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Abstract. We propose a novel methodology using Optical Coherence
Tomography (OCT) images to detect the 3 clinically defined types of Mac-
ular Edema, which is among the main causes of blindness: Diffuse Retinal
Thickening (DRT), Cystoid Macular Edema (CME) and Serous Retinal
Detachment (SRD). To perform this detection, we sample the images and
train models to create an intuitive color map that represents the 3 patholo-
gies to facilitate the clinical evaluation. The proposed method was tested
using a dataset composed by 96 OCT images. The system provided sat-
isfactory results with accuracy values of 90.49%, 93.23% and 88.87% for
the CME, SRD and DRT detections, respectively.

1 Introduction

Over 80% of all the vision impairment can be prevented or cured. Despite
this, 253 million people live with vision impairment according to the World
Health Organization [1]. Uncorrected refractive errors are currently the top cause
of vision loss, followed by un-operated cataract and macular disorders, being
Macular Edema (ME) one of the most relevant, characterized as intraretinal
fluid accumulations in the macular region.

Currently, the control, diagnosis and monitoring of ME is performed through
the analysis of Optical Coherence Tomography (OCT) images, an ophthalmo-
logical image modality that directly permits the measurement of the thickness of
the retinal region and the analysis of the included layer tissue in a non-invasive
way [2]. Based on this image modality, Otani et al. [3] defined a clinical clas-
sification of 3 different patterns of structural changes in which the disorder can
appear. This definition was subsequently expanded by Panozzo et al. [4], being
the international clinical classification of reference. The 3 types, defined by the
authors, are the following: Diffuse Retinal Thickening (DRT), Cystoid Macular
Edema (CME) and Serous Retinal Detachment (SRD). DRT is characterised
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Fig. 1: Examples of ME regions. (a) CME, (b) DRT and (c) SRD.

by an increased retinal thickness with reduced intraretinal reflectivity, typically
located in the inner retina. CMEs are defined as intraretinal cystoid spaces at
the macular region with ovoid shapes and no reflectivity. SRD is known as a
subretinal fluid accumulation above the hyper-reflective line of the pigmented
epithelium. Figure 1 shows some representative examples of each ME type.

In recent years, some contributions have emerged related to this topic. These
proposals partially analyse the pathology focusing mainly on the cystoid type,
identifying the fluid presence in the intraretinal layers. These proposed methods
are based, generally, in the use of image processing techniques combined, in
some cases, with learning strategies. They are used for the initial detection
of candidates and a posterior analysis based on morphological and/or intensity
features to remove false positives (FPs). Following this strategy, as reference,
Wilkins et al. [5] faced the CME identification by a combination of an initial
thresholding followed by a FP reducting using a couple of rules to obtain the
final results. Other strategy was followed by de Moura et al. [6] [7], analyzing
windows of a given size to determine the presence of cystoid regions. A set of
intensity or texture features is used to perform the analysis. Sidibé et al. [8]
models the appearance of normal OCT images with a Gaussian Mixture Model
(GMM) and, therefore, detect abnormal images as outliers. Similarly, Montuoro
et al. [9] proposes a 3D method that segments the retinal layers and fluid regions
to identify abnormal cases. Alsaih et al. [10] used machine learning techniques
to classify normal and diabetic ME cases.

As said, most of the proposals faced partially the ME disease by the analysis
of the cystoid fluid cases. The only approach that tackled the complete pathology
with the identification of the 3 types is the work of Samagaio et al. [11]. In
this work, specific strategies using image processing techniques were applied to
localize the presence of each ME type. However, the majority of the proposals
come with the same drawback: as explained, a posterior removal of FPs is needed
in almost all the proposals. This can lead to mistakenly discarding true positive
cases and even provoke confusion in the posterior morphological and intensity
analysis. Also, sometimes, the boundary of the edemas may be largely diffuse, or
appearing as nearby groups that harden enormously the segmentation process.

In this work, a novel method is proposed that addresses a regional identifi-
cation of the 3 ME categories following the clinical classification of international
reference in the ophthalmological field, building an intuitive color map that rep-



resents the simultaneous occurrence of each of them to help the ophthalmologists
to achieve more accurate diagnoses and treatments.

2 Methodology

The method is divided in 4 main stages: region of interest delimitation, extrac-
tion of representative samples, feature selection and classification, and creation
of a binary map for each model, being merged into 1 intuitive color map.

2.1 Retinal Layer Segmentation

The proposed system identifies the 2 limiting retinal layers: the Inner Limiting
Membrane (ILM) and the Retinal Pigment Epithelium (RPE). To achieve this,
a method based on the work of Chiu et al. [12] was employed. This method uses
graph theory with intensity gradient information to find the retinal layers, repre-
senting each image as a graph of nodes. Dark-to-light and light-to-dark gradients
are calculated in order to identify the ILM and RPE limits, respectively, given
their contrast characteristics. These gradients are, then, used as weights in the
search for the minimum weighted paths, performed by the Dijkstra’s algorithm.

2.2 Feature measurement

An expanded set of 375 features [13] was used to identify the 3 different types
of ME. This set includes intensity and texture-based features that help in the
discrimination of the disease regions and the normal areas of the retina.

The intensity-based features are important because, typically, pathological
areas present higher irregularities in their gray level distribution than the normal
retinal tissue. For that purpose, we use mean, median, standard deviation,
variance and other gray-level global distribution statistics. Also, texture-based
features are relevant given they describe internal characteristics that help to
differentiate the pathological tissue. We use eigenvalues, Gray-Level Intensity
Histogram, Gray-Level Co-Occurrence Matrix, Histogram of Oriented Gradients,
Gabor filters, Local Binary Patterns, LAWS filters, fractal dimension features
and Gray-Level Run Length Image Statistics.

2.3 Feature Selection and Classification

A feature selection process was performed using Sequential Forward Selection
(SFS) with inter-intra feature distance as criterion. Doing this, we are able to
avoid redundant features and speed up the classification stage.

Three different models were trained and tested, one for each type of ME. The
Linear Bayes Normal Classifier (LDC) and k -nearest neighbors (kNN) were used
as representative classifiers that offered satisfactory results in similar approaches
[6][7]. In the case of kNN, 3 empirically determined configurations were analyzed,
using k = [3,5,7]. Additionally, a variant of the kNN method, Parzen, was used
based on the satisfactory performance of the kNN classifier.



2.4 Map Generation

To create the color map, the entire region of interest is uniformly analyzed using
samples of a given size and with an specific overlap among them. Each sample is,
then, classified with the 3 trained models. Each one of them determines whether
its type of ME is present in that sample. Then, for each ME type, a binary map
is created. This is done by assigning the central point of each sample and its
nearest pixels to the identified category.

Lastly, in order to produce a global intuitive map, the 3 binary maps are
merged assigning each individual map to a primary color of each channel of the
RGB model. This way, a positive detection of CME is represented in red, DRT
in green whereas SRD in blue. Therefore, if multiple types of ME are detected
in the same area, it will result in the secondary colors composed by the 2 or
3 corresponding channels of RGB, e.g., a multiple detection of CME and SRD
would have red and blue channels activated, resulting in the magenta color.

3 Results and Discussion

The proposed methodology was validated using a dataset of 96 OCT retinal
images centered in the macula and captured with a confocal scanning laser oph-
talmoscope, a CIRRUSTMHD-OCT-Carl Zeiss Meditec. The resolution of these
images ranges from 924×616 to 1200×800. Images with different intensity and
contrast properties are present in this set. No preprocessing stage was performed
to the images, using, directly, the captured image characteristics.

This dataset was labeled by an expert clinician, identifying the 3 types of ME
in each OCT image. Using this ground-truth as reference, training and testing
sets were build for each category. In the case of CMEs, 527 pathological and
441 normal samples were used. For the DRT type, 236 and 323 were extracted,
respectively. Finally, for the SRD case, 67 pathological and 217 normal samples
were studied. The lower number of SRD samples is determined by the lower
presence of this type, given it affects only to a reduced number of patients [3].
In these sets, the window size of each sample was established to 61×61, as a
suitable previously determined size [6].

The individual performance of each system was measured by a 10-fold cross-
validation with 50 repetitions using different training and testing sets, equally
represented. Regarding the feature selection process, the predominant features
were the Gabor filters, HOG and LBP, as they include a high potential of dif-
ferentiation between the intraretinal fluid accumulation and the normal tissue.
Also, the eigenvalues were specially valuable to discriminate the SRD case.

Table 1 shows the performance of the best configurations of feature sets and
classifiers facing each type of ME, being 50 the maximum number of features.
In the CME case, the best results were obtained with the LDC classifier using
42 features, which resulted in a satisfactory accuracy of 0.9049. On the other
hand, the classifier with the best performance for the SRD case was the 5-kNN
using 7 features and achieving a value of 0.9323. Finally, a highest accuracy of
0.8887 was reached with Parzen in the DRT category using 42 features.



Table 1: Best accuracy obtained by each tested classifier and their corresponding
optimal feature sets for each ME category.

Category LDC 3-kNN 5-kNN 7-kNN Parzen

CME
N. Features 42 19 19 21 19
Accuracy 0.9049 0.8851 0.8846 0.8861 0.8872

SRD
N. Features 48 7 7 7 7
Accuracy 0.8999 0.9295 0.9323 0.9285 0.9283

DRT
N. Features 5 34 8 8 42
Accuracy 0.8701 0.8831 0.8804 0.8803 0.8887

Fig. 2: Partial binary identifications and merged color map. CME, DRT and
SRD are represented as red, green and blue.

As explained, to facilitate the clinical diagnosis, a binary map is created for
the identification of each type of ME. At the end, the 3 maps are merged into 1
unified color map that contains the 3 identifications, each one represented by a
channel in the RGB space. This expresses, in an intuitive way, the presence of
ME, helping the clinical experts in the analysis and diagnostic process, as the
current method consists of a tedious and exhaustive manual review of the OCT
images. As reference, Figure 2 shows the partial binary identifications and the
merged color map that represents the 3 types of ME.

4 Conclusions

The ME analysis is of high relevance given it represents the 3rd main cause
of blindness in developed countries. At the moment, its analysis and diagno-
sis involves a tedious and manual process of visual inspection to identify and
characterize each ME type, which also carries the expert subjectivity.

In this work, a novel method is proposed for the automatic identification
of the 3 ME categories using OCT images, following the international clinical
classification of reference. To achieve this, we perform the identifications us-



ing a regional analysis that overcome the limitations of classical identifications,
segmentations and FP removal in the issue. In order to do this, different clas-
sifiers were trained for each one of the categories to identify them separately.
Finally, individual binary maps and a color map are created using the par-
tial identifications, which facilitates the posterior clinical analysis and diagnosis.
The proposed methodology was tested with 96 OCT images including the 3 ME
categories, obtaining satisfactory results for the identification of each one.
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