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ABSTRACT Manycore architectures are one of the most promising candidates to reach the exascale.
However, the increase in the number of cores on a single die exacerbates the memory wall problem.
Modern manycore architectures integrate increasingly complex and heterogeneous memory systems to
work around the memory bottleneck while increasing computational power. The Intel Mesh Interconnect
architecture is the latest interconnect designed by Intel for its HPC product lines. Processors are organized
in a rectangular network-on-chip (NoC), connected to several different memory interfaces, and using a
distributed directory to guarantee coherent memory accesses. Since the traffic on the NoC is completely
opaque to the programmer, simulation tools are needed to understand the performance trade-offs of code
optimizations. Recently featured in Intel’s Xeon Scalable lines, this interconnect was first included in the
Knights Landing (KNL), a manycore processor with up to 72 cores. This work analyzes the behavior of the
Intel Mesh Interconnect through the KNL architecture, proposing ways to discover the physical layout of its
logical components. We have designed and developed an extension to the Tejas memory system simulator
to replicate and study the low-level data traffic of the processor network. The reliability and accuracy of
the proposed simulator is assessed using several state-of-the-art sequential and parallel benchmarks, and a
particular Intel Mesh Interconnect-focused locality optimization is proposed and studied using the simulator
and a real KNL system.

INDEX TERMS computer architecture, cache coherence, distributed cache directory, high-performance
computing, architectural simulator

I. INTRODUCTION
Hardware trends towards exascale systems point to
multi-level massive parallelism [1]: thousands of intercon-
nected nodes where each node contains several tens of cores.
The number of cores per die has steadily increased over the
past decade as a response to the end of Dennard’s scaling and
the slowdown of Moore’s law, and manycore architectures
represent a big share of the current HPC market.

The development of memory systems has not followed
the same pace. The gap between the performance of modern
memories and processors is known as the memory wall, and
represents maybe the biggest current challenge in computer
architecture. New emerging technologies, such as 3D-stacked
or non-volatile memories (NVM), try to mitigate this issue.

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Shuja.

Modern architectures feature heterogeneous memory sys-
tems, providing simultaneous access to different technologies
that allow applications to leverage their distinct characteris-
tics and trade-offs.

However, versatility represents a big challenge for
programmers, who need to understand and leverage the com-
plex trade-offs involved. Architectural models and simula-
tors become fundamental to analyze the effect of candidate
code transformations and optimizations. The development of
these models and simulators, however, is far from trivial,
due to the scarce documentation available from manufac-
turers. It becomes necessary to undertake reverse engineer-
ing of live systems to fully develop architectural models.
This discovery process, based on performance measurements
of real systems, allows to develop configuration models
for architectural simulators. These tools are more flexible
than hardware counters, allowing to analyze the fundamental
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reasons for performance differences between different system
configurations and code optimizations.

This work undertakes the analysis of the Intel Mesh Inter-
connect (MI), first present in the Intel Xeon Phi Knights
Landing (KNL) [2], and later introduced in the Xeon Scalable
line, both in Skylake server processors [3] and in the latest
Cascade Lake architecture [4]. In an MI chip memory is kept
coherent using a distributed directory, and both the memory
system and the affinity of coherence nodes and processors
are configurable to tune the architecture to the application
demands. We build a model of this complex architecture
by analyzing the available documentation and filling the
gaps using reverse engineering and statistical techniques.
We include thismodel into Tejas [5], an open-source architec-
tural simulator. This work makes the following contributions:
• We propose a mechanism to discover the physical lay-
out of the logical components (cores and CHAs) of an
MI-based processor, as well as the mapping of memory
blocks across CHAs and memory interfaces.

• We incorporate a model of the memory accesses of the
MI architecture into the Tejas architectural simulator.
This extension has been made publicly available in [6].

• We validate the model by comparing the behavior of the
simulated implementation against a real Intel Knights
Landing processor using sequential and parallel bench-
marks.

• Wedevelop a new,MI-focused optimization tominimize
the coherence traffic through the NoC, analyzing the rea-
sons for its performance advantages using the simulator.

In this paper, we focus on the analysis of the Intel KNL,
the first architecture to feature the Intel Mesh Interconnect
and the one which includes the largest number of cores in
a single die: up to 72, for 56 in Cascade Lake, and 28 in
Skylake-SP. Although the KNL architecture was recently
discontinued, this interconnect is still the Intel’s choice for its
HPC product lines. The techniques and software developed
in this work are directly reusable for analyzing MI-based
processors.

The rest of the paper is structured as follows: Section II
motivates the work. Section III delves deeper into many-
core architectures and the Intel KNL. Section IV presents
the reverse engineering process to map logical compo-
nents of an MI-based architecture to its physical layout.
Section V introduces the Tejas simulator. Section VI shows
how to incorporate the developed model into the simulator.
SectionVII presents the experimental validation of themodel.
In Section VIII we present a case study on optimizing the
coherence traffic of KNL taking into account the effect of
the distributed cache directory. Related work is discussed in
Section IX, and Section X concludes the paper.

II. OVERVIEW AND MOTIVATION
The design of the Intel Knights Landing [2], described
in more detail in Section III, features a 2D mesh as
depicted in Figure 1. It includes two different types of
DRAM: a Multi-Channel DRAM (MCDRAM) to provide

FIGURE 1. Floorplan of the Intel KNL architecture. Each tile (square in the
figure) contains two cores and their local caches.

high-bandwidth using eight interfaces in the corners of the
mesh, and two DDR controllers on opposite parts of the chip.
In order to keep memory coherent, a distributed directory is
employed. Each tile includes a Caching/Home Agent (CHA)
in charge of managing a portion of the directory. Whenever a
core requests a memory block that does not reside in the local
tile caches, the distributed directory is queried. The flow of
this request is depicted in Figure 1 and is described in detail
in Section III-D.
The architecture is generally assumed to be UMA when in

Quadrant mode [2], [7] (see cluster modes in Section III-E).
This is a reasonable assumption, given that memory blocks
will be uniformly interleaved across the CHAs and memory
interfaces using an opaque, pseudo-random hash function.
As a result, the access latency will average out over a suf-
ficient number of accesses for all cores. This is the behavior
reported by works which do not consider the CHA location
as a blocking factor in their experiments [7]. A challenging
aspect is that the physical locations of logical entities on the
2D mesh are not exposed to the programmer, and will change
across KNL units due to process variations. After reverse
engineering these locations using the techniques detailed in
Section IV, however, we observed that actual access latencies
from different cores to a fixed memory block are far from
UMA. More precisely, the coherence traffic causes a sys-
tematic degradation of memory performance which, on aver-
age, creates the illusion of UMA behavior. Figure 2 shows
the actual access latencies from each tile in the mesh of a
particular Intel x200 7210 processor to MCDRAM #0, for
a memory block whose coherence data is contained in the
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tile next to the memory interface. We note differences in
access latency of up to 32 CPU cycles (a 27% overhead
over the minimum observed latency of 117 cycles), which
matches the theoretical time for a round trip around the
mesh. In addition to the latency gap caused by the round
trip, contention is generated on the network when all cores
are continuously accessing all the CHAs in the mesh. Con-
fining cooperating threads and associated coherence data to
isolated regions of the mesh would reduce network footprint,
a critical parameter for NoC performance [8]–[10]. For this
reason, we employ themethodology presented in [11], further
described in Section VIII, which demonstrates the potential
of using an ad-hoc data distribution that takes into account
the distance between cores and CHAs, i.e. the core-to-CHA
affinity. Figure 3 shows the potential impact of control-
ling the maximum core-to-CHA distance when performing a
jacobi-1d computation from the PolyBench/C suite [12].
The x label represents the maximum distance, in CPU cycles,
between the core that emits an access request and the tile
containing the coherence information. As can be seen in the
figure, there are different complex trade-offs at play: the
cycles in which there are outstanding requests on the network
decrease, but the instrumentation required to improve affinity
increases µTLB misses. The net effect in total execution
cycles is positive in this case, but this will not be the case for
all workloads. The reasons for the performance offered by this
and other traffic optimizations remain hidden, as the hardware
offers no performance counters or other means to analyze
the traffic over the NoC in detail. Besides, jacobi-1d
is a relatively simple application. More complex workloads
require a more detailed low-level view of the system in order
to be fully understood.

In the following sections we fully describe the simulated
architecture, as well as the Tejas simulator and the modifica-
tions required to adapt it to the Intel KNL design.

III. MANYCORE ARCHITECTURES: INTEL KNIGHTS
LANDING
The increasing demand of computational resources over the
last decade has shifted architectural paradigms. The relation-
ship between energy consumption and frequency, known as
Dennard’s scaling, is not linear anymore [13]. The ‘‘multi-
core crisis’’ in the past decade was partially a response to
this problem. The idea behindmanycore processors is to com-
ply with thermal limitations by integrating a higher number
of simpler, slower processors, capable of taking advantage
of embarrassingly parallel applications or to execute many
smaller workloads at the same time. Even though cores are
simpler, they can communicate more efficiently since they
are integrated inside a single processor die and connected to
a network-on-chip (NoC).

Manycore organizations present a challenge for the mem-
ory system. Since more data-hungry cores coexist now inside
a single die, the memory wall grows higher. Modern archi-
tectures propose to use heterogeneous memory hierarchies,
which combine different memory technologies with their

FIGURE 2. Heatmap of the measured access latency (in CPU cycles) from
each tile in the mesh of an Intel Xeon Phi x200 7210 to a single block of
memory associated to MCDRAM #0 and its adjacent CHA.

FIGURE 3. Effects of core-to-CHA affinities: Execution cycles, outstanding
weighted cycles, µTLB misses, and accesses to distant memory interfaces
for different core-to-CHA affinities. Results are normalized to the
maximum value for each series, except for accesses to distant memory
interfaces, which are normalized to the total number of memory accesses.
µTLB misses and distant accesses are referenced to the right axis.

own characteristics and trade-offs. Traditional memory hier-
archies are augmented with these new technologies as shown
in Figure 4, contributing to reduce the gap between processor
and memory speeds.
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FIGURE 4. Traditional memory hierarchy updated with new emerging
technologies.

FIGURE 5. High-level tile organization in KNL.

This work focuses on the Intel Xeon Phi x200 architecture,
codenamed Knights Landing (KNL), released in 2016 and
discontinued in mid-2018. However, the distinguishing char-
acteristics of its NoC, on which this work is focused, live on
in the newer Intel developments for HPC, namely the Xeon
Scalable processors, whose second generation codenamed
Cascade Lake was announced in April 2019 [4]. Intel KNL is
presented as a standalone x86 processor. In contrast, its pre-
decessor, Knights Corner, was a co-processor which required
a host processor. KNL is therefore not limited by the on-board
memory size or the PCIe bus bandwidth. Moreover, the use
of the x86 ISA enables KNL to execute different operating
systems, legacy libraries, and general purpose applications.
As such, KNL is more versatile than its predecessor and
than current GPUs, which need applications to be rewritten
following specific paradigms such as CUDA [14].

The rest of this section discusses the main characteristics
of the Intel KNL: its internal organization, core architecture,
on-die interconnect, memory system, and cluster andmemory
modes.

A. INTERNAL ORGANIZATION
KNL integrates up to 72 cores organized in a 2D mesh
of 38 tiles. Each tile comprises two cores, two vector pro-
cessing units (VPUs), a shared L2 cache and a Caching/Home
Agent (CHA), as shown in Figure 5. Depending on the partic-
ular processor model, the number of tiles with enabled cores
varies between 32, 34 and 36, featuring 64, 68 and 72 enabled
cores, respectively. Note that the CHA is always enabled for
all tiles.

B. CORE ARCHITECTURE
Intel KNL cores are two-wide out-of-order derived from
low-power Silvermont cores, designed for Intel Atom proces-
sors but modified to make them suitable for HPC [2]. They
have been enhanced with AVX-512-capable VPUs. Further-
more, each core has a private 32-kB L1 data cache, backed up
by a 1-MB L2 shared with the other core in the same tile but
private to it. The CHA manages a portion of the distributed
cache directory, which stores the status and location of the
most up-to-date copy of a memory line, queried when an
L2 miss occurs.

C. NETWORK-ON-CHIP
KNL features a 2D mesh NoC, replacing the ring topology
used in Knights Corner, as depicted in Figure 1. Messages
traverse themesh using a simple YX routing protocol: a trans-
action always travels vertically first, until it hits its target row.
Then, it begins traveling horizontally until it reaches its desti-
nation. Each vertical hop takes 1 clock cycle, while horizontal
hops take 2 cycles. The mesh features 4 parallel networks,
each customized for delivering different types of packets. The
point of connection of each tile to the mesh is the CHA.

D. MEMORY SYSTEM
KNL integrates two different types of DRAM mem-
ories (see Figure 1). Up to 16 GB of on-package
3D-stacked Multi-Channel DRAM (MCDRAM) provides
high-bandwidth accesses through its eight concurrent inter-
faces. Besides, there are two more DDR interfaces control-
ling three DRAM channels each, adding up to 192 GB of
memory. A distributed cache coherence mechanism using
Intel MESIF [15] is employed. Each time a core requests a
memory block that does not reside in the local tile caches,
the distributed directory is queried. A message is sent to
the appropriate CHA (message (1) in Figure 1). If the block
already resides in one of the L2 caches in the mesh in Forward
state,1 the CHA will forward the request to the owner, which
will send the data to the requestor in turn (messages (2) and
(3) in the figure). In other cases, the data must be fetched from
the appropriate memory interface. The data flow shown in the
figure exemplifies one of the performance hazards inherent
to the KNL architecture: although the data for the requested
block lies in the forwarder tile F, just above the requestor
R, the coherence data is stored far away in tile C. As it is,
18 cycles are required to transfer the data (10 vertical and
4 horizontal hops). But, if the directory information were
stored either in the requestor or in the forwarder, the round
trip time of data packets would be of only 2 cycles (2 vertical
hops on the mesh).

E. CLUSTER MODES
The affinity betweenmemory interfaces, CHAs and cores can
be configured in KNL through the so-called cluster modes:

1A cache containing a block in Forward state is in charge of serving said
block upon a request. The requestor acquires the block in Forward state,
while the sender changes it to Shared.
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• All-to-all: data has no affinity at all. This is the most
inefficient mode. It should only be used when memory
modules are unevenly distributed across memory inter-
faces.

• Quadrant: the mesh is virtually divided into four
clusters. The memory blocks managed by a CHA are
guaranteed to be accessed through a nearby memory
interface. The hash functions which assign memory
blocks to CHAs and memory interfaces are not publicly
disclosed. This mode is the de-facto standard for KNL
operation.

• Sub-NUMA cluster: contiguous memory blocks are
assigned to each cluster, interleaving cache lines among
the memory channels in that cluster. The idea is to create
different NUMAnodes isolating traffic within them. It is
recommended for MPI and NUMA-aware applications
only.

F. MEMORY MODES
The MCDRAM memory may be configured into one of
two modes: ‘‘Flat’’ memory, in which the address space is
explicitly exposed as an independent NUMA domain and is
available to the programmer; and ‘‘Cache’’ mode, in which
MCDRAM serves as a transparent memory-side cache.

IV. MAPPING THE KNIGHTS LANDING PROCESSOR
When working in the Sub-NUMA cluster mode the corre-
spondence between logical and physical cores is explicit.
Considering 64 cores, four different NUMA memory
domains are created, and each core is associated to one of
them: cores {0–15}, {16–31}, {32–47} and {48–63} belong
to the four different logical clusters in the mesh. This allows
one to carefully select the affinity for a team of processes
executing an MPI application, knowing that the memory
allocated to a processor will be guaranteed to lie in the local
interfaces to each cluster, as will the associated directory
information. It is not possible to exploit this paradigm using
a multithreaded code (e.g., OpenMP) without simulating the
distributed memory nature of multiprocess parallelism.

In the default Quadrant mode there is no indication as to
the neighborhood relationships between different logical core
IDs. This makes it impossible to reason about core affinities.
Furthermore, even if we discovered core location and bound
a team of threads to neighboring cores, each time a cache
block is not locally available the requestor will need to query
the associated CHA to discover the status and location of
the block. This coherence data may reside in any part of the
mesh. For this reason, it is not sufficient to know where each
core is located in the physical mesh; we would also need to
know where each CHA is located in order to carefully plan
the memory accesses for each thread.

We reverse engineered the physical layout of an Intel x200
7210 processor, with 64 enabled cores, by profiling mem-
ory access latencies, building potential layout candidates,
and iteratively discarding the ones which present a larger
squared error with respect to the observed behavior. For this
purpose, we systematically measure the access latency from

each logical core ID to cache blocks located in each of the
8 MCDRAM interfaces and each of the 38 CHAs in the
mesh. Note that, in Quadrant mode, blocks stored in a given
MCDRAM interface can only be indexed by CHAs located
in its same quadrant. We created a routine which, given a
tuple (C,CH ,MC) containing core, CHA and MCDRAM
IDs, locates a cache block stored inMC and indexed by CH ,
and measures the latency of accessing it from C . This routine
is detailed in Algorithm 1. We first initialize a sufficiently
large region of memory (buffer B) so that we are reasonably
sure that it will contain instances of all possible (CH ,MC)
associations. Given that the hash function assigning blocks
to CHAs and MCDRAM interfaces is reasonably uniform,
this memory does not need to be extremely large (a few
4-kB memory pages are enough). Then, we test each cache
block looking for one which is indexed by CH and stored in
MC . To do so, we access each block and flush it from the
cache N times in a loop. After the loop ends, we check which
MCDRAM and CHA pair has at least N accesses by using
a custom kernel module which leverages the uncore Model
Specific Registers (MSRs).2 After we find a block associated
to (CH ,MC), we repeatedly access it again, but this time we
measure access latencies and calculate the average.

In the manner described above, we find the average access
latency for all the valid (C,CH ,MC) tuples in themesh. Note
that we only need to obtain the latency for one out of each
2 cores, since cores in the same tile share the same CHA,
and it is inferrable from /proc/cpuinfo that cores (2x)
and (2x + 1) lie in the same tile. By analyzing the missing
(CH ,MC) pairs, we discover the association of CHAs and
MCDRAMs to quadrants. In particular, we find that data in
MCDRAM interfaces (2y) and (2y+1) are indexed by CHAs
z such that (z mod 4 = y), e.g. MCDRAMs 0 and 1 are
associated to CHAs 0, 4 . . . 36; MCDRAMs 2 and 3 to CHAs
1, 5 . . . 37; and so on.

Once these data are collected, we analyze them to deter-
mine where each pair (C,CH ) of cores and CHA is located
on the physical mesh, taking into account the public KNL
specifications. The floorplan includes 38 physical tiles, some
of which have their cores disabled depending on the processor
model.3 Note that, despite having disabled cores, all tiles have
fully functional CHAs and mesh interconnects. The actual
location of the tiles with disabled cores is believed to change
for each processor unit, depending on process variations.
However, the CPUID instruction can be used to discover the
actual (C,CH ) associations between cores and CHAs. It also
provides the list of CHAs which do not have enabled cores.
Armed with this information, and with our measured core-
to-CHA-to-MCDRAM latencies, we build a squared error
model for each candidate assignment of (C,CH ) pairs to

2We employ the PERF_EVT_SEL_X_Y and ECLK_PMON_
ÃĎÅăTRX_LOW/HIGH registers to monitor CHAs and MCDRAMs,
respectively [16]. We measure events RxR_INSERTS.IRQ and
RPQ.Inserts [17].

3The exact count is 6 tiles with disabled cores in Intel x200 7210 and
7230 series, 4 in the 7250 series, and 2 in the 7290 series.

VOLUME 7, 2019 81199



M. Horro et al.: Simulating the Network Activity of Modern Manycores

Algorithm 1: Measures Latencies for a (C,CH ,MC)
Tuple
Input: Core C , CHA CH and MCDRAMMC
Output: Avg. access latency from C to MC via CH

1 bind_to_core(C);
2 allocate_buffer(B);
3 for each cache block b in B do
4 n = 0;
5 start_cha_counters();
6 start_mcdram_counters();
7 while n < N do
8 access(b);
9 flush_cache_block(b);
10 n = n+ 1;
11 end
12 stop_mcdram_counters();
13 stop_cha_counters();
14 mcb← read_mcdram_counters();
15 if mcb == MC then
16 chab← read_cha_counters();
17 if chab == CH then
18 n = 0;
19 start ← get_time();
20 while n < N do
21 access(b);
22 flush_cache_block(b);
23 n = n+ 1;
24 end
25 stop← get_time();
26 L = start − stop;
27 return L/N ;
28 end
29 return error ;

the physical mesh. In our Intel x200 7210, only 32 tiles
have active cores. As such, we have to discover the actual
location of these 32 tiles, plus the 6 disabled tiles. Taking into
account that we know the associations of (C,CH ) pairs and
quadrants, as detailed above, there are only 10!×10!×9!×9!
different combinations, as two quadrants have 10 tiles while
the remaining two quadrants have only 9 tiles each. This
information allows us to reduce the possible combinations
by a factor of 1021 with respect to the original 38! possible
candidates. To reduce even further the number of possibilities
we employ heuristics. First, we locate feasible candidates
for the corner tiles, i.e. those contiguous to each MCDRAM
interface. For this purpose, we identify the minimum experi-
mental memory latency L (117 cycles in our tests), and search
for (C,CH ,MC) tuples with an access latency of at most L
plus a configurable error margin. In this way, we reduce the
possible combinations for the 8 corners to under 200. Next,
for each of these candidates, we build mean squared error
models for placing the remaining tiles, and finally accept the
one which shows the least squared error.

The obtained results present a clear pattern in the location
of both CHAs and cores, as shown in Figure 6. The CHAs in
each quadrant are sequentially arranged in a vertical fashion.
Cores are assigned sequentially to CHAs, skipping those
tiles with disabled cores. This technique allows to obtain
the physical layout of any individual KNL unit immediately,
by just checking which CHAs have disabled cores through
CPUID instructions.

FIGURE 6. Result of our model. Each tile is formed by two cores (their IDs
are enclosed in a large box) and a CHA (its ID enclosed in a small box).
Tiles with blank boxes indicate that their cores are not active.

V. TEJAS SIMULATOR OVERVIEW
Tejas is an open-source architectural simulator written in
Java and C++ [5]. The simulation model is semi-event-
driven: predictable activities follow an interactive cycle-level
approach, such as advancing micro-instructions in the
pipeline, whereas unpredictable tasks, such as load/store
operations, follow an event-driven approach based on priority
queues. Tejas decodes binaries dynamically during their exe-
cution in order to recreate the micro-operations that are used
to feed simulation components, such as processor pipelines.
Tejas also employs the McPAT [18] and Orion2 [19] power
models in order to get statistics about energy consumption.

This framework has been validated against real hardware
in terms of cycles, reporting acceptable mean errors varying
between 11.45% for serial workloads and 18.77% for parallel
workloads [20]. The simulator can be seen as two separate
modules or layers: the emulator (front-end) and the simula-
tion engine (back-end). The front-end instruments the code
being executed, ensuring a fully functional execution. It is
ISA-dependent, and in our case the x86 implementation is
used. The back-end receives events from the front-end and
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FIGURE 7. Translation process in Tejas.

simulates them in the configured architectural model. The
following subsections describe each of these components in
more detail.

A. FRONT-END: THE EMULATOR
The emulator translates the trace of binaries into virtual
micro-operations. This process is done in two steps (see
Figure 7):
1) Riscify process: converts CISC x86 instructions to a

simplified ISA called Virtual ISA (VISA). This process
is done statically and does not include source or target
memory addresses.

2) Fuse process: dynamically fills the missing memory
addresses of the VISA instructions created in the pre-
vious step.

This module of Tejas is written in C++ using Pin [21] and,
therefore, is basically an instrumentation of the code that is
being executed. What the emulator collects is used to feed the
simulation engine (the back-end), written in Java, which is in
charge of starting all the pipelines and processing elements,
and collecting all the statistics at the end of the execution.
The communication between the emulator and the simulation
engine is done through a shared memory region.

The main limiting factor of the front-end is the trans-
lation between the real micro-instructions and the VISA.
Some CISC micro-instructions are translated into function-
ally equivalent, but not fully equivalent, VISA instructions.
An example are SSE instructions, which are translated into
equivalent floating-point ones. But, in other cases, some
instructions may be ignored. This is the case for instructions
such as AVX-512CD (released by Intel for the KNL archi-
tecture). This limitation is imposed due to the complexity
of CISC architectures and in order to keep the simulated
pipelines simple. Tejas’ developers chose to focus on the
most common x86 micro-instructions, usually obtaining a
coverage of more than 99% of the binary instructions [5].

B. BACK-END: THE SIMULATION ENGINE
The simulation engine can be seen as a set of interconnected
components, sending and receiving messages through their

FIGURE 8. Stages and main registers of the Out-of-Order pipeline in Tejas.

ports. For the scope and interest of this work, we will briefly
review how cores, memory system and interconnection net-
works, as well as their corresponding configuration parame-
ters, are implemented in this framework.

1) CORES
A Tejas core is a wrapper entity containing a pipeline and
both data and instruction private caches. Two pipelines have
been implemented in Tejas: Multi-issue in-order and Out-
of-Order (OoO or O3). We used the O3 implementation,
depicted in Figure 8. It consists of nine stages: instruction
fetch, instruction decode, rename, instruction window push,
instruction select, execute, wake-up, write-back and commit.
The sizes of each functional unit and registers can be config-
ured, allowing for a wide range of possibilities.

2) MEMORY SYSTEM
The Tejas memory system is composed of a set of memory
controllers and caches. The memory hierarchy can be seen as
an inverted tree of caches where its root is the main memory.
Regarding the software implementation, the cache coherence
directory inherits from the cache class. A centralized direc-
tory is implemented, which is queried by last-level caches to
discover the state and location of accessed memory lines.

The memory system is flexible, allowing to configure each
cache as private or shared among a set of cores. Thus, buffer
sizes, cache lines, MSHR (Miss Status Holding Registers),
write mode and number of cache ports can be changed,
opening a wide range of possible configurations.

The flow of a simulated cache request is depicted
in Figure 9. When the request is received, it is first checked
whether it is a hit or a miss. In the latter case, a new entry
is added to the MSHR, allowing to perform other tasks
while miss requests are handled by other parts of the mesh,
either other caches or memory interfaces. When a lower level
response is received, the event is removed from the MSHR
and the response is processed: it can be a miss response to ful-
fill the missed request, a write ACK in order to mark the line
as dirty, or an evict ACK in order to mark the line as invalid.
When there is a miss in the last-level cache, the request is
forwarded to the centralized cache directory, which will point
to the location of the line, satisfying the request. The directory
also handles coherence, using a simplified version of the
MESI protocol. For instance, when a line is in shared state,
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FIGURE 9. Cache behavior in Tejas (extracted from [5]).

the directory selects one of the sharers without taking into
account priority or proximity.

3) NETWORK-ON-CHIP
Tejas implements a generic NoC which can be configured in
different manners. It is a crucial component, since it connects
all the different elements present in an architecture. Many
topologies (bus, ring, mesh, torus. . . ) and routing algorithms
(west-first, simple-XY, north-last. . . ) are available.

Both the shape and the low-level parameters of the NoC
are highly customizable. In the same manner, the dimensions
and type of the topology, as well as the router latencies
and capacities can also be modified. In Tejas, each router
connects elements to the network and different elements can
be connected to the network using the same interface.

VI. MODELING KNL IN TEJAS
This section covers the approach we followed to implement
the KNL architectural model in Tejas. This approach can
be extrapolated to other architectures featuring Intel Mesh
Interconnect such as the recent Cascade Lake.We particularly
focus on the distinguishing features of the mesh intercon-
nect: the 2D structure with tiles integrating cores and CHAs,
employing a distributed directory for inter-tile coherence,
and with distributed memory interfaces. The Tejas extensions
described in this section have been made publicly available
in [6].

Each of the following subsections focuses on one relevant
aspect of the implementation, describing the modifications
applied to the simulator using a high level of abstraction.

A. TILES AND CORES
A tile is essentially a wrapper of cores, VPUs, caches and
the CHA (see Figure 5). We implement that abstraction as
two cores, a shared L2 and a CHA (described in more detail
in Section VI-B) connected to the same router, and therefore
sharing the same logical position in the network. The detailed
Tejas configuration for each tile is shown in Table 1.

B. MEMORY SYSTEM
The memory subsystem has suffered the most important
modifications with respect to the original version of Tejas.

TABLE 1. Tejas configuration for modeling tiles in the KNL architecture.

KNL introduces: 1) different memory domains, 2) a different
cache coherence protocol (MESIF), and 3) a distributed cache
directory.

1) ACCESSING DIFFERENT MEMORY DOMAINS
In KNL, programs can choose from two different memories to
allocate data: MCDRAM or DDR. Memory addresses above
0x3040000000 lie on MCDRAM, while addresses below
that are bound to the DDR system. However, Tejas works
with virtual memory addresses only, making it difficult to
distinguish between different memory domains.

Using configuration files, we provide the ranges of phys-
ical memory that correspond to different memory domains.
During emulation, we instrument memory allocations and
find the mapping between virtual and physical pages. The
virtual-to-physical page translation is passed to the simula-
tion engine, in charge of the architectural modeling. When
a last-level cache miss occurs, the simulation engine will
employ the appropriate memory controller to fulfill the
request.

2) MESIF PROTOCOL
The main difference between MESI (included in Tejas) and
MESIF is the inclusion of an F (Forward) state. As mentioned
in Section III-D, a cache in F state will be in charge of serving
requests. The requestor will acquire the block in F state and
the sender will change to S (shared) state.

Figure 10 illustrates how the MESI state diagram is mod-
ified to include the new F state. From the implementation
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FIGURE 10. MESIF protocol implementation based on MESI.

point of view, this requires changes to the CacheLine
class, which now stores the forwarder CHA in addition to all
sharers.

3) CACHING/HOME AGENT (CHA)
The original Tejas implementation of a centralized tag direc-
tory requires it to be placed in a fixed location in the mesh.
Unlike Tejas, the Intel Mesh Interconnect architecture fea-
tures a distributed system in which each CHA holds a portion
of the full directory. We have implemented a CHA class as
an extension of the Directory class, which is modified to
include cache lines in Forward state. This new component is
replicated once per tile. The last-level cache on each tile will
send a miss request to its own CHA, which will respond if
the data is locally available or will forward the request to the
appropriate CHA for resolution.

In order to accurately simulate the distribution of memory
lines across CHAs, we have mapped the association between
the full set of physical memory lines and the 38 CHAs in
the KNL floorplan using performance counters and a strat-
egy similar to the one employed in Section IV for reverse
engineering the physical location of logical components.

C. INTERCONNECTION NETWORK
Although Tejas already implements a 2D mesh, it does not
include an YX routing option such as the one used by the Intel
Mesh Interconnect. Our implementation is basically a mod-
ification of the already included XY routing. All parameters
are described in Table 2.

Furthermore, in Tejas the NoC decides which memory
controller is chosen when a last-level cache miss occurs. Our
implementation delegates this decision to the CHA contain-
ing the coherence information, as per Intel’s design.

D. OTHER CONSIDERATIONS
Note that not all of the architectural aspects of KNL have
a direct translation to Tejas objects. For instance, Tejas
employs a 9-stage pipeline, whereas KNL cores feature
5-stage pipelines. Additionally, Tejas does not support vec-
torization simulation.

TABLE 2. Tejas configuration for modeling the KNL NoC.

These shortcomings can make the simulation of the cores’
behavior inaccurate, but note that ourmain goal is the analysis
of the traffic on the interconnect network and the behavior of
the memory system. Thus, our simulator constitutes a very
powerful tool for the architectural and behavioral analysis of
the Intel Mesh Interconnect.

VII. VALIDATION
We validated our KNL model in Tejas by comparing its
behavior against a real KNL system. We have chosen two
benchmark suites: PolyBench/C [12] and Parboil [22]. Both
of them include benchmarks from very different domains:
linear algebra computations, image processing, physics simu-
lations, dynamic programming, data analytics. . .These algo-
rithms are widely used in both scientific and commercial
applications. The main difference between both suites is that
PolyBench/C benchmarks are polyhedral, single-core ori-
ented kernels, whereas Parboil includes more complex mul-
tithreaded applications. Using this mix allows us to analyze
the accuracy of a single core working alone with the memory
system, and also how the results vary when the traffic density
in the system increases as more cores become active. This
experimental design pursues a wide scope of the validation
process.

A. EXPERIMENTAL SETUP
Benchmarks were compiled using GCC 4.8.5 with the -O1
optimization flag. This ensures a good dynamic coverage
of binary codes by Tejas, which is lost when using more
recent GCC versions or when enabling -O2. As mentioned

TABLE 3. Experimental setup.
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in previous sections, vectorization is disabled as AVX-512 is
not supported by Tejas. The -static flag is used to
link system libraries statically and improve static coverage.
We fixed the core frequency at 1.3 GHz, disabling DVFS
in order to minimize experimental variability. The most
important KNL configuration parameters are summarized
in Table 3.
We have used the PAPI/C library for measuring the events

in the real machine, an Intel Xeon Phi x200 7210 processor.
PolyBench/C integrates a set ofmacros for easily handling the
configuration of this library. We have extended these macros
to use PAPI/C in multithreaded applications [23], in order to
conveniently measure events in Parboil codes.

Table 4 summarizes the equivalence between the events we
want to measure in KNL and Tejas. Some Tejas events have
been adapted to those measurable in KNL. For instance, there
are no PAPI events or IMC counters in KNL for measuring
the number of total MCDRAM accesses, but onlyMCDRAM
responses to L2 read misses.

In order to test the memory system modeled in Tejas,
we have ensured that all the benchmarks handle a workload
that does not fit in the last-level cache, i.e. the footprint of
each benchmark must exceed 1 MB for sequential workloads
and 32 MB for parallel workloads. This guarantees that all
components of the memory hierarchy play a part in the com-
pound behavior of the system.

B. RESULTS
We present the results for each event using two different
metrics. The first one, shown below in Equation 1, is the
relative error of the Tejas simulation with respect to the
performance counters read in the KNL system (which will
be referred to as REL). This metric has the disadvantage of
not contextualizing the error in the scope of the execution,
as the error increases exponentially when the event count
tends to zero. For example, if a benchmark only makes a few
hundred accesses to main memory, then a difference of tens
of accesses will cause a large relative error, but this may have
almost no effect in the context of the full execution if the
data being read from memory is then heavily reused. In order

to better contextualize errors, we also provide the number
of errors per memory instruction, as shown in Equation 2
(which will be referred to as INS). This metric has advantages
for our purposes: it is zero-centered and it does not suffer
exponential variations for linear changes in its inputs. Both
metrics become zero when the simulation exactly matches
the behavior of the real system, and they are positive when
the simulation overestimates a parameter and negative when
it is underestimated. Note that both metrics become the same
for the L1a event (number of L1 accesses).

∀ki ∈ Vknl, ti ∈ Vtejas

RELi =
ti
ki
− 1 (1)

INSi =
ti − ki
kL1a

(2)

In order to account for experimental variabiliy we have
executed each benchmark 10 times. The mean for each mea-
sured event is reported. Furthermore, when analyzing the
results of multithreaded workloads we report the mean values
across all cores.

1) POLYBENCH/C RESULTS
Figure 11 shows the number of errors per memory instruction
(INSmetric) for the PolyBench/C codes. The maximum error
found is 2.98 errors per each 100 memory instructions for
the L2 accesses of the syr2k benchmark. For all events
the mean error values are at or below one error per each
500 memory accesses. These results demonstrate that the
simulated system is closely capturing the behavior of the real
system, and the largest source of inaccuracy is the behavior
of the local caches, which is known to be hard to simulate
as it depends on other factors such as the interference or
noise caused by the operating system, opaque techniques like
hardware prefetching, etc.

Table 5 displays the results of Figure 11 (INS metric) in
numerical form, together with the relative error (RELmetric).
As can be seen, sporadic high relative error values are much
lower when put in context by the number of total memory
accesses. For instance, the 30.57% relative error achieved for

TABLE 4. Equivalence between the event to measure, the PAPI event, and the event programmed in Tejas.
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FIGURE 11. INS error metric for PolyBench/C benchmarks (logarithmic
scale).

the number of L2misses oftrmmmight seem high, but it only
accounts for 300K misses out of 56.8M total L2 accesses,
i.e. the difference in L2 miss rate is only 0.5%. High relative
errors usually occur for benchmarks with a memory footprint
very close to the total available cache space. The simulator
tends to underestimate the number of misses in this case, as it
does not take into account the impact on cache occupancy
of small low-level routines, such as those being run by the
operating system.

The results presented in this section do not include the val-
ues for execution cycles and instruction count. The simulation
of these events turns out to be very inaccurate with respect to
the real execution, achieving relative errors above 50%. This
is to be expected, since Tejas is not simulating the execution
pipeline but translating CISC instructions to the Tejas ISA
(VISA), and this is not the focus of our simulation.

2) PARBOIL RESULTS
Among the different benchmarks included in the Parboil
suite, we have selected those with a significant number
of accesses to main memory with respect to the number
of instructions executed, in order to stress the simulator.
Figure 12 shows the number of errors per memory instruc-
tion (INS metric) for these benchmarks. Boxplots are used
instead of static bars, as the benchmarks are multithreaded
and there is a different number of errors for each simulated
core. Table 6 shows the relative (REL) and normalized (INS)
errors expressed as themean of all cores. In general, bothmet-
rics increase with respect to the single-threaded PolyBench/C
benchmarks. The reason is that the number of instructions,
being divided across 64 threads, is nowmuch smaller, and the
errors introduced by the emulation system represent a larger
share of the total. Note how the most significant distortion in

FIGURE 12. INS error metric for Parboil benchmarks. Boxplots represent
the variability of the results obtained by each core (logarithmic scale).

the results corresponds to the number of L1 accesses, which
is completely dependent on the way in which the emula-
tor translates CISC instructions into VISA in multithreaded
codes. This in turn results in larger errors in L1 misses and
L2 accesses. The memory hierarchy gradually ‘‘absorbs’’
these errors, and results become more accurate as we descend
towards slower memories.

VIII. CASE STUDY: ANALYSIS OF COHERENCE
TRAFFIC OPTIMIZATIONS
Section II described how the location of the coherence data
in the mesh is of great importance for memory latency in this
architecture. As depicted in Figure 1, the time to access a
memory line that resides in a nearby tile can be high if the
coherence data is stored in a farther one. In order to alleviate
this effect, the maximum distance between cores and the
coherence data of their assigned memory can be controlled.
This optimization shows potential, as evidenced by the effect
of the core-to-CHA affinity shown in Figure 3 of Section II,
but also a complex trade-off between different factors such as
the number of TLB misses, the reduction in access latencies,
and the contention on different areas of the mesh.

Wemodified a jacobi-1d stencil from the PolyBench/C
suite so that cores i and i + 2 swap their data at the end
of each timestep. The reason is to reuse data from adjacent
threads in other to quantify the impact of physical distance
between a requestor (core) and the responder (CHA). We
used two different maximum core-to-CHA distances, 16 and
0, so that all cores write to memory lines whose coherence
information resides in any tile in the mesh (maximum dis-
tance = 16) or in their local tile (maximum distance = 0).
We then ran the experiment using 64 threads and two different
mappings: scattered and co-located. The first one is a direct
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TABLE 5. REL and INS error metrics for each event analyzed in the PolyBench/C kernels. The mean absolute value of all benchmarks for each event and
metric is shown in the last row.

TABLE 6. REL and INS error metrics for each event analyzed in the Parboil benchmarks expressed as the mean of all cores.

thread-to-core mapping, i.e. thread i is assigned to core i.
Since cores are cyclically distributed among the quadrants
as shown in Figure 6, cooperating threads will be scattered
across the mesh. In the second mapping we take advantage
of the reverse-engineered floorplan in Figure 6 to optimally
co-locate cooperating threads in neighboring tiles.

We analyzed the behavior of the benchmark for both map-
pings and both core-to-CHA distances (16 and 0), measur-
ing different events with performance counters. Results are
shown in Table 7. As can be seen, setting the maximum
core-to-CHA distance to zero provides a performance benefit
of 6.25%, and controlling the location of threads using the
co-located mapping increases this benefit further to 7.76%.
However, simply controlling the location of threads on the
mesh, but not the core-to-CHA distance has a negligible
effect. The counters offer no evidence of any significant
difference in cache misses or memory accesses which may
account for the performance difference between the con-
figurations mentioned above. On the contrary, the number
of memory accesses increases for the fastest configurations
(those with zero core-to-CHA distance), due to the increase
in TLBmisses. We need to analyze the low-level traffic of the
mesh in order to understand the reasons for the difference in
performance.

The idea behind these optimizations is to eliminate the
majority of the coherence traffic through the mesh. If most
of the blocks requested by a core have their coherence data

stored in the local CHA, the coherence traffic should be
significantly reduced. We employed our simulator to ana-
lyze the traffic passing through each router, as shown in the
heatmap of Figure 13. The total reduction in the number of
packets traveling through the network is 18.7% when opti-
mizing both the location of the coherence data (i.e., maximum
core-to-CHA distance= 0) and the mapping of the cooperat-
ing threads (co-located mapping). The reduction in total traf-
fic might be surprising, taking into account that the number
of L2 misses increases very slightly. In order to understand
the low-level behavior of the system, we studied how the
reduction in traffic is distributed across the four different
types of packets: query (requests for data directed to a CHA),
forward (a request from a CHA to an L2 cache or MCDRAM
interface to forward a block to another L2), data (a response
to a forward request containing the requested block), and
eviction (a write-back message from an L2 cache to an
MCDRAM interface containing an evicted data block). Data
packets are not reduced, as we are not changing cache locality
whatsoever. Query data is reduced by 20.4% and forward data
by 343%. Furthermore, the average time from the generation
of a query packet to the delivery of the corresponding data
packet is reduced from 76.84 to 50.87 cycles using both opti-
mizations (maximum distance 0 and co-locatedmapping), i.e.
the number of hops performed by each coherence packet is
drastically reduced. Note that an L2 miss being resolved in
its local CHA will generate a query packet and a data packet
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TABLE 7. Selected events for the executions of the modified jacobi-1d stencil by thread 0. The rows present two different maximum core-to-CHA
distances (16 and 0 cycles). The columns show the counters being measured and the thread mapping employed for each execution. Values are reported in
millions.

FIGURE 13. Heatmap of the number of packets across the mesh for two
different core-to-CHA distances and thread mapping. When the maximum
distance is 16 cycles, a block assigned to a core can have its coherence
data residing in any tile across the mesh. On the other extreme, when the
maximum distance is 0 cycles, the coherence data of the block must
reside in its local tile. Darker shades indicate higher traffic density.

in the local router, but no forward packets. This explains the
significant reduction in forward traffic as compared to query
traffic.

Figure 14 details the breakdown of the network traffic
into each packet type. The drastic reduction in the forward
traffic is clear from the figure. It can be observed how
data traffic across different quadrants is almost nonexistent
when applying both optimizations. The eviction traffic in the
central region of the mesh is similarly reduced. The reason
is that each tile works now with data residing in the local
MCDRAM interfaces of its quadrant, and therefore most
eviction packets will not cross inter-quadrant boundaries.
As such, traffic density is higher towards the center of each
quadrant, instead of towards the central region of the mesh,
as it happens with no optimizations. This is a result of the
YX routing protocol: a drastic reduction in the number of
collisions, i.e. situations in which a packet is stalled while
in transit to its destination because the next router in its path
has no available buffer space. Figure 15 shows the collision
density on the network-on-chip. Again, the collisions are
mostly confined to the center of each quadrant when applying
the optimizations. The total number of collisions shows a
reduction of 76.1%. The number of collisions per hop is
reduced from 0.18 in the original code to just 0.05 in the
optimized version.

IX. RELATED WORK
Several recent papers have explored the performance of the
Knights Landing architecture, mainly through the analysis
of well-known benchmarks, machine learning applications,
and parallel workloads [24]–[26]. This type of works analyze
the scalability of the processor and provide the observed
trends in terms of performance of real workloads, which are
then compared against the theoretical performance. Further-
more, these works provide a reference when comparing this
architecture with others. Nevertheless, none of these works
undertake the analysis of the particular characteristics of the
KNL interconnect.

Other papers offer a more in-depth look at the KNL inter-
nals. Rho et al. [27] analyze and compare the behavior of each
of the offered cluster and memory modes by analyzing the
behavior of MPI workloads. They propose an approach to
optimize the scheduling at different granularities dynamically
based on the characteristics of each workload. Jacquelin et al.
[28] study the optimization of an ab initio molecular dynam-
ics application in a Quadrant/Flat configuration, and develop
its associated roofline model. Azad and Buluc [29] optimize
an SpMSpV multiplication kernel on the KNL, among other
architectures. Ramos and Hoefler [7] develop a capability
model of the cache performance and memory bandwidth of
the KNL. They perform an in-depth analysis of the memory
system, and characterize the impact of the different memory
and cluster modes on memory bandwidth and latency. Based
on this model, they propose novel ways to optimize the com-
munications in MPI applications. However, this work does
not consider the impact of the distributed directory.

Other works have proposed ways to discover architectural
features, or to automatically tune applications in modern,
highly complex systems. Yotov et al. [30] develop a set of
microbenchmarks specifically designed to measure memory
hierarchy parameters, such as cache associativity, block size,
capacity, or TLB parameters. Wang et al. [31] identify the
increase in complexity associated with modern computa-
tional systems, in particular the trend to include a very large
number of different architectural configurations. They argue
that static discovery of optimal configuration parameters is a
fundamentally flawed approach, and propose a configuration
interface to allow users to specify performance constraints
that should be satisfied at runtime. Mishra et al. [32] propose
to use an automatic learning system to manage resources
towards meeting specific latency and energy constraints.
The resource allocation is performed in two different steps:
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FIGURE 14. Breakdown of the different packet types across the network-on-chip. Darker shades indicate higher traffic density. (a) Query traffic.
(b) Forward traffic. (c) Data traffic. (d) Eviction traffic.

FIGURE 15. Density of collisions on the network. Darker shades indicate
higher number of collisions.

learning how allocation affects parameters and controlling
them during runtime.

Finally, there are many architectural simulators available
nowadays. Some of them have very detailed pipelines, such as
gem5 [33], some others are able to simulate up to thousands
of cores, such as ZSim [34], PrimeSim [35], Graphite [36],
McSimA+ [37] or Sniper [38]. In this work we have chosen
to build upon the Tejas simulator due to the convenient com-
promise between the pipeline detail, the scalability of the sim-
ulation, and the low-level implementation of the distributed
cache directory for cache coherence. Furthermore, it is an
actively developed software project with a very responsive
community.

X. CONCLUSION
In this paper we have analyzed in detail the Intel Mesh Inter-
connect architecture through the study of one of its foremost
examples, the Intel Knights Landing. We have performed
reverse engineering of opaque architectural characteristics in
order to understand the layout of the interconnection network.
Armed with this knowledge, we have created an architectural
model and implemented it on the Tejas simulator, which
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enables an in-depth analysis of the behavior of this highly
complex network-on-chip. We have provided a rigorous vali-
dation of the memory system using PolyBench/C and Parboil
benchmarks. We have also presented a case study analyzing
the low-level behavior of the interconnection network. Thus,
we have posed optimizations taking advantage of the physical
location of cores and cache blocks holders, i.e. core-to-CHA
distance, and also the thread mapping for parallel applica-
tions.

We are currently working on reverse engineering the func-
tions that map memory blocks to particular CHAs on the
mesh. This will enable us to build ad-hoc compiler transfor-
mations that do not require the use of array indirections in
order to achieve coherence traffic optimizations.
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