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On the use of functional additive models for
electricity demand and price prediction

Paula Raña, Juan Vilar and Germán Aneiros

Abstract—This paper presents an application of functional
additive models in the context of electricity demand and price
prediction. Data from the Spanish Electricity Market are used
to obtain the pointwise predictions. Also prediction intervals,
based on a bootstrap procedure, are computed. This approach
is compared with the use of other functional regression methods
applied to the same dataset in Aneiros et al. (2016).

Index Terms—Load and price, functional data, functional time
series forecasting, additive model, prediction intervals.

I. INTRODUCTION

PREDICTION of electricity demand and price are signif-
icant problems for the agents and companies involved in

the electricity markets. In particular, one day ahead hourly
forecasts of demand and price has been extensively stud-
ied in the literature. Some methods are based on statistical
models (dynamic regression, transfer functions, time series,
exponential smoothing, etc.) whereas other ones are based on
computational intelligence models (neuronal networks, support
vector machines, etc.). See the book by Weron [1] for a nice
monograph on electricity demand and price forecasting. See
also [2] and [3] for reviews on electricity demand forecasting
and [4] and [5] on electricity price forecasting. Most of
the papers studying methods of electricity demand and price
prediction take information from scalar variables, but in recent
years, the use of functional data has been extended in this
area. Considering the daily curves of electricity demand or
price as functional data, the prediction problem in electric
markets can be studied taking use of functional regression
methods. The books [6] and [7] are comprehensive references
for functional data analysis using a linear or nonparametric
view, respectively.

Some papers that use functional data to predict electricity
demand and price curves are the following: [8] used a paramet-
ric model to predict electricity consumption curves; functional
time series methodology was applied in [9] to historical daily
curves of load; [10] obtained probabilistic forecasts of elec-
tricity load, based on functional data analysis of generalized
quantile curves; [11] used, among other methodology, two
functional approaches to forecast the France’s daily electric-
ity load consumption; [12] proposed an adaptive functional
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autoregressive (AFAR) forecast model to predict electricity
price curves; finally, [13] analysed the case of residual demand
curves whereas [14] considered the prediction of both demand
and price curves.

When the interest is to forecast scalar values (not curves)
from functional data, the reader can see [15] or [16]. The case
of forecasting scalar values (as well as curves) of demand and
price from functional data within the Spanish Electricity Mar-
ket are studied in [14]. In that paper, nonparametric and semi-
functional partial linear models are employed. Non-parametric
autoregressive models with functional data (FNP) provide
good predictions, due to its flexibility, but the results can
improve by adding exogenous variables to the model. In that
way, when dealing with demand prediction, it is convenient
to introduce the temperature and other weather variables as
covariates. When the aim is the prediction of electricity price,
the wind power production and the forecast daily demand can
be considered instead. Due to the curse of the dimensionality, it
is not recommendable to use nonparametric regression models
with several covariates. [13] and [14] solved that problem with
the use of a Semi-Functional Partial Linear model (SFPL),
with a nonparametric autoregressive functional component and
introducing other scalar covariates in a linear way. SFPL
models improve, in general, the results from the FNP models.

The aim of this paper is next-day forecasting of hourly
values of electricity demand and price using functional addi-
tive models (FAM). These models combine flexibility and the
control of the dimensionality effects. Additive models have
been already used for prediction in the context of electricity
demand (see [17], [18]) and price (see [19]). However, those
references are not dealing with functional data, as in our pro-
posal. Focusing now in the references named in the previous
second and third paragraphs, it is worth being noted that,
although they deal with functional data, they do not consider
the models (FAM) used in this paper. Three approaches, taking
information from functional covariates (one is endogenous),
are considered. In the first case, the effect of the covariates on
the response is linear (functional linear model), whereas in the
other two proposals the regression is the sum of smoothing
functions applied to the covariates. Also, algorithms for the
construction of the prediction intervals (PI) and prediction
density (PD) associated with the functional additive models
are proposed. These algorithms use residual-based bootstrap
methods.

This paper continues the following two studies: [14] in
which nonparametric and semi-parametric functional regres-
sion methods were used to predict electricity demand and
price; and [20] in which prediction intervals, using residual-
based bootstrap algorithms, were obtained for the prediction
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methods proposed in [14]. It is worth being noted the main
differences between the study in this paper and the ones
presented in [14] and [20]. On the one hand, this paper
considers models (FAM) that are more general than the ones
considered in [14] and [20]. On the other hand, all the
exogenous covariates in our models are of functional nature,
while the exogenous covariates in [14] and [20] are scalar.

The remaining of the paper is organized as follows. The
additive methods with functional covariates and scalar re-
sponse are presented in Section II, together with the algo-
rithms proposed to obtain PIs and PDs. Sections III and IV
show numerical results concerning 1-day ahead forecasting of
electricity demand and price, respectively, in mainland Spain
during the year 2012. A comparative study of the proposed
additive models and the results obtained in [14] and [20]
is also included. Finally, Section V provides some relevant
conclusions: basically, the proposed models (FAM) improve
the results obtained in both [14] (pointwise prediction) and
[20] (prediction intervals).

II. FORECASTING FROM FUNCTIONAL ADDITIVE MODELS

A. Pointwise prediction methods

We assume that the time series of interest (electricity de-
mand and price) are continuous time stochastic processes, and
we use the same notation ∈ to refer to any of them
(units for are hours). As ∈ is a seasonal process with
seasonal length , and considering that such process is
observed on the interval with , the observed
daily curves (of electricity demand or price) can be written as

, where with .
In this paper, predictions and PIs are obtained for each

hour, one day ahead, of electricity demand or price, ,
with in year 2012 from information given
by the previous 365 days. Three functional additive models
are considered and, for each prediction method,
models are computed according to the kind of day and the
hour, considering that the dynamic of the curves depends on
the type of day where are observed: weekdays, Saturdays or
Sundays.

We wish to predict the variable using informa-
tion given from ˜ − where
are functional covariates. In both cases (demand or price)

is the endogenous covariate. When the day
corresponds to either Saturday or Sunday, information from
the previous curve (i.e. from the curve observed on previous
Friday or Saturday, respectively) will be used. If the day

corresponds to a weekday, information will be taken
from the curve observed on the previous weekday (note
that the previous weekday to a Monday is a Friday). Let
us assume that the day is Saturday (in the case
of a weekday or Sunday, the procedure is analogous) and
denote ,

is a Saturday . The prediction of the electricity
demand or price at the hour , , is obtained from the
next general model:

(1)

where is an unknown function of the covariates and
is an error term, with zero mean. Then, a prediction

for the variable can be obtained by esti-
mating ˜ in (1), this is, ˜

1) Functional Linear Models: When the relation between
the covariates and the response is linear, the regression func-
tion, ˜ , in (1) is the following

˜ ˜

(2)
The Functional Linear Model (FLM) has been widely

studied in the literature (see, for instance, chapter 10 in [6]).
Functional coefficients, , can be estimated by different
ways. [21] proposed an estimator using a functional principal
component analysis and proved the convergence of this estima-
tor. [22] studied an estimator based on a B-splines expansion
which, in some way, generalizes ridge regression. This one is
the estimator that will be considered in Sections III and IV.
[23] proposed a similar estimator in the context of time series.

2) Functional Additive Models: In most of applied situ-
ations there is a lack of knowledge about the relationship
between the response and the functional covariates and this
leads naturally to consider nonparametric modelling. In this
case, the regression function, ˜ in (1) is

˜ ˜ (3)

That model is called functional additive model (FAM) and
here, the key point is the estimation of the partial functions

[24] proposed to estimate using one cyclic conditional
algorithm. At each stage, the effect of a functional covariate
is estimated, conditionally on previous estimation, using func-
tional kernel estimates. We will refer to this model as the
Functional Kernel Additive Model (FKAM). An alternative is
proposed by [25], using in this case the functional principal
component scores of , being
smooth functions of , the principal score of variable
We will refer to this approach as the Functional Spectral Addi-
tive Model (FSAM) because the use of spectral decomposition
of the covariance operator of

B. Bootstrap prediction intervals

When dealing with forecasting, it is important to consider
also prediction intervals and the prediction density, which help
to understand the behaviour of the forecasts in a deeper way.
A bootstrap algorithm is proposed to construct PIs and PDs in
the problem of the next-day forecasting of electricity demand
and price. This algorithm is similar to the proposal in [20],
but adapting it to the case of the prediction with the additive
models presented in Subsection. The algorithm is also adapted
to deal with cases of homoscedasticity and heteroscedasticity.

We want to compute a PI for the variable , where
is fixed and the day corresponds to a Saturday. In

this case, the sample will be ′ ˜
and we assume that the pair ˜ follows the
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additive model given in (2) or (3). Under the assumption
that the model is heteroscedastic, the error of the model is

, where are iid, E
and . Then,

, where denotes the
error conditional variance.

The predictor for ˜ is ˜ and one has the
following decomposition:

˜ ˜ ˜ ˜ ˜

Hence, as the true regression function, ˜ , is unknown
in practice, one needs to approximate ˜ ˜ and
the error term, ˜ , using bootstrap procedures. In
our case, under heteroscedasticity, the proposed algorithm
includes the estimation of the conditional variance, .
This estimation is made following the ideas of [26], but
adapting them to functional data.

The bootstrap -prediction interval for ˜
is constructed as:

∗
N − ˜ ∗ ˜ ˜ ∗

− ˜

where the bootstrap quantiles ∗ ˜ are computed in the
following way:

1) Compute ˜ , , using one of the additive
models proposed in Subsection II-A.

2) Compute the residuals ˜ .
3) Based on the sample ,

using Nadaraya-Watson estimator for functional data
(see [7]), the estimator for is obtained as:

∈ISat

(4)

where is the bandwidth. One obtains the estimators
for and , denoted as

, and , respectively. The
standardized residuals of the model can be obtained as:

4) Apply the naive bootstrap procedure to obtain the
bootstrap errors: Draw iid random
variables, ∗ from the empirical

distribution function of ,

denoted by , where −
∈ISat

.
5) Denote ∗ ∗ and obtain ∗

˜ ∗ , , and from the sample
′∗ ˜ ∗ we obtain ∗ ˜ .

6) Repeat times Steps 4-5, giving the estimates
∗ ˜ .

7) Draw iid random variables from the
empirical distribution function, , and compute

. approximates the error
in the model.

8) Compute the set of bootstrap errors:

˜ ∗ ˜

9) Compute the bootstrap quantile, ∗ ˜ , from the
quantile of order of .

Some remarks about this algorithm are the following.
• If the model is homoscedastic, the algorithm can be

simplified, as Step 3 is deleted. In Step 4-5, iid
random variables ∗ must be drawn
from the empirical distribution function of the centered
residuals, denoted by . In Step 7, is obtained from

The rest of the algorithm remains the same.
• We assume that the conditional variance, , only

depends on the functional explanatory variable, ,
and not on the other covariates, as it happens in the most
common situations. However, if one wants to assume
that this conditional variance depends on all covariates,
one may consider the expression ˜

˜ ˜ . In that general case, the
estimation of ˜ cannot be done by a nonparametric
estimator. Alternatives as partial linear or additive models
need to be employed instead.

• Note that one can consider, from the algorithm above:

∗ ˜ ˜ ˜ ∗ ˜

with Now, using the bootstrap responses
∗ ˜ , one can obtain an estimation for the

PD of ˜ applying, for instance, the Rosenblatt
Parzen kernel density estimator.

III. ANALYSIS OF ELECTRICITY DEMAND

Prediction methods presented in previous Section II will be
applied to a real dataset coming from the Spanish Electricity
Market. Specifically, within this section, an application to the
electricity demand will be considered. Results of the next-
day forecasting of hourly electricity demand, based on the
functional additive models, are given. In addition, results from
other prediction methods previously used in [14] will be
shown with the aim of comparison. Finally, also the bootstrap
procedures in Subsection II-B will be applied to compute the
prediction intervals (PI) and prediction density (PD).

The electricity dataset involved in this application has been
used before in [14] and [20]. In that case, functional nonpara-
metric and semi-functional partial linear regression, among
other prediction methods, were considered. The results in that
paper will be compared to the functional additive models. Next
paragraphs will contain a brief description of the dataset, both
electrical data and additional covariates. See [14] for a detailed
review of the dataset.

Electricity demand and price comes from OMIE (Operador
del Mercado Ibérico de Energı́a), which is the Market Operator
in Spain and which provides at its web page (www.omel.es)
the hourly observations of the electricity demand, among other
related variables. We consider each daily curve of electricity
demand, computed from the 24 hourly observations, along the
years 2011 and 2012. Then, each one of these daily curves is
a functional datum composing a functional time series.

When dealing with electricity demand, one may take into
account their particular features, summarized in the daily
and weekly seasonality, the calendar effect on the weekend
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and the presence of outliers. Due to the different behaviour
of the electricity demand between the weekdays and the
weekend (and also between Saturdays and Sundays within the
weekend), the procedures will be applied separately for three
groups of days: Weekdays, Saturdays and Sundays. Prior to
any statistical analysis of the data, outlier detection methods
for functional time series presented in [27] and [28] are
applied to our dataset and the selected outliers are replaced
by weighted moving average.

Prediction methods are applied as autoregressive models,
since the hourly electricity demand is predicted based on the
previous daily curve of demand. However, one may consider
additional information to be used as functional covariates
within the prediction methods. It is known that temperature
affects the energy consumption, and so does to the electricity
demand, due to the use of heating or cooling systems when the
temperature is low or high. Daily curves of the temperature
in Spain, obtained from the 24 hourly observations, will be
included in the models as functional covariate. That temper-
ature information is given by AEMET (Agencia Estatal de
Meteorologı́a) for each province of Spain and so, by popula-
tion weighted average, one can obtain the hourly temperature
for Spain.

Once the dataset involved in the application is presented,
the functional additive methods are applied to the next-day
forecasting of the hourly electricity demand. Thus, the scalar
response of the prediction model is the electricity demand for
one hour, considering as functional explanatory variable the
previous daily curve of demand, together with the daily curve
of the temperature in the day to be predicted. Predictions for
all the year 2012 are obtained.

FLM, FKAM and FSAM will be considered. Those methods
are available in the R package fda.usc, whose routines were
used in this application (see [29]). B-Splines basis and gaus-
sian family was considered in the prediction methods. The
external functional covariates in FSAM were smoothed and
the norm was considered in the FKAM. In addition, due
to the different behaviour between weekdays, Saturdays and
Sundays, one may consider separate models for each kind of
day and also for each one of the 24 hours in the day. Thus,
one deals with 72 prediction models at the same time.

To compare the accuracy of each considered model and
obtained forecast from the different prediction methods,
the mean absolute percentage error (MAPE) is used, which is
defined as:

where

for .

Table I displays the MAPE error from the electricity de-
mand predictions, when dealing with the additive models for
functional data, divided by kind of day and quarter of the year.
Also the Naive method is considered in order to compare the
accuracy of the proposed procedures. This Naive method is a

very simple procedure, working quite well in this context. It
consists in just to assign, as the prediction for one day, the
observed value in the previous one. Taking into account the
different behaviour of the electricity between the days of the
week, the prediction for a weekday will be the observed values
in the day before (for example, the prediction for a Tuesday
is obtained from previous Monday, taking into account that
the previous weekday for a Monday is the previous Friday).
Meanwhile the prediction for Saturday or Sunday will come
from the Saturday or Sunday of the previous week.

TABLE I
MEAN OF THE MAPE FOR THE ELECTRICITY DEMAND CURVES USING
THE FUNCTIONAL ADDITIVE AND THE NAIVE METHODS. RESULTS ARE

SHOWN BY TYPE OF DAY, WEEK, QUARTER AND YEAR.

Method Q1 Q2 Q3 Q4 Year
Weekday

Naive 4.43 5.91 4.46 6.36 5.24
FKAM 4.25 5.44 4.18 5.87 4.90
FSAM 4.30 5.11 4.05 5.80 4.78
FLM 4.27 5.07 4.00 5.78 4.75

Saturday
Naive 7.29 8.06 5.21 13.62 8.41
FKAM 4.33 5.32 3.64 10.17 5.74
FSAM 5.52 5.15 4.05 10.09 6.09
FLM 4.55 5.16 4.01 9.18 5.62

Sunday
Naive 9.08 5.62 8.94 16.50 10.10
FKAM 6.21 5.71 5.19 8.83 6.48
FSAM 6.07 5.49 6.41 9.13 6.79
FLM 5.64 5.08 6.29 8.41 6.38

Week
Naive 5.50 6.18 5.21 8.84 6.39
FKAM 4.54 5.47 4.25 6.90 5.25
FSAM 4.73 5.17 4.39 6.89 5.26
FLM 4.50 5.08 4.33 6.64 5.11

In general, the best result is achieved by the FLM, which
reaches the lowest prediction error for all the kind of days and
almost all the quarters. FKAM and FSAM behave very similar
in this case, being the FKAM slightly better in the global
result. By kind of days, the FSAM is better on the weekdays,
while FKAM improves their results during the weekend. All
the three procedures turn out to be better than the Naive
method, reducing its MAPE error in a 20%. That improvement
is more remarkable in the weekend, reaching a reduction about
30% of the prediction error.

Graphical comparison of the prediction errors reported in
Table I is given in Figure 1. In that plot, one can see the
daily errors from the four considered methods divided by
kind of day. It is easy to distinguish that the higher errors
are committed during the Sundays. However, weekdays and
Saturdays are closer and the prediction errors are more con-
centrated along the same values. Comparing each one of the
procedures, one can distinguish that Naive method generates
the worst errors, specially during the weekend. FLM seems
to be the best method in terms of global error, with small
differences among the three functional additive models.

Real versus predicted demand along one entire week is
represented in Figure 2, considering the Naive, FKAM and
FLM method. One can easily distinguish the poor accuracy
of the Naive method, motivated by its poor behaviour during
the weekend. Even if no major differences are seen between
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Fi g. 2. O bs er v e d a n d pr e di ct e d d e m a n d c ur v es f or t h e w e e k N o v e m b er 2 6 –
D e c e m b er 2.

S o m e ot h er pr e di cti o n m et h o ds c a n b e c o nsi d er e d i n or d er
t o c o m p ar e t h e b e h a vi o ur of t h e pr o p os e d pr o c e d ur es. F or
t h at r e as o n, o n e m a y c o nsi d er t h e r es ults i n [ 1 4], w hi c h w er e
o bt ai n e d b as e d o n t h e s a m e d at as et as t h e c urr e nt a p pli c ati o n.
T h e m et h o ds us e d f or t h e c o m p aris o n will b e t h e N ai v e
( N) ( w hi c h h as b e e n pr es e nt e d i n t h e pr e vi o us p ar a gr a p hs),
A RI M A ( A), A RI M A X ( A x), F u n cti o n al N o n p ar a m etri c r e-
gr essi o n ( F N P) a n d S e mi-f u n cti o n al p arti al li n e ar ( S F P L).

A RI M A m o d els ar e us e d t o pr e di ct h o url y el e ctri cit y d e-
m a n d, fitti n g o n e m o d el f or t h e u ni v ari at e ti m e s eri es c o mi n g
fr o m e a c h h o ur of t h e d a y, c o nsi d eri n g all t h e w e e k t o g et h er.
A RI M A X f oll o ws t h e s a m e pr o c e d ur e b ut i n cl u di n g as e xt er-
n al c o v ari at es t h e t e m p er at ur e i nf or m ati o n. F u n cti o n al N o n-
p ar a m etri c r e gr essi o n, b as e d o n N a d ar a y a- Wats o n esti m at ors,
is a p pli e d i n t h e s a m e w a y as t h e a d diti v e m o d els. T h at is,
t o c o nsi d er s c al ar r es p o ns e a n d f u n cti o n al c o v ari at e i n t h e 7 2
m o d els ( o n e f or e a c h ki n d of d a y a n d h o ur). Fi n all y, S e mi-
f u n cti o n al p arti al li n e ar a d ds a li n e ar c o m p o n e nt wit h t h e
t e m p er at ur e i nf or m ati o n as e xt er n al a n d s c al ar c o v ari at es. O n e

m a y t a k e i nt o a c c o u nt t h at t h e pr o p os al i n [ 1 4] i n cl u d es t h e
t w o f u n cti o n al r e gr essi o n m et h o ds ( F N P a n d S F P L) usi n g b ot h
f u n cti o n al or s c al ar r es p o ns e, wit h si mil ar r es ults a m o n g t h e m.
I n or d er t o c o m p ar e wit h t h e f u n cti o n al a d diti v e m o d els, w hi c h
w or k wit h s c al ar r es p o ns e, o nl y t h e F N P a n d S F P L wit h s c al ar
r es p o ns e will b e c o nsi d er e d.

T h e a p pli c ati o n i n [ 1 4] pr es e nt e d als o t w o c o m bi n e d f or e-
c asti n g m et h o ds ( C F 1 a n d C F 2), w hi c h ar e als o i n cl u d e d
i n t h e c o m p aris o n. C F 1 is o bt ai n e d b y si m pl e a v er a g e of
t h e i n di vi d u al pr e di cti o ns c o m p ut e d b y t h e m o d els i n di c at e d
a b o v e. C F 2 c o nsists i n t h e a v er a g e of t h e t w o b est i n di vi d u al
pr e di ct ors, s e p ar at el y f or e a c h ki n d of d a ys.

T h e c o m p ar ati v e st u d y wit h t h e m et h o ds i n [ 1 4] will b e
c arri e d o ut usi n g t h e r el ati v e pr e di cti o n err ors ( R P E). T h os e
R P E ar e c o m p ut e d as t h e M A P E f or e a c h o n e of t h e c o nsi d er e d
pr o c e d ur es i n t h e c o m p aris o n, di vi d e d b y t h e M A P E of a
r ef er e n c e m et h o d. F or t h at p ur p os e t h e F L M, w hi c h g ets t h e
b est i n di vi d u al pr e di cti o ns, will b e c o nsi d er e d as t h e r ef er e n c e
m et h o d. It will b e c o m p ar e d wit h t h e ot h er pr o c e d ur es a p pli e d
i n [ 1 4], i n cl u di n g t h e t w o c o m bi n e d pr e di cti o n m o d els ( C F 1
a n d C F 2), a n d t h e t w o f u n cti o n al a d diti v e m o d els F K A M
a n d F S A M. Fi g ur e 3 s u m m ari z es t his r el ati v e err or a n al ysis,
di vi d e d b y ki n d of d a y a n d f or all t h e w e e k.
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Fi g. 3.  R el ati v e pr e di cti o n err ors f or el e ctri cit y d e m a n d c ur v es, c o m p ari n g
t o t h e F L M m et h o d.

C o m bi n e d a n d a d diti v e pr e di cti o n m et h o ds s e e m t o b e
cl os er t o t h e F L M d uri n g t h e w e e k d a ys. R es ults g et w ors e
d uri n g t h e w e e k e n d f or N ai v e, a m o n g ot h ers, a n d als o f or t h e
F N P a n d S F P L ( es p e ci all y o n S u n d a y). I n g e n er al, as f or t h e
w e e k d a ys, c o m bi n e d a n d a d diti v e pr e di cti o n m et h o ds ar e t h e
cl os est t o t h e F L M, w hi c h is t h e b e n c h m ar k i n t his st u d y.

Pr e vi o us p ar a gr a p hs w er e b as e d o n t h e p oi nt wis e f or e c ast
a c c ur a c y, m e as ur e d b y m e a ns of t h e M A P E. H o w e v er, o n e c a n
als o t est t h e st atisti c al si g ni fi c a n c e of t h e diff er e n c es o bs er v e d
a m o n g t h e c o nsi d er e d m et h o ds usi n g t h e Di e b ol d- M ari a n o t est
[ 3 0]. Ta bl e II r e p orts t h e p - v al u es fr o m Di e b ol d- M ari a n o t est,
t a ki n g i nt o a c c o u nt t h at t h e n ull h y p ot h esis of t h e m e nti o n e d
t est is t h at n o diff er e n c e is f o u n d b et w e e n t h e a c c ur a c y of t h e
m et h o ds. F o c usi n g o n t h e c o m p ar ati v e a n d a d diti v e m o d els,
o n e c a n s e e t h at b ot h c o m bi n e d pr e di cti o ns a n d als o F K A M
a n d F S A M pr e di cti o ns ar e si mil ar. H o w e v er, F L M c a n n ot b e
assi mil at e t o a n y of t h e c o nsi d er e d pr e di cti o n m et h o ds.
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T A B L E II
p - V A L U E S F R O M D I E B O L D- M A R I A N O T E S T F O R D E M A N D P R E D I C T I O N S .

M et h o d  A  A x F N P S F P L  C F 1  C F 2 F K A M F S A M F L M
N 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0
A 0. 0 3 9 0. 0 0 4 0. 7 6 3 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0
A x 0. 0 0 0 0. 0 1 9 0. 0 0 1 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0
F N P 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0
S F P L 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0
C F 1 0. 0 1 8 0. 0 0 7 0. 0 8 2 0. 0 0 0
C F 2 0. 2 6 1 0. 7 1 3 0. 0 0 0
F K A M 0. 5 7 3 0. 0 0 0
F S A M 0. 0 0 0

T h e pr e di cti o ns o bt ai n e d f or t h e h o url y el e ctri cit y d e m a n d
c a n b e c o m pl e m e nt e d t hr o u g h t h e b o otstr a p pr o c e d ur es d e-
v el o p e d i n S u bs e cti o n II- B t o b uil d pr e di cti o n i nt er v als a n d
als o pr e di cti o n d e nsit y. F or t h at p ur p os e, o nl y F L M a n d
F S A M will b e c o nsi d er e d, d u e t o its b est p erf or m a n c e i n
t er ms of pr e di cti o n err ors a n d als o i n c o m p ut ati o n ti m es. B ot h
pr o c e d ur es ar e f ast er t h a n t h e F K A M, w hi c h is a b o ut 1 0
ti m es sl o w er t h a n t h e F S A M, r es ulti n g i n al m ost u nr e a c h a bl e
c o m p ut ati o n al c ost w h e n d e ali n g wit h it er ati v e al g orit h ms as
t h e b o otstr a p. C o m p ari n g F L M a n d F S A M, t h e F L M is t h e
f ast est o n e b ei n g n e arl y 1 0 ti m es f ast er t h a n t h e F S A M.

PIs ar e a n al ys e d i n t er ms of c o v er a g e a n d Wi n kl er s c or e
w hi c h all o ws t o ass ess, j oi ntl y, t h e u n c o n diti o n al c o v er a g e
a n d i nt er v al wi dt h (f or d et ails a b o ut t his Wi n kl er or i nt er v al
s c or e, s e e [ 3 1] a n d [ 3 2]). B ett er PIs ar e t h os e wit h l o w er s c or e.
Ta bl e III dis pl a ys t h e r es ults of t h e PIs f or e a c h gr o u p of d a ys,
t o g et h er wit h t h e gl o b al o ut c o m e f or all t h e w e e k, c o m p ari n g
b ot h a d diti v e m o d els a n d als o diff er e nt c o n fi d e n c e l e v els.
C o v er a g es ar e c o m p ut e d as t h e pr o p orti o n of ti m es t h at e a c h
PI c o v ers t h e c orr es p o n di n g o bs er v e d d e m a n d v al u e, w hil e t h e
l e n gt h a n d Wi n kl er s c or e ar e c o m p ut e d as t h e m e a n l e n gt h
a n d m e a n Wi n kl er s c or e of t h e PIs f or t h e c orr es p o n di n g ki n d
of d a y. I n g e n er al, c o v er a g es ar e cl os er t o t h e n o mi n al l e v el
i n t h e w e e k d a ys, w hil e S at ur d a ys att ai n t h e w orst b e h a vi o ur.
N o m aj or diff er e n c es ar e a p pr e ci at e d b et w e e n t h e diff er e nt
c o n fi d e n c e l e v els, e x c e pt f or a n e x p e ct e d d e cr e as e i n t h e l e n gt h
a n d t h e c orr es p o n di n g c o v er a g e. C o m p ari n g t h e PIs fr o m F L M
a n d F S A M, o n e c a n s e e sli g htl y l o w er c o v er a g es i n t h e F S A M
a n d als o s h ort er i nt er v als, e v e n if b ot h r es ults ar e cl os e.

I n [ 2 0] PIs f or el e ctri cit y d e m a n d a n d pri c e, b as e d o n a
si mil ar b o otstr a p pr o c e d ur e as i n II- B, b ut c o nsi d eri n g F N P
a n d S F P L r e gr essi o n m o d els, w er e o bt ai n e d. C o m p ari n g t h e
r es ults f or el e ctri cit y d e m a n d (s e e Ta bl es 1, 3 a n d 4 i n [ 2 0]),
o n e c a n s e e t h at Wi n kl er s c or e is l o w er f or t h e a d diti v e m o d els.

Fi g ur e 4 r e pr es e nts t h e PIs o bt ai n e d fr o m F L M f or e a c h
h o url y d e m a n d al o n g f o ur c o ns e c uti v e d a ys, c orr es p o n di n g t o
S at ur d a y, S u n d a y, M o n d a y a n d T u es d a y. T his el e cti o n all o ws
t o s e e als o t h e diff er e nt p att er n of t h e el e ctri cit y d e m a n d
b et w e e n t h e gr o u p of d a ys, b ei n g l o w er d uri n g t h e w e e k e n d,
es p e ci all y o n S u n d a ys. I n g e n er al, t h e i nt er v als ar e q uit e
si mil ar a m o n g t h e f o ur d a ys.

Fi n all y, t o c o n cl u d e t his a p pli c ati o n, t h e P D o bt ai n e d fr o m
t h e F L M is c o m p ut e d u n d er disti n ct sit u ati o ns. Fi g ur es 5 a n d
6 r e pr es e nt t h e P D f or t h e t hr e e ki n d of d a ys at t h e fi x e d
h o ur 1 2: 0 0, a n d als o f or diff er e nt h o urs i n t h e s a m e d a y,
r es p e cti v el y. O n e c a n cl e arl y disti n g uis h t h e b e h a vi o ur of t h e

T A B L E III
C O V E R A G E , M E A N L E N G T H A N D M E A N W I N K L E R S C O R E O F T H E PI S F O R

E L E C T R I C I T Y D E M A N D U S I N G F L M A N D F S A M, B Y K I N D O F D A Y .

We e k d a ys S at ur d a y S u n d a y  We e k
F L M

1 0 0 × α = 5
C o v. ( L e n gt h) 9 3. 4 ( 5 3 3 7) 8 7. 3 ( 4 3 8 3) 9 0. 1 ( 5 3 8 7) 9 2. 1 ( 5 2 0 9)
Wi n kl er s c or e 7 6 9 1. 1 1 9 6 7 0. 8 8 1 0 0 9 6. 7 3 8 3 2 0. 7 4
1 0 0 × α = 1 0
C o v. ( L e n gt h) 8 8. 5 ( 4 1 3 1) 8 1. 3 ( 3 5 4 6) 8 5. 1 ( 4 3 1 0) 8 7. 0 ( 4 0 7 4)
Wi n kl er s c or e 6 2 3 5. 7 9 7 3 1 8. 5 4 8 0 3 3. 9 7 6 6 5 0. 0 2
1 0 0 × α = 2 0
C o v. ( L e n gt h) 7 8. 3 ( 2 9 7 4) 6 9. 6 ( 2 6 7 6) 7 6. 2 ( 3 2 2 8) 7 6. 8 ( 2 9 6 8)
Wi n kl er s c or e 4 8 6 3. 1 8 5 5 7 0. 1 3 6 0 7 8. 3 3 5 1 3 9. 5 9

F S A M
1 0 0 × α = 5
C o v. ( L e n gt h) 9 3. 3 ( 5 2 0 3) 8 4. 7 ( 4 2 2 1) 8 8. 5 ( 5 2 5 7) 9 1. 4 ( 5 0 7 1)
Wi n kl er s c or e 7 7 2 1. 3 4 1 1 7 9 5. 4 1 1 0 3 6 6. 4 2 8 6 8 3. 2 0
1 0 0 × α = 1 0
C o v. ( L e n gt h) 8 8. 3 ( 4 0 4 2) 7 8. 6 ( 3 4 1 5) 8 3. 4 ( 4 2 6 1) 8 6. 2 ( 3 9 8 5)
Wi n kl er s c or e 6 2 2 7. 4 6 8 5 7 4. 5 9 8 1 6 6. 1 1 6 8 4 1. 6 7
1 0 0 × α = 2 0
C o v. ( L e n gt h) 7 7. 9 ( 2 9 3 1) 6 8. 3 ( 2 5 9 3) 7 3. 3 ( 3 2 3 9) 7 5. 9 ( 2 9 2 7)
Wi n kl er s c or e 4 8 6 8. 4 2 6 2 2 8. 7 1 6 2 4 4. 8 4 5 2 6 1. 0 0
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Fi g. 4. Pr e di cti o n i nt er v als, usi n g F L M fr o m S at ur d a y t o T u es d a y ( 2- 5 J u n e
2 0 1 2) i n d e m a n d, α = 0 .0 5 .

el e ctri cit y d e m a n d b et w e e n w e e k d a ys a n d t h e w e e k e n d, b ei n g
m or e si mil ar b et w e e n S at ur d a y a n d S u n d a y. R el at e d t o t h e
h o ur of t h e d a y, o n e c a n r e c o g ni z e t h e c o ntr ast b et w e e n d a y
a n d ni g ht.

I V. A N A L Y S I S O F E L E C T R I C I T Y P R I C E

T his s e cti o n c o nt ai ns a pr e di cti o n st u d y of el e ctri cit y pri c e,
w hi c h f oll o ws a si mil ar str u ct ur e as t h e o n e c o n d u ct e d i n
S e cti o n III f or t h e el e ctri cit y d e m a n d.

T h e d at a s o ur c e f or t h e h o url y el e ctri cit y pri c e al o n g t h e
y e ars 2 0 1 1 a n d 2 0 1 2 w as a g ai n O MI E. I n t h at c as e, pri c e
s h ar es t h e m ai n f e at ur es of t h e el e ctri cit y d e m a n d, wit h t h e
p arti c ul arit y of t h e z er o- pri c e d a ys. T h e pri c e of t h e el e ctri cit y
d e p e n ds, a m o n g ot h er f a ct ors, o n t h e e n er g y s o ur c e a n d t h er e
is a si g ni fi c a nt i n fl u e n c e of t h e wi n d p o w er pr o d u cti o n: w h e n
t his pr o d u cti o n i n cr e as es, t h e pri c e d e cr e as es f oll o wi n g a li n e ar
r el ati o n, r e a c hi n g e v e n t h e v al u e z er o. D u e t o t his f e at ur e, wi n d
p o w er pr o d u cti o n will b e i n cl u d e d i n t h e pr e di cti o n m o d els.
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Fig. 5. Prediction density for the electricity demand, using FLM, for different
kind of days.
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Fig. 6. Prediction density for the electricity demand, using FLM, for different
hours along the day.

Hourly electricity price will be predicted based on the pre-
vious daily price curve, following an autoregressive model as
in Section III. Together with the price, also information about
the electricity demand (due to the influence over the price,
following the market rules) and the wind power production
will be added to the models. Both covariates are functional,
as they represent the daily curves of demand and wind power
production in the day to be predicted. Electricity demand

curves will be constructed from the hourly forecasts obtained
with FLM model in Section III, whereas observed wind power
production will be obtained from Red Eléctrica de España
(System Operator in the Spanish Electricity Market).

FLM, FKAM and FSAM will be applied again to predict
the hourly electricity price along the year 2012, following the
same indications as Section III and considering also different
models for each kind of day (weekdays, Saturday and Sunday).
The measure of the prediction error will be the weighted
mean absolute errors (WMAE). This election is motivated by
the zero price days, which could disturb the results given by
MAPE. WMAE is computed as:

where indicates the th day in the week to forecast,
and the mean absolute relative error (MARE) quantifies the
accuracy of the daily forecasts with respect to the weekly mean
(WM) of the values to forecast:

with
Table IV displays the prediction errors (MARE), comparing

the functional additive models with the Naive method. Results
are analysed again by kind of day and quarter of the year. As
in the demand case, FLM is the best global predictor, being
also the best one for each kind of day. FSAM is not far away
in this case, being always the second best predictor. FKAM
is relatively close to those two models, while the entire three
additive models are better than the reference Naive method.

TABLE IV
MEAN OF THE MARE FOR THE ELECTRICITY PRICE CURVES USING THE

FUNCTIONAL ADDITIVE AND THE NAIVE METHODS. RESULTS ARE SHOWN
BY TYPE OF DAY, WEEK, QUARTER AND YEAR.

Method Q1 Q2 Q3 Q4 Year
Weekday

Naive 0.099 0.169 0.092 0.160 0.128
FKAM 0.086 0.122 0.071 0.108 0.096
FSAM 0.073 0.104 0.073 0.097 0.086
FLM 0.072 0.101 0.069 0.092 0.083

Saturday
Naive 0.111 0.171 0.161 0.273 0.176
FKAM 0.092 0.105 0.095 0.178 0.115
FSAM 0.087 0.116 0.082 0.148 0.107
FLM 0.075 0.100 0.078 0.140 0.097

Sunday
Naive 0.172 0.145 0.220 0.310 0.212
FKAM 0.132 0.124 0.120 0.217 0.147
FSAM 0.124 0.118 0.127 0.196 0.141
FLM 0.113 0.110 0.114 0.184 0.130

Week
Naive 0.111 0.166 0.120 0.197 0.147
FKAM 0.093 0.120 0.081 0.133 0.106
FSAM 0.083 0.108 0.082 0.119 0.097
FLM 0.078 0.102 0.076 0.112 0.092

Graphically, in Figure 7, one can see the daily error for
each kind of day, comparing the same prediction methods as
in Table IV. Sundays, as in the demand case, concentrate the
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w ors e pr e di cti o n err ors. We e k d a ys a n d S at ur d a ys s e e m t o b e
m or e st a bl e a n d t h e r es ults ar e q uit e cl os e a m o n g t h e a d diti v e
m o d els. N ai v e is cl e arl y t h e w orst pr e di ct or, w hil e F L M s e e ms
t o b e t h e m ost a c c ur at e.
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Fi g. 7. D ail y err ors ( M A R E) f or el e ctri cit y pri c e c ur v es c orr es p o n di n g t o t h e
f u n cti o n al a d diti v e a n d t h e N ai v e m et h o ds.

Fi g ur e 8 r e pr es e nts t h e o bs er v e d v ers us pr e di ct e d pri c e
c ur v es al o n g a n e ntir e w e e k. C o m p ari n g t his gr a p h wit h t h e
a n al o g o us Fi g ur e 2 i n S e cti o n III, o n e c a n s e e t h e diff er e nt
p att er of t h e el e ctri cit y pri c e c ur v es. N o w, t h e diff er e n c es
b et w e e n w e e k d a ys a n d w e e k e n d ar e n ot s o r e m ar k a bl e. N ai v e
m et h o d is cl e arl y t h e w orst pr e di ct or i n t his e x a m pl e, d u e t o
t h e i nst a bilit y of its pr e di cti o ns. F L M, f oll o w e d cl os el y b y t h e
F S A M, s e e ms t o att ai n t h e b est p erf or m a n c e.
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Fi g. 8.  O bs er v e d a n d pr e di ct e d pri c e c ur v es f or t h e w e e k N o v e m b er 2 6 –
D e c e m b er 2.

A c o m p aris o n wit h t h e pr e di cti o n m et h o ds pr es e nt e d i n [ 1 4]
will b e c arri e d o ut als o i n t his el e ctri cit y pri c e st u d y. R el ati v e
pr e di cti o n err ors, c o nsi d eri n g as r ef er e n c e t h e F L M m et h o d, of
t h e diff er e nt pr o c e d ur es a p pli e d i n t his st u d y ar e r e pr es e nt e d
i n Fi g ur e 9. I n g e n er al, N ai v e, A RI M A a n d F N P m o d els ar e
t h e f art h est fr o m t h e F L M, w hil e F S A M is al w a ys v er y cl os e
t o it. C o m p ari n g t o t h e pr e vi o us d e m a n d c as e i n Fi g ur e 3, t h e
diff er e n c es a m o n g t h e ki n d of d a ys ar e n o w att e n u at e d.

Di e b ol d- M ari a n o t est is als o a p pli e d t o t h e el e ctri cit y pri c e
pr e di cti o ns, i n or d er t o a n al ys e if t h e r es ults ar e si mil ar a m o n g
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Fi g. 9.  R el ati v e pr e di cti o n err ors f or el e ctri cit y pri c e c ur v es, c o m p ari n g t o
t h e F L M m et h o d.

t h e diff er e nt pr o c e d ur es. Ta bl e V dis pl a ys t h e p - v al u es f or all
t h e c o nsi d er e d m et h o ds. E v e n if o n e c a n fi n d s o m e si mil ariti es
b et w e e n t h e pr e di cti o ns, b ot h t h e t w o b est pr e di ct ors ( F L M
a n d F S A M) ar e al w a ys u ni q u e, t h e y d o n ot l o o k li k e a n y ot h er.

T A B L E V
p - V A L U E S F R O M D I E B O L D- M A R I A N O T E S T F O R P R I C E P R E D I C T I O N S .

M et h o d  A  A x F N P S F P L  C F 1  C F 2 F K A M F S A M F L M
N 0. 8 8 8 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0
A 0. 0 0 2 0. 3 0 2 0. 0 0 5 0. 0 0 5 0. 0 0 2 0. 0 0 5 0. 0 0 1 0. 0 0 0
A x 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 1 0 8 0. 0 0 2 0. 0 0 0 0. 0 0 0
F N P 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0 0. 0 0 0
S F P L 0. 4 9 2 0. 0 0 0 0. 3 8 6 0. 0 0 0 0. 0 0 0
C F 1 0. 0 0 0 0. 6 3 8 0. 0 0 0 0. 0 0 0
C F 2 0. 0 0 0 0. 0 0 0 0. 0 0 0
F K A M 0. 0 0 0 0. 0 0 0
F S A M 0. 0 0 0

Fi n all y, t his a p pli c ati o n c o n cl u d es wit h t h e pr e di cti o n i n-
t er v als a n d pr e di cti o n d e nsit y o bt ai n e d fr o m t h e b o otstr a p
pr o c e d ur es d e v el o p e d i n S u bs e cti o n II- B. B ot h t o ols all o w t o
c o m pl e m e nt t h e p oi nt wis e pr e di cti o ns wit h a d diti o n al i nf or-
m ati o n w hi c h is v er y us ef ul i n t h e pr a cti c e.

Ta bl e VI s u m m ari z es t h e c o v er a g e, l e n gt h m e a n a n d Wi n-
kl er s c or e m e a n of t h e PI fr o m t h e F L M a n d F S A M, w hi c h
c o m bi n es a g o o d p erf or m a n c e i n t er ms of a c c ur a c y a n d
c o m p ut ati o n al c ost. I n g e n er al, c o v er a g es ar e sli g htl y l o w er
t h a n t h os e o bt ai n e d f or t h e el e ctri cit y d e m a n d. S at ur d a ys a n d
S u n d a ys ar e v er y si mil ar i n t er ms of c o v er a g e f or t h e F L M,
w hil e S u n d a ys p erf or m w ors e i n t h e c as e of F S A M. As i n t h e
c as e of t h e d e m a n d, t h os e PIs c a n b e c o m p ar e d wit h t h e o n es
o bt ai n e d i n [ 2 0] f or t h e F N P a n d S F P L, b as e d o n a si mil ar
b o otstr a p pr o c e d ur e. A g ai n, Wi n kl er s c or e is l o w er f or t h e
a d diti v e m o d els, e v e n if t h e c o v er a g es ar e hi g h er f or t h e t w o
f u n cti o n al r e gr essi o n m o d els ( b ut als o wit h hi g h er l e n gt hs).

Fi g ur e 1 0 r e pr es e nts t h e F L M PIs o bt ai n e d i n f o ur c o n-
s e c uti v e d a ys, fr o m S at ur d a y t o T u es d a y, w hi c h ar e q uit e
si mil ar a m o n g t h e m. E v e n if o n e c a n s e e s o m e diff er e n c es
b et w e e n S at ur d a y, S u n d a y a n d t h e w e e k d a ys, t h os e ar e n ot s o
r e m ar k a bl e as i n t h e d e m a n d c as e.

T o c o n cl u d e t his a p pli c ati o n, Fi g ur es 1 1 a n d 1 2 r e pr es e nt t h e
P D f or t h e F L M c o m p ari n g t h eir b e h a vi o urs b y gr o u p of d a ys
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T A B L E VI
C O V E R A G E , M E A N L E N G T H A N D M E A N W I N K L E R S C O R E O F T H E PI S F O R

E L E C T R I C I T Y P R I C E U S I N G F L M A N D F S A M B Y K I N D O F D A Y .

We e k d a ys S at ur d a y S u n d a y  We e k
F L M

1 0 0 × α = 5
C o v. ( L e n gt h) 9 1. 5 ( 2 0. 0) 8 5. 3 ( 1 7. 9) 8 5. 4 ( 2 2. 1) 8 9. 7 ( 2 0. 0)
Wi n kl er s c or e 3 2. 4 2 3 6. 6 4 5 2. 3 8 3 5. 9 1
1 0 0 × α = 1 0
C o v. ( L e n gt h) 8 5. 6 ( 1 5. 7) 7 7. 7 ( 1 4. 7) 7 7. 4 ( 1 8. 3) 8 3. 3 ( 1 5. 9)
Wi n kl er s c or e 2 5. 6 9 2 9. 2 9 3 9. 7 9 2 8. 2 4
1 0 0 × α = 2 0
C o v. ( L e n gt h) 7 4. 7 ( 1 1. 6) 6 6. 5 ( 1 1. 2) 6 7. 1 ( 1 4. 1) 7 2. 4 ( 1 1. 9)
Wi n kl er s c or e 2 0. 0 2 2 2. 9 1 3 0. 1 0 2 1. 8 9

F S A M
1 0 0 × α = 5
C o v. ( L e n gt h) 9 0. 0 ( 1 8. 8) 8 2. 1 ( 1 7. 8) 7 7. 2 ( 2 0. 1) 8 7. 0 ( 1 8. 8)
Wi n kl er s c or e 3 3. 0 0 4 3. 8 2 6 3. 3 0 3 8. 9 2
1 0 0 × α = 1 0
C o v. ( L e n gt h) 8 3. 3 ( 1 5. 0) 7 5. 8 ( 1 4. 7) 6 9. 4 ( 1 7. 0) 8 0. 2 ( 1 5. 2)
Wi n kl er s c or e 2 6. 1 4 3 3. 4 4 4 5. 8 7 3 0. 0 3
1 0 0 × α = 2 0
C o v. ( L e n gt h) 7 2. 0 ( 1 1. 2) 6 5. 2 ( 1 1. 4) 5 8. 6 ( 1 3. 4) 6 9. 1 ( 1 1. 6)
Wi n kl er s c or e 2 0. 5 7 2 5. 3 6 3 4. 0 1 2 3. 1 9
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Fi g. 1 0. Pr e di cti o n i nt er v als, usi n g F L M fr o m S at ur d a y t o T u es d a y ( 2- 5 J u n e
2 0 1 2) i n pri c e, α = 0 .0 5 .

a n d h o urs of t h e d a y, r es p e cti v el y. L eft p a n el i n t his Fi g ur e al-
l o ws t o r e c o g ni z e t h e p arti c ul ar p att er n of t h e w e e k d a ys v ers us
w e e k e n d, als o wit h sli g ht diff er e n c es b et w e e n S at ur d a y a n d
S u n d a y. C o n c er ni n g t h e h o ur of t h e d a y, o n e c a n disti n g uis h
t h e c o ntr ast b et w e e n t h e e arl y m or ni n g a n d t h e r est of t h e d a y,
w hil e aft er n o o n a n d e v e ni n g h o urs ar e ali k e.

V. C O N C L U S I O N S A N D P E R S P E C T I V E S

A d diti v e r e gr essi o n m o d els wit h s c al ar r es p o ns e a n d f u n c-
ti o n al c o v ari at es h a v e b e e n s u c c essf ull y us e d f or el e ctri cit y
d e m a n d a n d pri c e f or e c ast i n t h e S p a nis h El e ctri cit y M ar k et.
F L M att ai ns t h e b est r es ults, i n di c ati n g a li n e ar r el ati o n
b et w e e n t h e r es p o ns e a n d t h e c o v ari at es i ntr o d u c e d i n t h e
m o d el. B ot h a d diti v e m o d els ( F K A M a n d F S A M) h a v e gr e at er
fl e xi bilit y a n d als o gi v e a c c ur a c y r es ults. T h e t hr e e c o nsi d er e d
m o d els i m pr o v e t h e r es ults o bt ai n e d b y p ar a m etri c m o d els
( A RI M A a n d A RI M A X), f u n cti o n al n o n p ar a m etri c r e gr essi o n,

W e e k d a y
S at ur d a y
S u n d a y

0. 0 0

0. 0 5

0. 1 0

0. 1 5

0 2 0 4 0 6 0 8 0 1 0 0

Fi g. 1 1. Pr e di cti o n d e nsit y f or t h e el e ctri cit y pri c e, usi n g F L M, f or diff er e nt
ki n d of d a ys.

5
1 1
1 7
2 3

0. 0 0

0. 0 5

0. 1 0

0. 1 5

0. 2 0

2 0 3 0 4 0 5 0 6 0 7 0 8 0

Fi g. 1 2. Pr e di cti o n d e nsit y f or t h e el e ctri cit y pri c e, usi n g F L M, f or diff er e nt
h o urs al o n g t h e d a y.

s e mi-f u n cti o n al p arti al li n e ar r e gr essi o n m o d els a n d als o c o m-
bi n e d pr e di cti o ns m et h o ds us e d i n [ 1 4].

B as e d o n t h e pr e di cti o ns fr o m t h e f u n cti o n al a d diti v e m o d-
els, a r esi d u al- b as e d b o otstr a p al g orit h m h as b e e n pr o p os e d
t o o bt ai n pr e di cti o n i nt er v als a n d t o esti m at e t h e pr e di cti o n
d e nsit y. T h e pr o p os e d b o otstr a p al g orit h m is a bl e t o c a pt ur e
b ot h s o ur c es of v ari a bilit y: first o n e d u e t o err ors i n m o d el
esti m ati o n a n d t h e s e c o n d o n e c a us e d b y t h e i n n o v ati o n err or,
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with the advantage of not assuming hypothesis about the
distribution of the data. Computed PIs attain true (uncon-
ditional) coverages close to the nominal coverages and a
Winkler score lower than the ones in [20], which are based on
prediction methods as FNP and SFPL. In general, best results
are achieved during the weekdays while they get worse on the
weekend. This behaviour is motivated by a twofold cause: on
the one hand, the lower sample size of the weekends and, on
the other hand, their greater variability. It is also known that
bootstrap PIs in regression are often characterized by finite-
sample undercoverage (see [33] for details).

Future research related to the additive models in this context
includes the extension to various topics: to consider higher
orders in the autoregression with the endogenous variable,
to seek for new informative covariates that can entry in the
additive model and also to adapt the proposed methods to
consider functional response (that is, to predict all the daily
curve of electricity demand or price as a functional datum)
and, as a consequence, to obtain functional prediction intervals
(prediction region). All these features make this approach
appealing and with plenty of potential for improving.
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