
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:19522–19544
https://doi.org/10.1007/s11227-022-04627-9

1 3

Land consolidation through parcel exchange 
among landowners using a distributed Spark‑based 
genetic algorithm

Diego Teijeiro1   · Margarita Amor1 · Ramón Doallo1 · Eduardo Corbelle2 · 
Juan Porta1 · Jorge Parapar1

Accepted: 23 May 2022 / Published online: 24 June 2022 
© The Author(s) 2022

Abstract
Land consolidation is an essential tool for public administrations to reduce the frag-
mentation of land ownership. In particular, parcel exchange shows promising poten-
tial for restructuring parcel holdings, even more when the number of parcels and 
owners involved is large. Unfortunately, the number of possible exchange combina-
tions grows very quickly with the number of participating landowners and parcels, 
with the associated challenge of finding an acceptable solution. In this paper, we pre-
sent a high-performance solution for parcel exchange based on genetic algorithms. 
Our proposal, using Apache Spark framework, is based on the exploiting of distrib-
uted-memory systems with effortless access in order to reduce the execution time. 
This also allows increasing the search width through multiple populations that share 
their advances. This can be achieved without compromising the search depth thanks 
to the higher amount of resources available from using distributed-memory systems. 
Our proposal is capable of achieving better solutions in lower amounts of time com-
pared to previous works, showing that genetic algorithms on a high performance 
system can be used to propose fair parcel exchanges under strict time constraints, 
even in complex scenarios. The performance achieved allows for fast trial of sev-
eral options, reducing the time usually needed to perform administrative procedures 
associated with land fragmentation problems. Specifically, our proposal is capable 
of combining the benefits of both depth-focused and width-focused multithreaded 
parallelization. It matches the speedup gains of depth-focused multithreaded paral-
lelization. The width-focused parallelization provides local minimum resilience and 
fitness value reduction potential. In this paper, multithreading solutions and Spark-
based solutions are tested.

Margarita Amor, Ramón Doallo, Eduardo Corbelle,Juan Porta and Jorge Paraparauthors have 
contributed equally to this work.

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5340-6029
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04627-9&domain=pdf


19523

1 3

Land consolidation through parcel exchange among landowners…

Keywords  Land fragmentation · Geographic information systems · Global 
optimization · Genetic algorithms · Parcel exchange · Apache Spark

1  Introduction

High fragmentation of land ownership is generally regarded as a threat to the profit-
ability of farms and forest holdings [1, 2]. Actual fragmentation can be the result of 
quite different situations: a high number of landowners, a high number of holdings 
(land users), lack of overlap between landowners and land users, a high number of 
land parcels per landowner, or high average distances between the parcels of the 
same landowner [3, 4]. More usually, real cases result from a combination of these 
situations.

Public and private initiatives aimed at reducing land fragmentation exist in most 
countries and, very often, these focus on reducing the average number of parcels 
per landowner and/or on relocating parcels of each landowner as close as possible 
to each other [5–7] and, as such, may include the exchange of parcels between land-
owners. The potential benefits of parcel exchange increase with the total number of 
landowners and the total number of parcels involved in the exchange, as the number 
of possible solutions increases very quickly. Obviously, a higher number of possible 
solutions also make the search of a (sub)optimal solution a harder task to fulfill and 
the use of heuristics becomes suitable for these cases.

Compared to exchanging parcels one-by-one between two landowners, multiple 
parcel exchange has logically greater potential benefits, increasing with the number 
of owners and parcels involved in the exchange process. At this point, the problem 
can be simplified to a combinatorial problem, and as such, the number of possible 
exchange combinations grows very quickly as both the number of landowners and 
parcels involved increase [8]. Combinatorial or trial-and-error approaches, even per-
formed by computers, need large amounts of time that increases exponentially with 
the number of owners and parcels. Due to the size of the problem, in general, these 
approaches are not viable and we must look for other options to solve them. A com-
mon viable option for complex problems with large numbers of possible solutions is 
the use of heuristic algorithms. These algorithms trade the optimality of the solution 
(they are not guaranteed to find the best solution) for performance (the speed of the 
algorithm), reducing the time needed to achieve good solutions, and as such, they 
may be a viable technique in this case.

From a general perspective, heuristic algorithms search for the solution by 
attempting to improve a candidate solution iteratively, according to a measure of 
quality. They are used to search for solutions of complex problems, but not neces-
sarily the best one, in much shorter times. This speed allows them to solve complex 
problems such as those commonly found in land management or land administra-
tion. Among the several subtypes of heuristic algorithms, genetic algorithms (GA) 
operate with the basic principles of natural evolution: The best individuals on a pop-
ulation produce the next generations more suited for the environment. This trans-
lates to an algorithm that maintains a group of candidate solutions (population) from 
which the best individuals according to a fitness function (FF) are selected to create 



19524	 D. Teijeiro et al.

1 3

new individuals. Every new generation of the population is formed with potentially 
better solutions, repeating this procedure until the stopping criteria are met.

Previous publications have proven that evolutionary algorithms are well suited 
to support multiobjective spatial decision-making  [9, 10]. Several applications 
can be found in literature, from traditional land consolidation  [11] to space plan-
ning  [12, 13], automatic delimitation of population settlements  [14] and land-use 
allocation [15–18]. While there are several cases of genetic algorithms proposed to 
support decisions concerning land reallotment in traditional land consolidation pro-
cesses [19–22], a different approach is raised in [23], where the results of the pro-
posed GA are analyzed from an agroforestry standpoint. The effectiveness of this 
approach in real cases was verified with satisfactory results. The performance of 
GAs can be improved with several optimizations and techniques already known and 
tested in the literature [15].

Recently, big data technologies, such as Hadoop, Spark or Flink, have emerged as 
efficient solutions for large applications on distributed-memory systems. These tech-
nologies provide easier access to high amounts of computational resources, abstract-
ing the underlying hardware structure. Some of them are flexible enough to use them 
outside of the problem scales usually related to Big Data, enabling their use on tra-
ditional problems. Other uses of these big data technologies for genetic algorithms 
can be found on the literature  [24–26], some using clusters  [27], others in public 
clouds [26].

In this paper, we analyze the utilization of a big data framework, specifically 
Spark, to not only increase the performance of the algorithm but also improve 
the quality of the results, enabling more complex configurations or support 
larger use cases. Spark has proven its suitability for this type of algorithms in the 
literature [27].

The rest of the paper is structured as follows: Sect. 2 describes the application of 
genetic algorithms for parcel exchange. Section 3 describes some details of the pro-
posed system using a multithread approach, and Sect. 4 presents the proposal to per-
form parcel exchange using Apache Spark. Section 5 presents the results obtained 
and Section 6 summarizes the conclusions and outlines future work.

2 � Genetic algorithm for parcel exchange: GeAPaE

Genetic algorithms are among the several search heuristics usually applied to opti-
mization, in this case, inspired by natural processes like natural selection, and there-
fore, most of the terminology and mechanisms come from those fields.

The base element of the algorithm is an individual, and in itself is a possi-
ble solution to the optimization problem. This means that an individual encodes 
all the data needed to represent a possible solution to the problem, and that is 
the assignment of an owner to each of the N parcels involved. These can be also 
referred to as ownership patterns and can be abstracted as an ordered sequence of 
owner identifiers. An individual contains one owner identifier, one of the L own-
ers of the particular use case for each parcel involved, each of those identifiers 
can be called a gene in common genetic algorithm terminology. The algorithm 



19525

1 3

Land consolidation through parcel exchange among landowners…

tries to find an individual that has the lowest value according to a specific set of 
rules usually represented as a mathematical function known as fitness function 
(FF) that factors the owner of each parcel in the computation of the value.

The basic algorithm maintains Q different groups of individuals called popula-
tions, denoted as P1, ...,Pj, ...,PQ , and it creates new individuals using a combina-
tion of crossover and mutation processes. Each population could have a potential 
different number of individuals, denoted as Mj . Each individual can be identified 
by their population and element index, denoted as Pj

i
 (the individual i of popula-

tion j). Pj

i,k
 denotes the owner of the k-th parcel according to the i-th individual 

of the j-th population, one for each of the N parcels involved. These populations 
can also be referred as generations when one group is created from the members 
of the other to introduce the sense of parenthood or precedence: Individuals of a 
population generate a new group of individuals. These terms will be used inter-
changeably during this work.

In [23], different fitness functions that were used are explained in detail. In 
some of them, a reference point of the owner is mentioned, this point being a 
location indicated by the owner. This reference point usually is located at their 
farmyard and indicates the place around which the owner prefers their parcels to 
be located. A short description of each fitness function is as follows:

•	 Parcel Distances Total (PDT): adds all the distances between each pair of par-
cels assigned to the same landowner, for all landowners.

•	 Parcel Distances Average (PDA): similar to the previous one but uses the 
average for each landowner instead of just adding them.

•	 Reference point Distance Total (RDT): adds all the distances between each 
parcel and the reference point of the owner.

•	 Reference point Distance Average (RDA): similar to the previous one but the 
value for each landowner is the average instead of the sum.

•	 Total Distances Combined (TDC): combines the PDT and RDT fitness func-
tions, with potentially different weights.

•	 Average Distances Combined (ADC): combines PDA and RDA, again with 
independent weights.

•	 4 Distances Combined (4DC): combines the first four fitness functions, that is 
PDT, PDA, RDT and RDA, giving different weights to each one.

•	 Number Of ParceLs (NPL): number of parcels assigned to the owner.

All of these fitness functions except the last one, NPL, calculate the value for 
each landowner and average the values of each owner to give the final fitness 
value of the individual. The NPL fitness functions instead add the values of every 
owner, and the final value for an individual is the total number of parcels.

Table  1 summarizes the main equations for each fitness function. No is the 
number of parcels assigned to the owner o in the individual being evaluated. 
PDi,j,o is the distance between parcel i and j of the owner o. RDi,o is the distance 
from parcel i to the reference point of the owner o. Finally, WPDT , WPDA , WRDT and 
WRDA are the weights given to the first, second, third and fourth evaluation meth-
ods, respectively.



19526	 D. Teijeiro et al.

1 3

The fitness function to use can be configured in each execution according to the 
needs of the users. In some cases, the goal is to have the parcels closest to their main 
farmyard (RDA or RDT would be the best ones to use). Sometimes, they don’t need 
to be so close to their farmyard but prefer parcels grouped together (PDA or PDT 
in that case). Other times they want to have the lowest amount of separated pieces 
of land with no regards to the shape itself (NPL performing the parcel union, only 
cares about the amount of parcels after fusing the ones assigned to each landowner 
wherever possible).

3 � Description of GeAPae implementation using multithreading

This section describes some internal peculiarities of previous implementations of 
GeAPae  [23]. GeAPae is implemented using the Java programming language and 
parallelized using threads. It maintains all the modes of execution (command-line, 
integrated web application or GeoServer WPS operation). In this paper, we use 
command-line mode exclusively as it is the most adequate for the Spark environ-
ment used (HPC cluster with job scheduling). Input, output and configuration of the 
execution remain unchanged, as well as the distance calculation and caching done at 
the start.

In this section, we detail how the genetic algorithm works, focusing on the par-
allelization techniques that exploit the multithreading capabilities of modern sys-
tems. The algorithm can use multiple processing threads in two different ways: par-
allelize the creation of new individuals to create the next generation quicker for a 

Table 1   Equations for fitness functions used in [23]

Fitness 
function

Equation

PDT ∑o=L

o=1

∑i=No
i=1

∑j=No
j=i

PDi,j,o

L

PDA ∑o=L

o=1

∑i=No
i=1

∑j=No
j=i

PDi,j,o

No

L

RDT ∑o=L

o=1

∑i=No
i=1

RDi,o

L

RDA ∑o=L

o=1

∑i=No
i=1

RDi,o

No

L

TDC ∑o=L

o=1

�

�

WPDT∗
∑i=No

i=1

∑j=No
j=i

PDi,j,o

�

+

�

WRDT∗
∑i=No

i=1
RDi,o

�

�

L

ADC ∑o=L

o=1

�

�

WPDA∗

∑i=No
i=1

∑j=No
j=i

PDi,j,o

No

�

+

�

WRDA∗

∑i=No
i=1

RDi,o

No

�

�

L

4DC
∑o=L
o=1

�

�

WPDT ∗
∑i=No
i=1

∑j=No
j=i

PDi,j,o

�

+

�

WPDA∗

∑i=No
i=1

∑j=No
j=i

PDi,j,o

No

�

+

�

WRDT ∗
∑i=No
i=1

RDi,o

�

+

�

WRDA∗

∑i=No
i=1

RDi,o

No

�

�

L

NPL ∑o=L

o=1
No



19527

1 3

Land consolidation through parcel exchange among landowners…

given population, or maintain several populations evolving independently that share 
individuals periodically. These two approaches have different effects on the over-
all algorithm, increasing the thread count working in the same population increases 
the amount of generations completed in the same time, which can be understood 
as increasing the depth of the search or search depth since it can stack mutations 
on the individuals. Increasing the number of populations, on the other hand, does 
not increase the amount of generations achieved, but since each population evolves 
independently, they can test different mutation paths in parallel, increasing the width 
of the search or search width when taking into account all of the populations.

3.1 � Overall structure

For a single population, a more detailed description of the algorithm is presented 
in [23]. Algorithm 1 shows the pseudocode of the sequential algorithm, to explain 
the evolution process.

The algorithm starts with an initial phase of population creation (lines 1-6). In 
this phase, Mk individuals are created to fill the first generation, checking that the 
ownership pattern is valid, that is, each landowner keeps the total property value 
within a prefixed margin with respect to his property value in the original distribu-
tion. When the population is complete, the algorithm enters the second and main 
phase, the evolution loop.

The evolution is performed for a predefined amount of time (line 7). For each 
individual in the population, another random individual is selected, and the crosso-
ver operation is performed (lines 15-19), generating two children. Those new indi-
viduals are mutated one or several times, and if the resulting individual is valid, it is 
added to the next generationâ€™s population (lines 20-37). The best of the children 
and the original elements is selected as the individual to be included into the next 
generation (line 38). If the best fitness in the population does not change during sev-
eral generations, the algorithm is considered stagnated and the loop stops before the 
maximum time is reached. This is done to avoid wasting execution time when the 
optimum is reached, either a local or global optimum, and, as such, this stagnation 
detection can be seen as another stopping criterion.



19528	 D. Teijeiro et al.

1 3

Two different approaches to increase performance and reach better fitness values 
faster are proposed. One is based on increasing the search depth by parallelizing the 
creation of new individuals. The other approach is based on increasing the search 
width, creating several populations that evolve independently but share some indi-
viduals periodically.



19529

1 3

Land consolidation through parcel exchange among landowners…

The first parallelization strategy uses the available threads to accelerate the crea-
tion of new generations. This is achieved by parallelizing the for loop in lines 14-39. 
Each iteration of the loop is considered an independent task, the i-th iteration is the 
creation of the individual that will replace the i-th individual in the next generation, 
and the available threads complete those tasks. The tasks in a generation are inde-
pendent with each other, while there is a dependency between generations. There 
is no static scheduling of those tasks, since the computational cost of each one is 
not fixed, each thread proceeds with the next tasks when it completes the previous 
one, balancing the load of each thread and making efficient use of the resources. 
Increasing the speed at which new generations are completed increases the number 
of mutations that are applied to the same individual, since the mutations only occur 
between generations. The context of the algorithm increases the relevance of the 
mutation process, since it is the step that introduces randomness to the individuals, 
necessary to explore new parcel-landowner associations. Therefore, the depth of the 
genealogy of an individual, also seen as the search depth, has a notable role in the 
performance of the algorithm.

With regards to the width focused approach, a single process handles each popu-
lation in a different thread in order to be able to use shared memory to perform that 
cooperation, instead of communication between different processes. The cooperation 
between populations is performed in the export/import step of the algorithm (lines 
8-13), using lists of individuals as import queues in a producer-consumer pattern. At 
set intervals, each population exports its best individuals, adding them to the import 
queues of every other population (lines 8-10). Each population is independent of 
the others, and the only interaction is the asynchronous communication through the 
import queues that are managed at a higher level of abstraction.

When a population imports individuals of other populations, all incoming indi-
viduals are evaluated with the configuration of the accepting population, in case 
they originate from a population that uses a different fitness function, and they are 
appended to the current population, temporarily increasing the population size. In 
order to avoid uncontrolled population size increases, the inflated population is 
sorted by fitness value from best to worst, and the list is truncated to the correct pop-
ulation size, removing the worst individuals from it (lines 11-13). If the imported 
individuals are better than some of the ones already in the population, the old ones 
will be removed. Otherwise, the imported individuals are removed when the list is 
truncated, and the population will keep its original individuals.

Figure 1 shows a representation of this process when executed in a single node 
using the multithread versions of the two approaches detailed. In the shown case, 
there are three populations with 4, 3 and 4 individuals, respectively, where the sec-
ond population exports the best individual to the other populations and they inte-
grate that individual in their individual lists. For reasons of clarity, only population 
2 shares individuals with the other two populations. In the case shown, P2 per-
forms the export, sending its best individual, P2

1
 to the other two populations. Those 

populations import that individuals, adding it to their individuals list, sort them by 
increasing fitness value and they truncate the individual list to the population size, 
four in both cases. In P1 , the imported individual is better than the worst of the exist-
ing individuals, so the truncation removes P1

4
 and the imported individual becomes 



19530	 D. Teijeiro et al.

1 3

part of P1 . In P3 , the imported individual is worse than all of the existing ones, so the 
truncation removes the imported individual and the population remains unchanged.

The increase in search width by itself does not provide big improvements, search 
depth tends to be more important than search width, in general, more so in this case 
due to the mutation step being the main source of fitness improvement. However, 
since the whole algorithmâ€™s evolution is performed isolated in each population, 
a different configuration can be used in each population. This heterogeneous config-
uration opens new possibilities, an advancement in one population that is focused on 
one fitness function can have a positive impact in another population that is search-
ing with other fitness function. This has a large impact when the computational cost 
of several fitness functions is very different, populations with fast fitness functions 
will complete new generations faster, and individuals from those deeper generations 
will be exported to slower populations, jumpstarting it or introducing big leaps in 
the evolution of the slower populations.

4 � Efficient Spark‑based GeAPaeSp implementation

With the approaches explained in Sect. 3, a trade-off must be sought between depth 
and search width, choosing how to dedicate the computational resources of the sys-
tem that runs the algorithm. The possibility of not having to compromise one of the 
two levels of parallelism, increasing the amount of computational resources avail-
able, is appealing. There is a large number of tools and techniques to utilize distrib-
uted memory systems effectively, one big example being MPI. The rise of Big Data 
leads to the creation of new commercially oriented and more flexible software tools 
to utilize those systems in different applications, in contrast to the more research 
or academic focused uses or traditional approaches. An alternative approach of 
the multiple population parallelization has been proposed, using the Apache Spark 

Fig. 1   Scheme of the evolution of multiple populations exploiting both parallelization strategies, search 
width and depth



19531

1 3

Land consolidation through parcel exchange among landowners…

framework to allow simple access to distributed memory systems like clusters or 
cloud infrastructure, obtaining other features like fault tolerance without extra effort.

There are other alternatives to Spark, such as Flink or Hadoop. The main rea-
son for choosing Spark is ease of use and correct support for iterative algorithms. 
Hadoop is not adequate for iterative algorithms like a genetic algorithm as it has 
been tested and compared with Spark in previous works [27]. One of the main prob-
lems with Hadoop is the requirement to use HDFS for input, output an intermediate 
results, introducing a forced overhead of writing intermediate results to disk, which 
can be too high depending on the configuration as explored in previous works [27]. 
Flink, on the other hand, is not adequate for our proposal due to its design focus on 
stream processing.

Our Spark approach allows the utilization of multiple populations to increase the 
search width while using all available resources in each Spark worker node to maxi-
mize the search depth in each population. Each population can be distributed to a 
different worker node and use all of its available threads for the parallelization to 
maximize the search depth.

Apache Spark uses the concept of Resilient Distributed Dataset (RDD) as the 
main tool for efficient fault tolerance and distributed memory computation. An RDD 
is a collection of data distributed across the underlying infrastructure that can be 
operated in parallel and cached in memory when possible. In our case, we create an 
RDD from data already in memory, integrating Spark with the existing algorithm. 
Spark uses a master/worker architecture, with the Driver program running on the 
master node and Executors running on the worker nodes using resources allocated 
through a cluster manager.

4.1 � Spark distributed structure

Our proposal takes advantage of the resources available through Spark by distrib-
uting the populations to different worker nodes and uses all the resources on each 
worker node to increase the search depth of the population assigned to it. The basic 
abstraction is based on the execution of the application on the worker nodes, each 
worker node performs the evolution of one population, with no interaction with the 
others. After the evolution is completed, some individuals are copied to other popu-
lations to allow cooperation, and the evolution is performed again repeating it until 
the criteria of time elapsed or stagnation are achieved.

Figure 2 shows a simple scheme of how the computation is distributed in a tra-
ditional Spark environment. In contrast to other parallelization techniques seen in 
the literature, this work is focused on the quality improvement that is possible with 
this approach, while maintaining the benefits on reduction in execution time. With 
our proposal, we can use the distributed memory paradigm to increase search width, 
running several populations in parallel in different nodes, and the shared memory to 
maximize the search depth in each population using all of the available threads in 
each node to increase the search depth of the population evolving in that node.

The driver program creates a RDD of key-value pairs, where the value is the 
individual list that constitutes a population, and the key is the ID (or index) of the 



19532	 D. Teijeiro et al.

1 3

population. At this point, the RDD contains each population associated with its 
ID. A flatmap operation is executed on the RDD, and this operation performs the 
evolution of the population, and a reduce operation is performed to group the out-
put of the flatmap by the key of each element. Then, the process is repeated with 
the reformed populations until the maximum allowed time is reached. Each group 
of flatmap-reduce operations is called a stage for future reference. We describe 
each of these operations in detail below.

The flatmap operation receives each key-value pair, runs the evolution on the 
population and creates new key-value pairs with the population index as key and 
each individual in its own list. The execution of the flatmap operation in each 
key-value pair is independent of the others in the same stage, while there is a 
dependency with consecutive stages. For one population of Mk individuals, Mk 
pairs are created, each one with the index of the population as key and a list con-
taining the i-th individual. Additionally, new pairs for the b best individuals of 
the population are also generated (the precise amount can be configured). In an 
execution with Q populations, the b best elements of the population create Q − 1 
new pairs, each one with the index of another population, and a list with one of 
the best individuals. At the end, there are Mk pairs with lists of one individual 
containing the full population in total, and b ∗ (Q − 1) with the best individuals 
copied with the indexes of the other populations.

The reduce operation joins the lists that share the same key. This operation 
applies an associative and commutative binary operator to all the key-value pairs 
sharing the same key. All the pairs with the same key are sent to one worker node. 
Spark should do this in a way that reduces the data transfers keeping each popula-
tion in the same node and only moving the copied individuals, where the reduce 
operation is executed over those pairs. This binary operator receives two pairs 
and creates a new and single pair with a list that contains the individuals of the 
original pairs. After this operation is completed, the RDD returns to the original 

Fig. 2   Scheme of the evolution of multiple populations using our Spark approach



19533

1 3

Land consolidation through parcel exchange among landowners…

size, with one pair per population with the population ID as key and the list of 
individuals that constitute the population as value, ready to repeat the process.

The process of dividing the populations into lists of one individual at the end of 
the flatmap operation, and regrouping them with the reduce operation, allows the 
cooperation between different populations. Spark does not allow direct commu-
nication between worker nodes, so the best way of moving data from one worker 
to another is to complete the task which the worker is currently doing, rearrange 
the data in the RDD and launch another computation task. The movement of data 
between worker nodes is normally discouraged as it carries a relevant overhead, but 
in this case, the amount of data that needs to move through the network is not large, 
only some individuals of the populations.

After the first stage, the size of the lists (size of each population) increases, 
because on top of the individuals of the population itself, the best individuals of 
other populations are also added. To avoid increasing the size of the populations 
continually, only the Mk best individuals of each populations create new pairs at the 
end of the flatmap operation, with Mk being the original population size. The evolu-
tion may be with more individuals, but only the best Mk make it to the next stage, 
keeping the population size under control.

Algorithm  2 shows a representation of the RDD through several stages, using 
three populations of 3, 2 and 4 individuals and exporting one individual to other 
populations.

An important performance parameter is the duration of each stage, the time each 
population evolves isolated, as it controls the level of cooperation. On the one hand, 
short stages, more of them, are desired to increase the cooperation between popu-
lations, but on the other hand, each stage has an associated overhead due to data 
movement, so less stages are also desired. These two conflicting factors need to be 
balanced, so the progress achieved in the evolution is worth the overhead time intro-
duced for communications. The duration of each stage can be adjusted in the con-
figuration file to balance these two factors in each execution.



19534	 D. Teijeiro et al.

1 3

Lastly, to maintain the stagnation stop criteria, the driver program has to keep 
track of the evolution changes in each stage, since it has no access to the data the 
worker nodes kept during the evolution. Our Spark approach detects the stagnation 
when the fitness value does not change in any population after several stages.

5 � Experimental results

An analysis of our proposal is presented. This analysis is split into two studies: an 
analysis for the multithread approach and a performance study for the GeAPaeSp 
approach.

During the testing procedure, several parcel holdings are used. One of them is 
synthetic with uniform, adjacent parcels with random landowner assignments for a 
controlled environment. The other parcel holding is a real test case. Table 2 contains 
a brief description of the parcel holdings and Fig. 3 shows a graphical representation 
of the initial distribution where each parcel is color coded by the assigned land-
owner. Both parcel holdings are color coded by the landowner of each parcel.

The configurations throughout this section (see Figs. 5–8) are named following 
the format (Q, T). Q is the number of populations evolving in parallel. T is the total 

Table 2   Test cases information Test cases Municipality N L Characteristics

Synthetic – 351 10 Identical parcels
Full land coverage
Full adjacency

Real case Ribadeo (Spain) 329 12 Low size variation
Low land coverage
High parcel dis-

persion
High reference 

points dispersion

Fig. 3   Testing parcel holdings. Each color represents an owner. a Synthetic parcel holding. b Real case 
holding, Ribadeo, Spain



19535

1 3

Land consolidation through parcel exchange among landowners…

number of threads in use, each population has an equal amount from the total. The 
best results are marked with bold numbers in the tables in the following sections.

5.1 � Multithreading parallelism

For this analysis, we use a cluster where each node is equipped with two Intel 
Xeon E5-2660 Sandy Bridge-EP, each one with 8 cores at 3.0 GHz for a total of 
16 cores, 64 GB of memory and one 1TB local hard disk drive.

Each configuration was executed ten times, and the average fitness value of 
the ten executions is displayed in the graphs, measuring progress in a 15-second 
interval. The population size M is not the same in all cases, Table 3 shows the 
value used in each configuration. The fitness function used is Average Distances 
Combined (ADC) with equal importance to parcel distances and reference point 
distances ( WPDA = WRDA = 0.5 ). This fitness function is chosen because it can 
produce good results using under an hour for the parcel holding used, even in the 
sequential configuration.

Figure 4 shows the effect on the algorithm results when increasing the number 
of threads processing a single population. In this graph, the time axis is in loga-
rithmic scale to improve graph visibility, which amplifies the representation of 
the 15 seconds between datapoints at the start of the graph. We consider a step-
before graph over a straight line to never overrepresent the fitness improvement. 
A reference value called 90% improvement is showed. The difference between 
the maximum starting fitness value and the minimum final fitness value is cal-
culated, and it represents the maximum fitness improvement possible. Then, the 
90% improvement value is calculated as the higher starting fitness value minus 
90% of the improvement just calculated. This value represents the point where 
fitness value reduction starts to provide diminishing returns. The user could stop 

Fig. 4   Multiple threads on one population and a single node



19536	 D. Teijeiro et al.

1 3

the algorithm once this value is reached, since most of the improvement will have 
already been made. The conclusions based on speed or time are based on the time 
to reach this value.

As can be seen, there is a clear reduction in time needed to achieve good fitness 
values. The efficiency of the parallelization (seen as the ratio of time reduction ver-
sus the increase in resources used) goes down as the number of threads increases 
due to having low computational load for the amount of threads available. Our 
GeAPae proposal is up to 13.73x faster compared with the sequential version, and a 
slight improvement in the fitness value is achieved.

Figure  5 shows results when increasing the number of populations using one 
thread. In this case, as it was expected, a small benefit has been obtained in execu-
tion times, because the same amount of work to do has to be done for each popula-
tion, while the resources used for processing each population are the same as for 
sequential algorithm. A slightly reduction in execution time is still achieved due to 
the cooperation between populations; if one population found a good element, it will 
be shared with the other populations, contributing to a faster achievement of good 
fitness values. Anyway, this approach is up to 1.71x faster with respect to the utiliza-
tion of a single population.

Figure 6 shows different configurations varying the number of populations using 
the maximum number of available threads, 16. To ensure a fair comparison, all the 
configurations have the same computational load. In those configurations where less 
number of populations is processed, the size of each one is increased in order to 
keep the total number of individuals equal to 512 elements, maintaining the overall 
search width to reduce a variable from the equation. As can be seen on the graph, the 
first configuration to cross the 90% improvement line, therefore the fastest, is the one 
with one population of 512 individuals and 16 threads, but it stagnates on slightly 
higher fitness values. The configuration with four populations of 128 individuals 

Fig. 5   Multiple populations with one thread



19537

1 3

Land consolidation through parcel exchange among landowners…

processed each one by four threads presents an average behavior regarding execution 
time until stagnation, but achieves the best fitness value. As a result, this configura-
tion is a good compromise between speedup and fitness values achieved.

Table  3 shows numeric data for all configurations. Q indicates the number 
of populations, T is the number of threads processing each population and M is 
the amount of individuals in each population. For each configuration, the start-
ing and final fitness values, the time needed to achieve 90% of the whole poten-
tial improvement and the speedup are displayed. The speedup is calculated with 

Fig. 6   Different configurations increasing populations using 16 threads

Table 3   Time to achieve 
90% of the potential whole 
improvement and speedups

Configuration Final value (100%) 90% improve-
ment time (s)

Speedup

Q T M

1 1 32 676.19 2805 –
1 2 32 673.53 1500 1.87
1 4 32 676.10 720 3.90
1 8 32 673.22 360 7.79
1 16 32 673.22 210 13.36
2 1 32 673.51 2415 1.16
4 1 32 677.39 2205 1.27
8 1 32 665.19 1455 1.93
16 1 32 657.16 1770 1.58
8 2 64 666.01 1455 1.93
4 4 128 668.22 1260 2.23
2 8 256 674.20 1125 2.49
1 16 512 673.10 945 2.97



19538	 D. Teijeiro et al.

1 3

respect to the P = 1 and T = 1 configuration. Compared to that configuration, fit-
ness values reductions are up to 4% better and speedups of 13.36 times faster can 
be achieved.

5.2 � Spark distributed parallelism

The following results were taken in a working Spark environment with multiple 
computation nodes, the testing platform is the same cluster with 17 nodes, in this 
case, running Spark 3.0.1. Each node consists of two Intel Xeon E5-2660 Sandy 
Bridge-EP with 8 cores each at 3.0 GHz for a total of 16 cores, 64 GB of memory 
and one 1TB local hard disk drive.

For this analysis, we use a synthetic parcel holding to have a more controlled 
environment, with the initial parcel distribution shown in Fig. 3a. The configuration 
used consists of 128 individuals for population size and fitness function of average 
parcel distances (PDA) after performing parcel union. This combined with the syn-
thetic parcel holding allows to reach a situation where each owner has one contigu-
ous set of parcels that, after performing the geometry union, will result in one parcel 
per landowner, resulting in a fitness value of 0. Using that target to measure time is 
prone to executions not being able to reach it due to being stuck at local minimum, 
so we will use the 90% improvement like the previous section. In this case, that 
value is 40, all populations start at values slightly below 400, so the speedup is cal-
culated with the time to reach a value of 40. The fitness value of the original parcel 
distribution (completely random) is 1918, but the initial individual generation to fill 
the population is capable of creating better elements with a fitness value around 350, 
so in reality, the evolution itself starts at that point, not the 1918 of the initial con-
figuration. This generation process is described in more depth in [23]. To increase 

Fig. 7   GeAPaeSp proposal performance using a synthetic parcel holding



19539

1 3

Land consolidation through parcel exchange among landowners…

the clarity of the graph, the fitness value axis is focused on the [0, 400] range, where 
most of the data are located.

Figure 7 shows the fitness curves during the evolution (if multiple populations are 
used, the value of the first population is used) for the synthetic parcel holding. The 
time axis displayed stops at 2000 seconds to increase readability, only two series 
have not reached the 90% value by that time, Table 4 has the time they need to reach 
it.

We test one population with one thread to get a reference, that would be the 
sequential behavior of the algorithm.

We include configurations (1, 16) and (16, 16) to show the two extremes of the 
depth-width balance that the Spark implementation solves. Both of those configura-
tions are limited to one node, the user has to choose to increase depth or width with 
the resources of that node. With the Spark implementation, each node dedicates its 
resources to maximize search depth, and more nodes process different populations 
to increase search width maintaining search depth. The configuration (1, 16) uses 
all available resources for search depth, so it can evolve faster but is prone to being 
stuck on local minimum, which results in less progress at the end part of the evolu-
tion. The configuration (16, 16) only uses one thread per population, all resources 
are dedicated to width which causes the evolution to be similarly fast as the sequen-
tial, but being able to reduce stagnation due to local minimum, achieving the target 
value of 0 more reliably.

The rest of the configurations show the first advantage of the Spark implementa-
tion. We can increase the number of populations (search width) and benefit from 
the stagnation resistance without losing search depth or speed to reach lower val-
ues. The total amount of resources available grows with each population added, 
executing each one in different nodes of the cluster. The Spark implementation has 
less granularity with the time measurements. Only after a stage is completed, we 
can know the evolution progress in the Driver program. In this case, the duration of 
each stage is 300 seconds so there are only around six stages, the end of each cor-
responds with the big reduction in fitness for the series with more than 16 threads 
in total.

Table 4 shows the execution time needed for each configuration together with the 
speedup achieved with respect to the sequential execution. For the configurations 

Table 4   Time in seconds to 
achieve a fitness value of 40 and 
speedup in the synthetic parcel 
holding

Configuration Final value Execution time Speedup

Q T

1 1 15.31 8985 –
1 16 6.67 675 13.31
16 16 5.05 3015 2.98
2 32 3.14 945 9.51
4 64 0 630 14.26
8 128 0 945 9.51
16 256 0 960 9.36



19540	 D. Teijeiro et al.

1 3

that use Spark, the time used is the time in which the stage that reached 40 or below 
finishes. The driver does not know exactly when the 90% threshold value actually 
was surpassed, but it is the time the results are available to check stopping criteria. 
Increasing the number of populations allows to reach lower values more reliably, 
with 4, 8 and 16 populations, all executions reach a value of 0. With less popu-
lations, that value is not always reached, and the average is higher than 0. This is 
evidence for the resilience to local minimum that wider configurations provide. The 
sequential case reached 0 in 3 out of 10 executions, (1, 16) reached 0 in 5 out of 10 
executions, (16, 16) does it in 6 of 10 executions and (2, 32) reached the value 0 in 
7 out of 10 executions. The configurations (4, 64), (8, 128) and (16, 256) reach 0 
in all executions. Our GeAPaeSp is up to 14.26x faster compared to the sequential 
version, and the fitness reductions achieved are up to 1.69% better compared to the 
configuration (1, 16).

Table 5   Time in seconds to 
achieve 90% improvement in 
fitness value and speedup in the 
real test case parcel holding

Configuration Final value Execution time Speedup

Q T

1 1 730.27 239475 –
1 16 695.23 19575 12.23
16 16 861.30 >87000 <2.75
2 32 677.76 17760 13.48
4 64 676.47 17610 13.60
8 128 681.22 17220 13.91
16 256 668.00 17520 13.67

Fig. 8   GeAPaeSp proposal performance using a real case



19541

1 3

Land consolidation through parcel exchange among landowners…

Figure  8 shows the fitness evolution of each configuration using the real par-
cel holding. As with the previous section, we will use the 90% improvement as 
the target for time measurement for speedup calculations. Table 5 shows the time 
needed for each configuration together with the speedup achieved with respect to the 
sequential execution. The configuration used in this test is similar to the one used on 
Sect. 5.1 but it is not the same, the fitness function in use is different, although the 
fitness values are very similar, they cannot be directly compared.

This use case requires more execution time, and the stage duration of 300 sec-
onds is more adequate relative to the total execution time. The fitness curves for 
the Spark configurations differentiate from each other better than in the synthetic 
parcel holding. In this case, the best configuration is the (8,  128), being 13.91 
times faster than the sequential version. Similar to the synthetic parcel holdings 
results, increasing the number of populations helps to reach lower fitness val-
ues, higher search width has that effect, and with this implementation, the search 
depth is not compromised. The best fitness value reduction was achieved by the 
configuration (16,  256), outperforming the (1,  16) configuration by 4.43%. The 
speedup is mostly achieved from dedicating 16 threads to each populations, and 
the search width helps to reach lower fitness values, combining the two paralleli-
zation techniques advantages while mitigating the disadvantages of each one.

To close this section, Fig.  9 displays the result of one execution using the 
Spark distributed approach with 16 populations on each parcel holding. The 
synthetic parcel holding (see Fig.  9a) behaves uniquely when using the fitness 
function PDA together with parcel union. Since all of the parcels are adjacent to 
each other, one contiguous group of parcels (considering the eight neighbors of 
each parcel, sharing a corner is considered adjacency) is joined into one parcel, 
resulting in a fitness value of 0 for the landowner, with no regards to its shape. 
On real parcel holdings (see Fig. 9b) where there are roads and other parcels to 
separate the involved parcels, this situation does not happen. Nevertheless, it is 
easy to see that the new parcel holdings represent an improvement with regards 
to ownership fragmentation. The synthetic parcel holding execution managed 
to form one contiguous block of land (touching corners at worst) for each land-
owner, even with the aforementioned peculiarity. The real parcel holding also 

Fig. 9   Result parcel holdings. Each color represents an owner. a Synthetic parcel holding. b Real case, 
Ribadeo, Spain



19542	 D. Teijeiro et al.

1 3

shows a notable improvement in this regard, all the parcels of each landowner are 
confined to smaller areas in general (see owners #3, #7, #9 and #11 for notable 
improvements).

6 � Conclusions

This paper provides a parallel proposal of a genetic algorithm for parcel exchange 
using Apache Spark, GeAPaeSp. It should be observed that this proposal is espe-
cially well suited to increase the quality of the final results and minimize the execu-
tion time. Our proposal improves the width of search increasing the number of pop-
ulations; and the depth of search increasing the number of generations in a suitable 
time. GeAPaeSp outperforms a sequential and multithreaded proposal, combining 
speedups of up to 14.26 with respect to the sequential version and, at the same time, 
better fitness improvements by up to 10.74% (4.43% comparing against the depth-
focused multithreaded proposal), reaching those better fitness values more reliably.

Distributing the computation across multiple computation nodes allows the possi-
bility of using broadly different configurations that cater to the multiple needs of the 
landowners involved, without hampering any of the other configurations.

There is still work to be done on this front. There are still known improvements 
to genetic algorithms not implemented, like local searches on selected individuals. 
Another possibility is dynamic configuration of each population independently to 
adapt to the progress of the evolution process, using fast methods during the ini-
tial stages and changing to more intensive options when those fast methods become 
stagnant.

Acknowledgements  We would like to thank the anonymous reviewers, whose insightful comments 
greatly improved the quality of this paper. This research was funded by the Ministry of Science and 
Innovation of Spain (PID2019-104184RB-I00 / AEI / 10.13039/501100011033), by Xunta de Gali-
cia and FEDER funds of the EU under the Centro de Investigación de Galicia accreditation 2019-2022 
(ED431G 2019/01), as well as under the Consolidation Program of Competitive Reference Groups 
(UDC/GI-000265, ref ED431C/2021/30) and one of the authors received financial support from Xunta 
de Galicia and the European Social Fund (ESF) of the European Union (predoctoral fellowship ref. 
ED481A-2019/231).

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Data availability  The datasets used during the current study were either procedurally generated or created 
as part of a regional government project and so are not publicly available. Data are however available 
from the authors upon reasonable request and with permission of the members of the project.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


19543

1 3

Land consolidation through parcel exchange among landowners…

References

	 1.	 Lu H, Xie H, He Y, Wu Z, Zhang X (2018) Assessing the impacts of land fragmentation and 
plot size on yields and costs: a translog production model and cost function approach. Agric Syst 
161:81–88. https://​doi.​org/​10.​1016/j.​agsy.​2018.​01.​001

	 2.	 Kilgore MA, Snyder SA (2016) Exploring the relationship between parcelization metrics and natu-
ral resource managers’ perceptions of forest land parcelization intensity. Landsc Urban Plan 149:43–
48. https://​doi.​org/​10.​1016/j.​landu​rbplan.​2016.​02.​003

	 3.	 van Dijk T (2003) Scenarios of Central European land fragmentation. Land Use Policy 20(2):149–
158. https://​doi.​org/​10.​1016/​S0264-​8377(02)​00082-0

	 4.	 Hartvigsen M (2014) Land reform and land fragmentation in Central and Eastern Europe. Land Use 
Policy 36:330–341. https://​doi.​org/​10.​1016/j.​landu​sepol.​2013.​08.​016

	 5.	 Pašakarnis G, Morley D, Maliene V (2013) Rural development and challenges establishing sustain-
able land use in Eastern European countries. Land Use Policy 30(1):703–710. https://​doi.​org/​10.​
1016/j.​landu​sepol.​2012.​05.​011

	 6.	 Vranken L, Swinnen J (2006) Land rental markets in transition: Theory and evidence from hungary. 
World Dev 34(3):481–500. https://​doi.​org/​10.​1016/j.​world​dev.​2005.​07.​017

	 7.	 Sklenicka P, Janovska V, Salek M, Vlasak J, Molnarova K (2014) The farmland rental paradox: 
Extreme land ownership fragmentation as a new form of land degradation. Land Use Policy 38:587–
593. https://​doi.​org/​10.​1016/j.​landu​sepol.​2014.​01.​006

	 8.	 Borgwardt S, Brieden A, Gritzmann P (2014) Geometric clustering for the consolidation of farm-
land and woodland. Math Intel 36(2):37–44. https://​doi.​org/​10.​1007/​s00283-​014-​9448-2

	 9.	 Bennett DA, Xiao N, Armstrong MP (2004) Exploring the geographic consequences of public poli-
cies using evolutionary algorithms. Ann Assoc Am Geograph 94(4):827–847. https://​doi.​org/​10.​
1111/j.​1467-​8306.​2004.​00437.x

	10.	 Xiao N, Bennett DA, Armstrong MP (2007) Interactive evolutionary approaches to multiobjective 
spatial decision making: A synthetic review. Comput Environ Urban Syst 31(3):232–252. https://​
doi.​org/​10.​1016/j.​compe​nvurb​sys.​2006.​08.​001

	11.	 Touriño J, Rivera FF, Álvarez C, Dans CM, Parapar J, Doallo R, Boullón M, Bruguera JD, Crecente 
R, González XP (2001) COPA: a gis-based tool for land consolidation projects. In: ACM-GIS 2001, 
Proceedings of the Ninth ACM International Symposium on Advances in Geographic Information 
Systems, pp. 53–58. https://​doi.​org/​10.​1145/​512161.​512174

	12.	 Xin H, Zhi-xia Z (2008) Application of genetic algorithm to spatial distribution in urban plan-
ning. In: IEEE international symposium on knowledge acquisition and modeling workshop, pp. 
1026–1029

	13.	 Vallejo M, Rieser V, Corne DW (2015) Genetic algorithm evaluation of green search allocation pol-
icies in multilevel complex urban scenarios. J Comput Sci 9:57–63. https://​doi.​org/​10.​1016/j.​jocs.​
2015.​04.​004

	14.	 Porta J, Parapar J, Doallo R, Barbosa V, Santé I, Crecente R, Díaz C (2013) A population-based iter-
ated greedy algorithm for the delimitation and zoning of rural settlements. Comput Environ Urban 
Syst 39:12–26. https://​doi.​org/​10.​1016/j.​compe​nvurb​sys.​2013.​01.​006

	15.	 Porta J, Parapar J, Doallo R, Rivera FF, Santé I, Crecente R (2013) High performance genetic algo-
rithm for land use planning. Comput Environ Urban Syst 37:45–58. https://​doi.​org/​10.​1016/j.​compe​
nvurb​sys.​2012.​05.​003

	16.	 Stewart TJ, Janssen R (2014) A multiobjective gis-based land use planning algorithm. Comput 
Environ Urban Syst 46:25–34. https://​doi.​org/​10.​1016/j.​compe​nvurb​sys.​2014.​04.​002

	17.	 Liu Y, Tang W, He J, Liu Y, Ai T, Liu D (2015) A land-use spatial optimization model based on 
genetic optimization and game theory. Comput Environ Urban Syst 49:1–14. https://​doi.​org/​10.​
1016/j.​compe​nvurb​sys.​2014.​09.​002

	18.	 Santé I, Rivera FF, Crecente R, Boullón M, Suárez M, Porta J, Parapar J, Doallo R (2016) A simu-
lated annealing algorithm for zoning in planning using parallel computing. Comput Environ Urban 
Syst 59:95–106. https://​doi.​org/​10.​1016/j.​compe​nvurb​sys.​2016.​05.​005

	19.	 Akkus MA, Karagoz O, Dulger O (2012) Automated land reallotment using genetic algorithm. INI-
STA 2012 - International Symposium on INnovations in Intelligent SysTems and Applications, 1–5. 
https://​doi.​org/​10.​1109/​INISTA.​2012.​62470​18

https://doi.org/10.1016/j.agsy.2018.01.001
https://doi.org/10.1016/j.landurbplan.2016.02.003
https://doi.org/10.1016/S0264-8377(02)00082-0
https://doi.org/10.1016/j.landusepol.2013.08.016
https://doi.org/10.1016/j.landusepol.2012.05.011
https://doi.org/10.1016/j.landusepol.2012.05.011
https://doi.org/10.1016/j.worlddev.2005.07.017
https://doi.org/10.1016/j.landusepol.2014.01.006
https://doi.org/10.1007/s00283-014-9448-2
https://doi.org/10.1111/j.1467-8306.2004.00437.x
https://doi.org/10.1111/j.1467-8306.2004.00437.x
https://doi.org/10.1016/j.compenvurbsys.2006.08.001
https://doi.org/10.1016/j.compenvurbsys.2006.08.001
https://doi.org/10.1145/512161.512174
https://doi.org/10.1016/j.jocs.2015.04.004
https://doi.org/10.1016/j.jocs.2015.04.004
https://doi.org/10.1016/j.compenvurbsys.2013.01.006
https://doi.org/10.1016/j.compenvurbsys.2012.05.003
https://doi.org/10.1016/j.compenvurbsys.2012.05.003
https://doi.org/10.1016/j.compenvurbsys.2014.04.002
https://doi.org/10.1016/j.compenvurbsys.2014.09.002
https://doi.org/10.1016/j.compenvurbsys.2014.09.002
https://doi.org/10.1016/j.compenvurbsys.2016.05.005
https://doi.org/10.1109/INISTA.2012.6247018


19544	 D. Teijeiro et al.

1 3

	20.	 Demetriou D, Stillwell J, See L (2012) Land consolidation in Cyprus: Why is an Integrated Plan-
ning and Decision Support System required? Land Use Policy 29(1):131–142. https://​doi.​org/​10.​
1016/j.​landu​sepol.​2011.​05.​012

	21.	 Uyan M, Cay T, Inceyol Y, Hakli H (2015) Comparison of designed different land reallocation 
models in land consolidation: A case study in konya/turkey. Comput Electron Agric 110:249–258. 
https://​doi.​org/​10.​1016/j.​compag.​2014.​11.​022

	22.	 Ertunç E, Çay T, Haklı H (2018) Modeling of reallocation in land consolidation with a hybrid 
method. Land Use Policy 76:754–761. https://​doi.​org/​10.​1016/j.​landu​sepol.​2018.​03.​003

	23.	 Teijeiro D, Rico EC, Porta J, Parapar J, Doallo R (2020) Optimizing parcel exchange among land-
owners: A soft alternative to land consolidation. Comput Environ Urban Syst 79:101422. https://​doi.​
org/​10.​1016/j.​compe​nvurb​sys.​2019.​101422

	24.	 Zhou C (2010) Fast parallelization of differential evolution algorithm using mapreduce. In: Pro-
ceedings of the 12th Annual Genetic and Evolutionary Computation Conference, GECCO ’10, pp. 
1113–1114. https://​doi.​org/​10.​1145/​18304​83.​18306​89

	25.	 Daoudi M, Hamena S, Benmounah Z, Batouche M (2014) Parallel diffrential evolution clustering 
algorithm based on mapreduce. In: 2014 6th International Conference of Soft Computing and Pat-
tern Recognition (SoCPaR), pp. 337–341. https://​doi.​org/​10.​1109/​SOCPAR.​2014.​70080​29

	26.	 Teijeiro D, Pardo XC, González P, Banga JR, Doallo R (2016) Implementing parallel differential 
evolution on spark. Applications of Evolutionary Computation. Springer, Cham, pp 75–90

	27.	 Teijeiro D, Pardo XC, Penas DR, González P, Banga JR, Doallo R (2017) Evaluation of parallel 
differential evolution implementations on mapreduce and spark. Euro-Par 2016: Parallel Processing 
Workshops. Springer, Cham, pp 397–408

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Diego Teijeiro1   · Margarita Amor1 · Ramón Doallo1 · Eduardo Corbelle2 · 
Juan Porta1 · Jorge Parapar1

 *	 Diego Teijeiro 
	 diego.teijeiro@udc.es

	 Margarita Amor 
	 margarita.amor@udc.es

	 Ramón Doallo 
	 ramon.doallo@udc.es

	 Eduardo Corbelle 
	 eduardo.corbelle@usc.es

	 Juan Porta 
	 juan.porta@udc.es

	 Jorge Parapar 
	 jorge.parapar@udc.es

1	 CITIC, Computer Architecture Group, Universidade da Coruña, Campus de Elviña, 
15007 A Coruña, Spain

2	 Department of Agriculture & Forest Engineering, Universidade de Santiago de Compostela, 
Santiago, Spain

https://doi.org/10.1016/j.landusepol.2011.05.012
https://doi.org/10.1016/j.landusepol.2011.05.012
https://doi.org/10.1016/j.compag.2014.11.022
https://doi.org/10.1016/j.landusepol.2018.03.003
https://doi.org/10.1016/j.compenvurbsys.2019.101422
https://doi.org/10.1016/j.compenvurbsys.2019.101422
https://doi.org/10.1145/1830483.1830689
https://doi.org/10.1109/SOCPAR.2014.7008029
http://orcid.org/0000-0001-5340-6029

	Land consolidation through parcel exchange among landowners using a distributed Spark-based genetic algorithm
	Abstract
	1 Introduction
	2 Genetic algorithm for parcel exchange: GeAPaE
	3 Description of GeAPae implementation using multithreading
	3.1 Overall structure

	4 Efficient Spark-based GeAPaeSp implementation
	4.1 Spark distributed structure

	5 Experimental results
	5.1 Multithreading parallelism
	5.2 Spark distributed parallelism

	6 Conclusions
	Acknowledgements 
	References




