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Abstract. The aim of this paper is to study the suitability of 
different floating offshore energy technologies in a particular 
location in economic terms. In this context, their main initial 
investments and expenses have been taken into account in order 
to calculate the economic indicators of the economic feasibility 
study. These indicators are Internal Rate of Return, Net Present 
Value and Levelized Cost Of Energy. The case study has 
evaluated the Canary Islands (Spain) and three types of floating 
offshore renewable energies: offshore wind, wave energy and 
hybrid systems. The method created generates economic maps, 
which facilitates the election of the best area where install 
offshore renewable energy farms in the location selected. In 
addition, it also allows to select what is the best marine technology 
to be exploited in this area. 
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1. Introduction 
Climate change is a proven fact [1], [2]. There are many 
causes that are causing this climate change and one of the 
main ones is the uncontrolled emission of greenhouse gases 
into the atmosphere [3]. The generation of energy for both 
domestic and industrial use through the use of fossil 
resources generates very significant amounts of greenhouse 
gases, so this type of energy source must be improved or 

replaced by others with less environmental impact [4]–[6]. 
At the environmental conference held in Glasgow (United 
Kingdom) on November 1, 2021 [7], [8] one of the 
objectives to be achieved is the so-called "objective 55" [9] 
that establishes the reduction of greenhouse gases by at 
least 55% by 2030 and achieve climate neutrality by 2050. 
To do this, within this objective there is talk of accelerating 
the implementation of renewable energies as the main 
sources of energy, trying to reach in 2030 that 40% of the 
energy produced is through renewable sources [7]. Within 
renewable energies we can classify them into onshore and 
offshore and this second medium is the least known for the 
development of these technologies, despite the fact that 
most of the planet is made up of 70% water. There are many 
possibilities when it comes to extracting energy from the 
sea, one of the most developed and most common 
technologies is that which obtains energy from the wind 
through offshore wind farms [10]–[12]. In this study, 
different alternatives are studied to find out what the 
variation is, from the point of view of economic viability, 
in the Canary Islands. Different devices were considered: 
WindFloat [13]–[15] that extracts energy of the wind, 
Pelamis [16], which extracts energy from the waves and 
Poseidon [17], which is a hybrid platform that extracts 
energy from both the wind and the waves together. For the 
analysis of economic viability, parameters such as the 
Levelized Cost Of Energy (LCOE), Net Present Value 
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(NPV), Internal Rate of Return (IRR) are analyzed [18]–
[20] [21], [22]. 
 
2. Method 
The method proposed calculates the main economic 
indicators of the main types of offshore renewable energies 
in a particular location. The offshore renewable energies 
considered are: 

 Floating offshore wind. 
 Floating hybrid offshore, including wind and 

waves. 
 Floating wave energy. 

The methods considered for calculating the initial 
investment of all these technologies have been published in 
different previous papers [23], [24]. In this context, the total 
cost of a floating offshore renewable energy farm is 
dependent on the cost of the several phases of the life-cycle 
of the farm: the concept phase (C1), the development & 
design phase (C2), the manufacturing phase (C3), the 
installation phase (C4), the operation and maintenance 
phase (C5) and the dismantling phase (C6).  
On the other hand, the main economic parameters 
considered in this work are: Net Present Value (NPV), 
Internal Rate of Return (IRR) and Levelized Cost Of 
Energy (LCOE). 
They are defined, one-to-one, as follows: 
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(3) 

Being: 
 𝑰𝟎: initial investment of the hybrid offshore 

renewable energy farm. 
 𝑪𝑭𝒏: cash flow of the project in year 𝒏. 
 𝒓: discount rate. 
 𝑵𝒇𝒂𝒓𝒎: number of years of the life of the project. 
 𝑬𝒏: energy generated in each year. 
 LCSFOREFn: total life cycle cost of a floating 

offshores renewable energy farm in the year n 
 

3. Case of study 
The case of study will consider three different floating 
offshore renewable energy platforms: 

 Floating offshore wind: WindFloat (scenario 1) 
[25]. 

 Wave energy: Pelamis (scenario 2) [26]. 
 Hybrid: Poseidon (scenario 3) [17]. 

It has been decided to take these platforms since they are 
the ones from which the most data can be obtained.  
The total power of the farm is 300 MW. 
 
On the other hand, the location selected to carry out the 
study are the Canary Islands (Spain), as Fig. 1 is shown. 

In this context, it is important to notice that the location is 
a very important aspect in the design of this type of farms 
because it influences the distance from farm to shore, the 
distance from farm to shipyard, the depth, the energy 
resources of the places, etc. 

 
Fig. 1. Location selected (in green). Adapted from [27]. 
 
 
Finally, the electric tariff considered in the case of study is 
250 €/MWh. 
 
 
4. Results 
Considering the floating offshore wind farm, IRR goes 
from 3 % to 36 % (see Fig. 2), NPV goes from –204 M€ to 
1,580 M€ (see Fig. 3) and the LCOE goes from 76 €/MWh 
to 258 €/MWh (see  
Fig. 4). 
 

 
Fig. 2. IRR for a floating offshore wind farm. 
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Fig. 3. NPV for a floating offshore wind farm. 

 
 
Fig. 4. LCOE for a floating offshore wind farm. 
Considering the floating wave energy, IRR goes from -183 
% to -176 % (see  
Fig. 5), NPV goes from -2,990 M€ to -1,197 M€ (see Fig. 
6) and the LCOE goes from 1,045 €/MWh to 3,093 €/MWh 
(see 

Fig. 7). 

 
 
Fig. 5. IRR for a floating wave energy farm. 

 

 
Fig. 6. NPV for a floating wave energy farm. 
 
 

Fig. 7. LCOE for a floating wave energy farm. 
Considering the floating hybrid systems, IRR goes from 
7% to 30% (see Fig. 8), NPV goes from 195 M€ to 1,308 
M€ (see Fig. 9) and the LCOE goes from 93 €/MWh to 202 
€/MWh (see Fig. 10). 

 
 
 
Fig. 8. IRR for a floating hybrid system. 

https://doi.org/10.24084/repqj20.354 527 RE&PQJ, Volume No.20, September 2022



 
 
Fig. 9. NPV for a floating hybrid system. 

 
 
Fig. 10. LCOE for a floating hybrid system. 
 
 
Therefore, the best technology to extract energy from seas 
in the Canary Islands is offshore wind, followed by hybrid 
systems and wave energy, because its LCOE is lower as can 
be seen in the Table 1. 

 Scenario 1 Scenario 2 Scenario 3 
IRR best(%) 35.95  183.35 30.34 
NPV best (M€) 1,580  -1,197 1,308 
LCOE best (€/MWh) 76.45  -1,197  93.38 

 
Table 1. Summary of the main economic parameters. 
 
5.  Conclusion 
 
This paper has studied the suitability of different floating 
offshore energy technologies in a particular location in 
economic terms. For this purpose, their main initial 
investments and expenses have been taken into account in 
order to calculate the economic indicators of the economic 
feasibility study. These indicators are Internal Rate of 
Return, Net Present Value and Levelized Cost Of Energy. 
The case study has evaluated the Canary Islands (Spain) 
and three types of floating offshore renewable energies: 
offshore wind, wave energy and hybrid systems.  
The method created generates economic maps, which 
facilitates the election of the best area where install offshore 
renewable energy farms in the location selected. In 
addition, it also allows to select what is the best marine 
technology to be exploited in this area. 
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