities are publicly owned, the need
for cost optimization becomes even more pronounced [21]. Publicly funded facilities
must operate efficiently to ensure responsible resource allocation and effective waste
management [22]. Moreover, the significance of treated water as a valuable resource is
emphasized, particularly in regions facing frequent droughts [5]. This highlights the dual
benefit of wastewater treatment optimization, not only in terms of cost reduction but also
in the sustainable production of a valuable water resource, addressing challenges posed by
water scarcity in drought-prone areas.

In [23], a novel technique is proposed for real-time monitoring of foam presence in
WWTP tanks using texture segmentation models trained with centralized and federated
approaches. The proposed methodology integrates into an image processing chain that
involves capturing images with a professional camera, ensuring the absence of anomalies
in the captured images, and implementing a real-time communication method for event
notifications to plant operators.

While the studies mentioned earlier [4,16–22] have made valuable contributions to the
field by investigating strategies like enhancing energy efficiency, determining the optimal
retention time of solids, and refining the ozonation process, there remains a need for further
research to address specific limitations. For instance, the study’s exclusive focus on Italy’s
largest WWTP might restrict the applicability of the findings to diverse geographical and
operational settings. Additionally, the optimization strategies proposed in [18] may not
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comprehensively consider the myriad challenges encountered by WWTPs, including the
identification of anomalies in sensor measurements within the plant.

In light of these considerations, this work presents a novel method for optimizing
WWTPs, offering a unique approach to address the complex and dynamic nature of wastew-
ater treatment. Unlike the studies mentioned above, the proposed approach emphasizes
the importance of continuous monitoring of a wide set of parameters, diagnosing and
detecting possible faults in the sensors’ measurements. This control not only minimizes the
economic investment associated with the exhaustive review of measurements by an opera-
tor but also guarantees that the sensors measure correctly, a crucial point for regulatory
compliance [24,25].

This paper presents an approach to optimize WWTP through fault detection. During
plant operation, numerous parameters are monitored with the aim of applying different
techniques to detect anomalies that may occur in certain plant areas. The approach is based
on one-class classifiers trained with data registered during normal operation and tested
with synthetic anomalies involving critical parameter deviations.

The document is structured as follows: after this introduction, the materials and
methods are presented, then the experiments and results are described. Finally, conclusions
are drawn, and future work is proposed.

2. Materials and Methods
2.1. Dataset Description

A WWTP constitutes a collection of facilities, typically situated within a population
center, with its primary purpose being the reduction in wastewater pollution to acceptable
levels before discharge into the aquatic environment. Depending on their size and the
specific pollutants targeted for treatment, WWTPs consist of various treatment lines and
processes. Generally, two main operational lines are recognized: the water line, which
is dedicated to wastewater purification, and the sludge line, which focuses on managing
solids (sludges) generated during the treatment processes. This study was conducted on
a medium-sized wastewater treatment plant located in a Mediterranean climate setting,
serving a population of approximately 15,000 individuals. Figure 1 illustrates the opera-
tional scheme of the WWTP utilized in this investigation, covering the primary wastewater
treatments from the intake of raw wastewater into the WWTP to the release of the treated
effluent into the aquatic environment. The water line of this WWTP primarily includes
pretreatment, secondary treatment, and tertiary treatment stages.

ScreeningRaw 
wastewater Grit and grease 

removal

Activated sludge  / 
Prolonged aeration

Secondary settling

Coagulation -
flocculation

Lamellar settling

Tertiary filtration

DisinfectionThickening Dewatering Storage

Wastewater Treatment Plant
Water Line

Sludge Line

Preliminary 
treatment

Secondary 
treatment

Tertiary 
treatment

Treated effluent

Sludge 
recirculation

Figure 1. Scheme of the operation of the WWTP under study.

The initial phase of the water treatment process in the WWTP involves the introduction
of raw wastewater into the water line, where pretreatment occurs. The primary objective of
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pretreatment is the elimination of coarse and fine solids through the screening stage, as well
as the removal of greases and oils via the grit and grease removal system. Following pre-
treatment, the resulting wastewater undergoes secondary treatment to eliminate dissolved
and suspended organic matter that persists after the initial pretreatment. The WWTP in
question employs activated sludge technology and prolonged aeration for this process,
providing oxygen to aerobic microorganisms responsible for breaking down organic matter,
as referenced in [26]. Subsequently, secondary settling takes place to separate solid waste
or sludge formed during preceding biological processes.

The water treatment line concludes with tertiary treatment, aiming for a more extensive
removal of specific contaminants, such as phosphorus, which may still be present in
the water post secondary settling. In the examined WWTP, physicochemical treatments
including coagulation–flocculation, lamellar settling, and filtration are implemented, as
documented in [27]. The tertiary treatment process culminates with a disinfection step,
involving the exposure of treated water to ultraviolet rays and the addition of sodium
hypochlorite to eliminate pathogenic microorganisms. After traversing all the processes in
the water line, the treated water is discharged into a water body.

Concerning the sludge line, a portion of the sludge generated during wastewater
treatment is collected from the bottom of the secondary settling tanks of the WWTP, and
subsequently recirculated to the biological reactor to become part of the biological con-
centrate. Simultaneously, any excess sludge is directed to the sludge line for treatment.
This sludge often contains a significant water content, prompting its passage through a
gravity-thickening process to increase the concentration of solids, facilitating handling and
further processing. Following thickening, centrifugal dewatering is employed to further
reduce the water content. The sludge is then temporarily stored at the WWTP until its final
transfer for various applications, such as agricultural fertilizers.

In the scope of this research, a dataset comprising 23 monitored variables within
the WWTP was examined. The samples constituting the dataset were collected over
nine months, with a recording frequency of one value per day. Table 1 summarizes the
description of each variable and the tags used for each one, indicating the key variables in
bold font.

Table 1. Variables in the dataset.

Description of the Measured Variable Variable Name

pH at the Entrance PH_E

pH on Exit PH_S

Conductivity at the Entrance Conductivity_E

Conductivity at the Exit Conductivity_S

V60 at the Entrance V60_E

Solids in Suspension at the Entrance SS_E

Solids in Suspension on Exit SS_S

Biological Oxigen Demand on Exit BOD_S

Chemical Oxygen Demand at the Entrance COD_E

Chemical Oxygen Demand on Exit COD_S

Total Nitrogen at the Entrance NITROGEN_T_E

Total Phosphoro at the Entrance PHOSPHORO_T_E

Total Phosphoro on Exit PHOSPHORUS_T_S
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Table 1. Cont.

Description of the Measured Variable Variable Name

Ammonia at the Entrance NH3_E

Total Kjeldahl Nitrogen at the Entrance NTK_E

Nitrate at the Entrance NO3_E

Nitrogen dioxide at the Entrance N02_E

Ammonia on Exit NH3_S

Total Kjeldahl Nitrogen on Exit NTK_S

Nitrate on Exit NO3_S

Nitrogen dioxide on Exit N02_S

Thickener input INPUT_ESP

Total Nitrogen on Exit NITROGEN_T_S

2.2. Unexpected Events Description

The present document deals with the detection of unexpected events in WWTPs
that may represent a potential risk for final water quality. This offers help in managing
undesired working situations, contributing to enhancement of optimum decision-making.
However, given the unfeasibility of registering datasets in that kind of situation, a synthetic
dataset is required to emulate anomalies. Different experts in the field of chemistry and
water treatment were consulted to determine which variables are especially significant in
detecting dangerous situations in a WWTP. Following these criteria, the output variables of
Chemical Oxygen Demand (COD), Ammonia (NH3), and Total Kjeldahl Nitrogen (NTK)
were identified as the most critical due to their relevance in assessing water quality and
environmental impact. Specific reasons why these variables are essential in environmental
and water treatment studies are described below.

• Chemical Oxygen Demand:

– Organic Pollution Indicator: COD measures the amount of oxygen needed to
oxidize organic matter in a water sample. It is a direct indicator of the amount of
organic contaminants present [28].

– Environmental Impact: High levels of COD in water bodies can result in de-
creased dissolved oxygen, affecting aquatic life and ecosystems [29].

– Process Control: In wastewater treatment plants, COD is essential to monitor and
control the efficiency of treatment processes [30].

• Ammonia:

– Direct Toxicity: Ammonia is toxic to many aquatic species. Elevated levels can
cause adverse effects in fish and other aquatic organisms [31].

– Eutrophication: Ammonia is a nutrient that, in excess, can contribute to the
eutrophication of water bodies, promoting extensive growth of algae and aquatic
plants, which can lead to water quality degradation and the death of aquatic
fauna by anoxia [32].

– Pollution Indicator: The presence of ammonia can indicate recent contamination
by agricultural, industrial, or domestic waste [33].

• Total Kjeldahl Nitrogen:

– Total Nutrient Component: TKN measures the total amount of nitrogen in the
form of ammonia and organic matter, providing a more complete view of the
nitrogen load in water [34].

– Eutrophication and Water Quality: Like ammonia, TKN is related to eutrophica-
tion. Excess nitrogen can promote the growth of oxygen-consuming organisms,
degrading water quality and negatively affecting aquatic ecosystems [35].
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– Evaluation of Sources of Pollution: TKN helps to identify and quantify the sources
of nitrogen pollution, whether agricultural, industrial, or urban [36].

In summary, these parameters are critical because they provide a comprehensive
view of the pollutant load, potential toxicity, and environmental impact of water bodies.
Their monitoring and control are essential for sustainable water resource management and
protecting aquatic ecosystems. Hence, the generation of unexpected events followed the
next steps:

1. From the initial 237 samples, 16% were randomly selected to be converted to anomalies.
2. For each instance selected, one of the three variables (COD_S, NH3_S, and NTK_S)

was randomly selected.
3. Once the variable to be modified was selected, its value was deviated by a

given percentage.

Figure 2 represents the process of selecting random instances for anomaly generation.
The original set is represented as a blue-colored square, and then, four random instances,
represented in grey color, are converted to anomalies. The final set is divided into normal
samples (target samples) and anomalous ones. Once the anomalous set is selected, Figure 3
represents the process to generate anomalies: one of the three key variables (COD_S,
NH3_S, and NTK_S) is randomly selected, and its value is modified by a given percentage.

Target

Anomalies

Original set

Figure 2. Random selection of instances for anomaly generation.

PH_E PH_S V60_E COD_S
NH3_S 

+ x % NTK_S

Anomalies
PH_E PH_S V60_E

COD_S
+ x % NH3_S NTK_S

PH_E PH_S V60_E COD_S
NH3_S 

+ x % NTK_S

PH_E PH_S V60_E COD_S NH3_S 

NTK_S
+ x %

Figure 3. Procedure of generation of anomalies.

The final goal of this synthetic dataset is to determine situations that represent an
emergency situation derived from abnormal values of critical variables such as COD_S,
NH3_S, and NTK_S. Furthermore, the possibility of modifying the percentage x tested can
provide an idea of classifier sensitivity.

2.3. One-Class Techniques

This paper proposes an intelligent classifier to detect risky situations in a WWTP. The
proposal is based on learning the patterns of data registered only during normal operation.
Once the model is trained, unexpected events can be determined if data differ from the
learned patterns. Four different one-class techniques are proposed and described below to
achieve this objective.
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2.3.1. Autoencoder

This method utilizes an Autoencoder which relies on an Artificial Neural Network
(ANN) to detect anomalies by determining their characteristics. Typically, the ANN setup
includes an input layer, one or more hidden layers, and an output layer interconnected by
weighted links [37]. The fundamental concept behind this approach involves reconstructing
the input data (d) into output data (drec) through nonlinear dimensional reduction within
the hidden layer, as depicted in Figure 4. Consequently, the number of neurons in the
hidden layer is smaller than the input dimensions.

P

d drec ε 

Figure 4. Cluster division depending on the value of K.

After the network undergoes training exclusively on the training dataset, data exhibit-
ing distinct behaviors are expected to exhibit notable distinctions within the hidden layer
space. Consequently, a test data point (q) is anticipated to demonstrate a substantial recon-
struction error, quantified as |d − drec|. This metric serves as the criterion for categorizing
the data as anomalous [38].

2.3.2. Gaussian Model

An alternative method for tackling anomaly detection, particularly in facial recogni-
tion, involves employing one-class techniques that rely on density functions. One straight-
forward approach within this paradigm is to apply a normal or Gaussian distribution
function to the target dataset [38]. This function is derived from the same dataset used for
training purposes.

After establishing the mean vector and covariance matrix, the method for identify-
ing the anomalous status of a test sample relies on its evaluation within the Gaussian
function. This straightforward approach offers a low computational overhead, making it
advantageous, particularly for large datasets with a normal distribution shape.

In Figure 5, a simplified representation of a Gaussian function (depicted by the blue
line) with a one-dimensional set is illustrated. The determination of whether a test instance
is anomalous or not is based on comparing it to a predefined threshold (indicated by the
red lines), which is set during the training phase.

2.3.3. The K-means Algorithm

The K-means algorithm, an unsupervised technique widely employed in various
domains like machine learning, image processing, and pattern recognition [39], aims to
partition the dataset into clusters containing data points with similar characteristics [39].



Appl. Sci. 2024, 14, 5185 8 of 15

Input data

Gaussian 
function of 
training set

Threshold to 
determine 
anomalies

Figure 5. Example of Gaussian Model for one-class task in R1.

Given a set X = x1, x2, . . . , xN , where xi ∈ Rn, the K-means algorithm partitions the
data into K subsets G1, G2, . . . , GK, each associated with centroids C = c1, c2, . . . , cK, where
cj ∈ Rn. This partitioning is performed based on a clustering error criterion [40], typically
computed as the sum of Euclidean distances between each point xi ∈ Rn and its centroid cj.

The application of this algorithm using a one-class approach is based on the distance
from test instances to their nearest centroid. It is considered anomalous if this value is
greater than the maximum distance registered for that cluster during the training stage.
Figure 6 shows an example in R2 where the training set is grouped into two clusters. Then,
the green dot represents a test instance that is labeled as normal because the distance to its
nearest centroid is below the maximum distance of that cluster. On the contrary, the long
distance from the red dot to its centroid reveals the anomalous nature of the test instance.

Feature 1

Fe
at

ur
e 

2

Cluster #1

Cluster #2

Figure 6. An example of a K-means algorithm applied to anomaly detection in 2D.

2.3.4. Non-Convex Boundary over Projections

The Non-Convex Boundary over Projections (NCBoP) algorithm innovatively utilizes
non-convex hull calculations to model the shape of the target dataset [41]. This approach
addresses limitations observed in the conventional convex hull method applied to random
projections [42]. The fundamental principle of NCBoP involves approximating dataset
boundaries in Rn by employing non-convex hulls across π random projections onto 2D
planes. Subsequently, non-convex limits are determined on these planes, thereby reducing
the computational complexity associated with calculating non-convex limits across Rn.

The NCBoP algorithm computes a non-convex polygon for each π 2D random projec-
tion by initially selecting a starting point, determined as the lowest y coordinate among
all points projected onto the pi plane. Subsequently, it identifies the K-nearest points and
arranges them based on the polar angle, retaining only the furthest point from the starting
point. This process is repeated for each 2D random projection.
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After computing the initial points, a stack structure is established to accommodate
the next third point. Subsequently, it evaluates whether the subsequent point in the list
turns left (added to the stack) or right (removes the top point from the stack). This iterative
process continues until it returns to the starting point. Once the training process concludes,
all points are situated within the non-convex polygon generated by the algorithm.

Upon completion of the training phase, the criterion for identifying whether a new
test point is anomalous is as follows: if the data fall outside of at least one of the t projected
hulls, it is deemed anomalous. This determination is illustrated in Figure 7.

Dataset �  R3

Projection #1 Non-convex polygon Projection #1

Projection #2 Non-convex polygon Projection #2

Figure 7. Example of NCBoP for one-class techniques in R3.

3. Experiments and Results

This section describes the different configurations considered for each one-class tech-
nique and the results derived from the proposed experiments.

3.1. Experiment Setup

As stated in previous sections, an initial dataset corresponding to normal working
operations is used to train one-class classifiers. Then, unexpected and undesired data
are introduced into those classifiers to determine whether they are capable of detecting
hazardous situations. The severity of the anomalous event is checked with the aim of
evaluating the classifier’s sensitivity. The percentage deviation is swept from 5 % to 95 %
with a 10 % step. As no information about those anomalies is available during the training
process, it is not feasible to apply feature selection techniques to evaluate the importance
of each input variable in the classification process, so all variables are considered. In this
sense, using an Autoencoder can contribute to reducing data dimension, compressing the
data, and identifying sub-spaces with better performance.

To implement the best classifier for each type of anomaly, the experiments are config-
ured according to the following parameters:

• Autoencoder: the input data of the neural network are comprised of the 23 variables
monitored in the WWTP. The system is trained to learn the patterns from normal
operation and replicate, at the output, the same value as the input. Once the model
is trained, anomalous instances replicate the data at the output with significant error.
This error, known as the reconstruction error, is the criteria to determine the anomaly
detection. The number of layers is swept from 1 to 22, which is the number of variables
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minus one. The possibility of considering a percentage of anomalous points (OP) in
the training set is checked: 0%, 5%, 10%, and 15%.

• Gaussian Model: the regularization parameter is swept from 0 to 0.005 with a step of
0.001. The possibility of considering a percentage of anomalous points (OPs) in the
training set is checked: 0%, 5%, 10%, and 15%.

• K-means: the number of clusters is swept from 1 to 30. The possibility of considering
a percentage of anomalous points (OPs) in the training set is checked: 0%, 5%, 10%,
and 15%.

• NCBoP: the projections π tested are 10, 50, 100, 500 and 1000. Furthermore, the λ
parameter in charge of reducing and expanding the boundaries is set to 0.6, 0.8, 1, 1.2,
and 1.4.

All these configurations are tested through a five K-fold cross-validation process with
three different data preparation methods: no preparation, Z-score, and 0–1 normalization.
The mean values of the confusion matrix components during the five folds are registered.
Furthermore, the F1-score parameter (%) is also included since it is an underscored metric
in the field of anomaly detection, particularly in evaluating classifier ability to detect
irregularities in complex systems [43,44]. To ensure classifier robustness, three aspects are
taken into consideration:

• The instances converted to anomalies are randomly selected from the initial dataset.
• From each selected instance, the variable modified is also randomly selected.
• The process is repeated following K-fold cross-validation, ensuring that all data are

subjected to both training and test phases.

3.2. Results

Autoencoder. The results achieved using Autoencoder classifiers are shown in Table 2.
This technique shows a remarkable improvement in performance when the deviation
percentage increases. In most cases, the best result corresponds to a configuration that
considers 5% of the training set as anomalous. A common trend in all experiments consists
of the use of a high number of neurons in the hidden layer, meaning that almost all variables
are important to achieve the best classifier.

Table 2. Results and configuration for the best Autoencoder classifier depending on anomaly
percentage deviation.

Dev
(%) Preproc Hidden

Layer OP (%) TP TN FP FN F1 (%)

5 Zscore 19 0 38.3 8.5 28.5 1.7 71.7
15 Zscore 20 5 34.2 20.9 16.1 5.8 75.7
25 Zscore 20 0 39.5 18.8 18.2 0.5 80.9
35 Zscore 20 5 34.3 33.4 3.6 5.7 88.1
45 Zscore 20 5 34 34.4 2.6 6 88.8
55 Zscore 18 5 34.1 36.4 0.6 5.9 91.3
65 Zscore 18 5 34.9 36.2 0.8 5.1 92.2
75 Zscore 20 5 34 35.8 1.2 6 90.4
85 Zscore 20 5 34.6 36.1 0.9 5.4 91.7
95 Zscore 18 5 35.8 37 0 4.2 94.5

Gaussian Model. The Gaussian model results are shown in Table 3. This statisti-
cal technique leads to successful results with more than 95% of the F1-score in 9 out of
10 anomaly sets. The lowest value is achieved when the anomalies are generated by deviat-
ing only by 5% from the original value. In all cases, the anomalies are correctly classified
(True Negative), with a really low number of situations in which a false alarm is set. In
contrast to Autoencoder classifiers, an outlier percentage of 0% in the training set is the
best possible configuration.
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Table 3. Results and configuration for best Gaussian classifier depending on anomaly percent-
age deviation.

Dev
(%) Preproc RP OP (%) TP TN FP FN F1 (%)

5 Norm 0 5 35.9 37.0 0.0 4.1 94.6
15 Norm 0 0 38.7 37.0 0.0 1.3 98.3
25 Zscore 0 0 38.7 37.0 0.0 1.3 98.3
35 Norm 0 0 38.8 37.0 0.0 1.2 98.5
45 Zscore 0.001 0 38.8 37.0 0.0 1.2 98.5
55 Norm 0.001 0 38.9 37.0 0.0 1.1 98.6
65 Norm 0.001 0 39.0 37.0 0.0 1.0 98.7
75 Zscore 0.003 0 39.1 37.0 0.0 0.9 98.9
85 Zscore 0.003 0 38.9 37.0 0.0 1.1 98.6
95 Zscore 0.001 0 39.0 37.0 0.0 1.0 98.7

K-means. The results achieved using K-means classifiers are shown in Table 4. Al-
though the performance improves as the deviation increases, the F1 performance is below
80% in all cases, with consequent worse results than those of Autoencoder and Gaussian
classifiers. The proper number of clusters to divide the dataset does not follow a common
trend, varying from 1 to 29. The most critical aspect consists of the false positives that start
with 37 (100% of the anomalies labeled as normal instances) and finish with 12, which is an
improvable value.

Table 4. Results and configuration for the best K-means classifier depending on anomaly percent-
age deviation.

Dev
(%) Preproc OP (%) k TP TN FP FN F1 (%)

5 NoNorm 0 1 39.8 0.0 37.0 0.2 68.2
15 NoNorm 0 5 39.9 0.0 37.0 0.1 68.3
25 Zscore 0 3 40.0 0.0 37.0 0.0 68.4
35 Norm 0 29 39.4 1.0 36.0 0.6 68.3
45 Norm 0 12 39.7 0.7 36.3 0.3 68.4
55 Zscore 15 9 32.3 18.8 18.2 7.7 71.4
65 Zscore 10 9 34.3 17.3 19.7 5.7 73.0
75 Zscore 10 13 33.9 20.2 16.8 6.1 74.8
85 Zscore 10 17 33.0 24.1 12.9 7.0 76.8
95 Zscore 10 13 33.3 25.1 11.9 6.7 78.2

NCBoP. Table 5 summarizes the performance of NCBoP classifiers in the different
experiments. As in the case of K-means, the F1-score does not exceed 80% in any configura-
tion with a great number of anomalous instances classified as normal. The value of λ is 1.4
in 8 out of 10 cases, which means that an increment in the decision boundary leads to better
results. However, when the deviation used to generate the anomaly is 5%, the decision
boundary should be reduced. The number of projections does not follow a recognizable
pattern, varying depending on the experiment.

To understand the improvement of each algorithm with the percentage variation
of COD_S, NH3_S, and NTK_S, Figure 8 represents the values of the F1-score for each
technique. The Gaussian model approach is the best algorithm to detect test parame-
ter deviations.
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Table 5. Results and configuration for best NCBoP classifier depending on anomaly percent-
age deviation.

Dev
(%) Preproc λ π TP TN FP FN F1 (%)

5 NoNorm 0.8 500 37.1 0.5 36.5 2.9 65.3
15 Norm 1.4 10 36.5 3.5 33.5 3.5 66.4
25 Norm 1.4 10 37.7 2.9 34.1 2.3 67.4
35 Zscore 1.4 10 37.5 3.6 33.4 2.5 67.6
45 Zscore 1.4 100 30.5 20.3 16.7 9.5 70.0
55 Zscore 1.4 50 32.8 18.8 18.2 7.2 72.1
65 Zscore 1.2 10 33.2 21.4 15.6 6.8 74.8
75 Zscore 1.4 50 33.3 22.8 14.2 6.7 76.1
85 Zscore 1.4 100 31.3 27.4 9.6 8.7 77.4
95 Zscore 1.4 50 32.0 27.7 9.3 8.0 78.7
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Figure 8. F1-score for each classifer.

4. Discussion

The presented work proposed a semi-supervised methodology to detect alarm situa-
tion in a WWTP. The importance of the proposal lies on the fact of implementing classifiers
that take into consideration all system variables registered from normal operation with no
need of human expertise to determine unexpected and anomalous events. In the current
context of digitalization and quality standard increment, this tool takes advantage of data
availability to enhance the supervision and diagnostics in critical infrastructure. The pro-
posal can complement traditional diagnosis and supervision systems, offering an alarm in
case of early anomaly detection. This contributes to maintenance decision making, easing
effectiveness, and economic and energy efficiency. Furthermore, the results show how clas-
sifier performance improves significantly when the deviation is greater, resulting in a more
dangerous situation. Despite the clear advantages of the proposal, there are several factors
to which a one-class approach cannot contribute. As this is a semi-supervised methodology,
it is necessary to have an initial set of normal operation instances, so human expertise is
needed at least during the first data registration stage to ensure data quality. Once this
limitation is overcome, the combination of the proposal with other supervised techniques
will be suitable for detecting sensor misreadings to complement the one-class classifier.

5. Conclusions and Future Works

This paper presents the use of different one-class techniques to determine the appear-
ance of unexpected events in a WWTP facility. Those events are synthetically generated to
simulate deviations in COD_S, NH3_S, and NTK_S, representing critical measures to deter-
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mine potential risks. With the aim of evaluating how effective each technique is, the tested
deviations varied from 5% to 95%. In general terms, an increase in that deviation results
in better performance in four techniques. Although NCBoP, K-means, and Autoencoder
present a remarkable improvement with each deviation step, Gaussian classifiers achieve
the best results. The experiments and results for the technique showed that, after a five
K-fold validation, all negative instances (unexpected and hence undesired events) were
correctly labeled. The false alarm cases were significantly low, with a mean value below
1.5 samples in all experiments above 15% deviation.

The results indicated that the proposed system represents a valuable contribution to
the WWTP monitoring process. Taking into consideration the 23 variables along the facility,
it is possible to detect when three critical parameters present unexpected values, according
to the patterns learned from normal operation sets.

In future works, there are three alternative ways to supplement the contribution.
The first would consider individual classifiers for each tested parameter: COD_S, NH3_S,
and NTK_S. Although the classified proposed detects all unexpected events with the
Gaussian model, this approach could improve the rest of the classifiers. Furthermore,
instead of semi-supervised algorithms in which only information from normal operation is
available, the use of supervised classifiers could be tested. This approach would implement
a classifier for normal operation and another one for unexpected deviation. In the case
of good results, these classifiers would indicate the specific parameter with unexpected
performance. Finally, it could be possible to consider the modification of other variable
instead of COD_S, NH3_S, and NTK_S to detect an unexpected situation that correspond
to less severe scenarios.
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