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Abstract. The retinal microcirculation structure is commonly used as
an important source of information in many medical specialities for the
diagnosis of relevant diseases such as, for reference, hypertension, ar-
teriosclerosis, or diabetes. Also, the evaluation of the cerebrovascular
and cardiovascular disease progression could be performed through the
identification of abnormal signs in the retinal vasculature architecture.
Given that these alterations affect differently the artery and vein vas-
cularities, a precise characterization of both blood vessel types is also
crucial for the diagnosis and treatment of a significant variety of reti-
nal and systemic pathologies. In this work, we present a fully automatic
method for the retinal vessel identification and classification in arteries
and veins using Optical Coherence Tomography scans. In our analysis,
we used a dataset composed by 30 near-infrared reflectance retinography
images from different patients, which were used to test and validate the
proposed method. In particular, a total of 597 vessel segments were man-
ually labelled by an expert clinician, being used as groundtruth for the
validation process. As result, this methodology achieved a satisfactory
performance in the complex issue of the retinal vessel tree identification
and classification.

Keywords: Retinal imaging, vascular tree, segmentation, artery/vein clas-
sification

1 Introduction

The retina is the only tissue of the human body where the information of the
vascular morphology and structure can be evaluated non-invasively and in vivo
[1]. The retinal vasculature is a complex network of blood vessels composed of
arteries, veins and capillaries [2]. In the current clinical practice, optical imaging
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is widely used in the study, diagnosis, planning, and assessment of the treatment
response in a variety of ocular and systemic diseases that affect the retinal vascu-
lature as, for reference, hypertension [3], diabetes [4] or arteriosclerosis [5]. The
most common symptoms of those pathologies include micro-aneurysms, vascular
tortuosity, arteriovenous nicking or neovascularization.

In many studies, different biomarkers are used to measure the vascular mor-
phology of the retina, particularly between arteries and veins. As reference, we
can find the Arterio-Venular-Ratio (AVR) that is defined by the ratio between
the arteriolar and the venular diameters [6]. In particular, this biomarker is used
by the clinical specialists in the diagnosis of several pathologies as, for example,
diabetic retinopathy, which is among the major causes of blindness worldwide
[7]. Therefore, an accurate identification of the retinal vasculature structure and
its characterization in arteries and veins is essential for the diagnosis and moni-
toring of the treatment of a variety of retinal pathologies [8].

Nowadays, Computer-Aided Diagnosis (CAD) systems are increasingly being
used as auxiliary tools by the expert clinicians for the detection and interpre-
tation of different diseases [9] [10] [11]. These independent decision systems are
designed to assist clinicians in various tasks, including storage, retrieval, organi-
zation, interpretation, and diagnostic output of hypothetical pathological images
and data [12], facilitating and simplifying their work.

Optical Coherence Tomography (OCT) is a non-invasive, cross-sectional and
high-resolution image modality that allows the acquisition of three-dimensional
images of the retinal tissues in real time [13]. This retinal imaging technique uses
low-coherence interferometry to obtain a series of OCT histological sections by
sequentially collecting reflections from the lateral and longitudinal scans of the
ocular tissues of the human eye [14]. The OCT sections are complemented with
the corresponding near-infrared reflectance (NIR) retinography image of the eye
fundus. Both images are simultaneously captured with the same OCT capture
device. Figure 1 shows a representative example of an OCT image composed by
the NIR retinography image and a corresponding OCT histological section.

(a) (b)

Fig. 1. Example of OCT scan. (a) NIR retinography image. (b) OCT histological sec-
tion.
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Given the importance and applicability of the analysis of retinal images,
many efforts were done to face the analysis with classical retinographies. Thus,
as reference, in the work proposed by Joshi et al. [15], a methodology was de-
signed to automatically segment the vascular tree structure using a strategy
that is based on graph theory. Then, the blood vessel classification process into
arteries and veins is done using properties of color spaces. Dashtbozorg et al.
[16] proposed an automatic method for the artery/vein classification using a
graph-based approach and different machine learning methods. Following a sim-
ilar strategy, Yang et al. [17] proposed a method using a Support Vector Machine
(SVM) classifier for the vessels categorization in retinal images. Kondermann et
al. [18] proposed a method using SVM and Artificial Neural Networks (ANN) in
a feature extraction and classification process. Relan et al. [19] proposed an unsu-
pervised method of classification based on a Gaussian Mixture Model on small
vessel patches to classify the main vessels structures. Welikala et al. [21] pro-
posed an automatic methodology using a Convolutional Neural Network (CNN)
approach for the automatic classification of arteries and veins in retinal images.
The final architecture of this method was composed of six learned layers: three
convolutional and three fully-connected. Similarly, Girard et al. [22] proposed
a method for artery/vein classification combining CNN and graph propagation
strategies. In the work of Huang et al. [23], the authors proposed a methodol-
ogy using a set of features that are extracted from the lightness reflection of the
blood vessels. Then, a Linear Discriminate Analysis (LDA) learning strategy was
used to validate these selected features. In the work proposed by Zou et al. [24],
a supervised classification method based on feature selection is done. Firstly,
the grey-level co-occurrence matrix (GLCM) and adaptive local binary pattern
(A-LBP) features are extracted. Then, a Feature-Weighted K-Nearest Neighbors
(FW-KNN) algorithm is used to classify the arteries and veins vessels. In the
work of Vázquez et al. [20], the authors proposed a framework for the automatic
classification of the arteries and veins using a k-means clustering. Then, this
information is used to calculate the AVR biomarker.

In this work, we present a fully computational method for the automatic
extraction of the retinal vascular structure and its classification into arteries and
veins using, only, the information that is obtained through the NIR retinography
images. As we said before, these images are provided in combination with the
histological sections of the OCT scans. For this purpose, the method extracts the
retinal vessel tree and uses the k-means clustering algorithm with local features
to differentiate the arteries from the veins. A post-processing stage is carried out
using the anatomical knowledge of the vessels to identify and correct the possible
misclassifications of the individual vessel points. Promising preliminary results
of this method were obtained in the work proposed in [25]. In this context, this
methodology was extended and further deeply validated in this work, expanding
its potential for the identification and classification of arteries and veins in this
image modality.

This work is organized as follows: Section 2 presents the proposed method-
ology and the characteristics of all the involved stages. Section 3 details all the
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experiments that were done to validate the method as well as the discussion
about the obtained results. Finally, Section 4 includes the conclusions of this
proposal as well as the possible future lines of work.

2 Methodology

In this work, the system receives, as input, the NIR retinography image to iden-
tify and classify the vascular tree into arteries and veins. The proposed method-
ology is divided into three main stages: firstly, the entire retinal vascular tree is
extracted from the input image; secondly, the region of the optic disc is identi-
fied and removed for the posterior analysis; and finally, the remaining identified
vessels are analysed and classified into arteries and veins. Figure 2 describes
the general scheme of the proposed methodology, from where each stage will be
detailed in the following subsections.

Fig. 2. Main stages of the proposed methodology.
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2.1 Vessel Segmentation

The first stage of the classification process faces the segmentation of the retinal
vessel tree within the NIR retinography image. For this purpose, we follow the
method proposed by Calvo et al. [26], given its simplicity and for being a well-
established and robust technique that demonstrated its suitability in classical
retinographies.

Firstly, an initial segmentation was performed by means of a hysteresis-based
thresholding strategy. To achieve this, a hard threshold (Th) obtains pixels with
a high confidence of being vessels while a weak threshold (Tw) keeps all the
pixels of the vessel tree, including the spurious ones. The final segmentation is
formed by all the pixels that were included by the Tw weak threshold connected
to, at least, one pixel obtained by the Th hard threshold. The values for Th and
Tw are extracted using as reference two metrics that are calculated on the NIR
retinography images: the percentage of vascular tree and the percentage of back-
ground. These thresholds are calculated using the percentile values, according
to Equation (1).

Pk = Lk +
k(n/100)− Fk

fk
× c, k = 1, 2, ..., 99 (1)

where Lk is the percentile lower limit k, n represents the size of the data set,
Fk is the accumulated frequency for k − 1 values, fk depicts the frequency of
percentile k and c is the measurement of the size of the percentile interval. In
our case, c is equal to 1. A representative example of this stage of the vessel tree
segmentation is presented in Figure 3.

Fig. 3. Segmentation process of the retinal vessel tree. (a) Input NIR retinography
image. (b) Vessel tree segmentation image.

Next, the vessel centerline is calculated to represent the vasculature as a
list of representative segments using as baseline the information that was ob-
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tained in the previous segmentation. For this purpose, the implemented strategy
was based in the work of Caderno et al. [27], where the retinal segments are
located by means of the Multi Local Set of Extrinsic Curvature enhanced by
the Structure Tensor (MLSEC-ST) operator. The operator detects the tubular
structures (ridges or valleys) by means of the analysis of the structure tensor of
the segmentation image. And finally, a skeletonization process is done to obtain
the representation of the vessel centerline of each vascular segment. Figure 4
presents an example with the result of the centerline identification process.

Fig. 4. Vessel centerline identification process of the retinal vessel tree. (a) Input vessel
tree segmentation image. (b) Vessel tree centerline identification image.

2.2 Optic Disc Location

The optic disc is the region that presents the highest variation of intensities
of adjacent pixels in comparison with the rest of the eye fundus. This scenario
can disturb the characteristics of the visualization of the vascular structures, a
situation that can lead to misclassifications of the surrounding vessel positions
and, consequently, of the vessel segments. For that reason, the optic disc region
is frequently excluded for the analysis of the retinal vessel tree, as is our case.

To achieve this, we implemented an algorithm based on the work proposed
by Blanco et al. [28], given its simplicity and the satisfactory results that were
obtained for this issue in classical retinographies. Firstly, two Gaussian filters
were applied at different scales with a blob operator to identify a region of
interest that contains the optic disc. Then, the edges are calculated using the
Sobel edge detector [29]. Finally, we extract the optic disc region using the Fuzzy
Circular Hough transform [30]. Figure 5(a) shows an example of the optic disc
extraction, where r represents the radius of the located optic disc.
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In many cases, not only the optic disc but also its contiguous region may in-
clude significant intensity changes, being this area of the image biased to bright
intensities. As mentioned, this situation can lead to misclassifications of its con-
taining vessels as arteries and veins in posterior stages of the method. To solve
this problem, we remove a circular region centered on the optic disc with a ra-
dius of 1.5 × r (being r the radius of the identified optic disc), as shown in the
example of Figure 5(b), excluding sufficient region to guarantee the posterior
analysis in the desired conditions.

Fig. 5. Example of the optic disc location. (a) Optic disc detection, where r represents
the radius of the optic disc and 1.5 × r represents the brightness contiguous region to
be removed. (b) Removal of the optic disc region in the segmented vasculature image.

2.3 Artery/Vein Vessel Classification

In this stage, we perform the automatic classification of the identified retinal
vasculature into arteries and veins. To achieve this goal, we divide this stage
into three constituent steps, as represented in Figure 6. These steps are herein
progressively detailed.

Profile Extraction. Firstly, we obtain the vessel profiles in the original NIR
retinography image, profiles that are posteriorly used in the process of the blood
vessel classification. To achieved that, we based our strategy in the proposal of
Vázquez et al. [20]. In particular, for each point P of the vessel centerlines, we
obtain four equidistant vessel points Pi. These points are used as reference to
obtain their corresponding perpendicular lines that are limited by both vessel
edges. The vessel intensities over these perpendicular lines determine the vessel
profile that is analysed to classify the referenced point, P . This strategy is applied
over the entire vascular structure. Figure 7 shows a representative example of
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Fig. 6. Steps of the artery/vein vessel classification stage.

the vessel profile extraction, including the representation of the extraction of the
perpendicular lines.

Fig. 7. Example of the vessel profile extraction. (a) Overlap between the result of the
vessel segmentation and the NIR retinography image. (b) The four yellow lines, that
are perpendicular to the vessel centerlines, identify the vessel profiles at the points that
are posteriorly used in the classification process.

Artery/Vein Classification. In this second step, we use a machine learn-
ing approach to discriminate the retinal vessel tree between these two types.
Normally, the arteries and veins are distinguished according to its branching
pattern and morphology. In this work, the vectors of characteristics are ob-
tained by means of the method proposed by Grisan et al. [31] that consist of two
components:

– µ(H) (from HSL color space).
– σ2(R) (from RGB color space).

For the classification task, we selected the k-means clustering algorithm [32],
given its simplicity and computational efficiency. This unsupervised learning
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strategy was used to calculate the centroids for each of the two clusters using
the feature vectors as input. As result of this approach, each vascular position of
the vessel centerline is categorized as belonging to an artery or vein. In Figure 8,
we explain the result of the classification method where the red points describe
arteries whereas blue points indicated veins.

Fig. 8. Example of A/V classification. (a) Results of A/V classification in the entire
vascular structure. (b) Red points represent arteries whereas blue points are veins.

Propagation. In the third and last step, a post-processing strategy is applied
using the anatomical knowledge of the retinal vascular structure to identify and
correct the possible misclassifications of the individual vessel points. Many times,
the vascular points that belong to the same vascular segment can be classified
into different categories (see Figure 9). This particular situation can be caused
by possible changes in the brightness profiles, speckle noise or the presence of
small capillaries, situations that are frequently present in this type of images
and that typically produce these attenuations.

To decrease the influence of these misclassifications, using the context of the
classifications, a voting process is carried out in the entire vascular segment.
To achieve this, a voting process over each vascular segment is done. Then, the
category with the higher number of votes is considered the winning class and,
consequently, propagated to all the vessel points of the same vascular segment.
In Figure 10, we can see a representative example of the final classification of
the retinal vessels into arteries and veins after using the propagation step.
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Fig. 9. Example of propagation of the winning class by a majority vote of all the points
of the same vascular segment. (a) Vascular segment without propagation. (b) Vascular
segment with propagation.

Fig. 10. Final result of the A/V classification stage. (a) Final result of the classification
process with propagation applied to all the vascular segments. (b) Final result of a given
vascular segment with propagation.
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3 Results and Discussion

The proposed method was tested using a dataset of 30 OCT scans of different
patients including their corresponding NIR retinography images. These images
were taken with a confocal scanning laser ophthalmoscope Spectralis R© OCT
(Heidelberg Engineering). The OCT scans are centered on the macula, from both
left and right eyes of healthy patients and presenting a high-resolution. The local
ethics committee approved this study, which was conducted in accordance with
the tenets of the Helsinki Declaration.

In order to test the performance of the proposed work, the OCT images were
manually labelled by an expert clinician, identifying the arteries and veins. The
dataset is composed by a total of 597 vascular segments. Next, this dataset was
randomly divided in two subsets with the same size, one for training and the
other for testing.

The proposed method was evaluated using the following metrics: Accuracy,
Sensitivity and Specificity (Equations (2), (3) & (4), respectively). These mea-
surements use as reference the true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) using the artery and vein classifica-
tions. In this work, we consider TPs as correctly identified arteries, whereas
TNs as correctly identified veins.

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Firstly, the classification system before the propagation step was evaluated
over all the vessel points of the retinal vessel tree. Figure 11 shows the confusion
matrix that is associated with the mentioned manual labelling of the expert clin-
ician. Moreover, Table 2 summarises the performance of the proposed method.
As we can see, the results provide a good balance between Accuracy, Sensitiv-
ity and Specificity (88.54%, 90.50% and 86.66%, respectively). We also have to
consider that these OCT scans are normally taken over the macular region, as is
the case of all the images of our dataset, region that normally contains smaller
vessels in comparison with other parts of the eye fundus, reinforcing the anal-
ysis of the obtained performance. Additionally, a ROC curve was performed to
compare the results of Sensitivity and Specificity, obtaining an Area Under the
Curve (AUC) of 0.886 (see Figure 12).

Then, the classification approach that includes the propagation stage was
evaluated in all the vessel coordinates that were included in the study. As men-
tioned, the propagation stage identifies and corrects the possible misclassifica-
tions of the vessels points in the same vascular segment. Table 2 presents the
results of the comparative analysis through Accuracy, Sensitivity and Specificity
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Fig. 11. Confusion matrix in the A/V classification process without propagation.

Table 1. Accuracy, specificity and sensitivity results in the A/V classification process
without propagation.

Accuracy Sensitivity Specificity

88.54% 90.50% 86.66%

Fig. 12. ROC curve with the results of the classification process without propagation.
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(90.10%, 91.67% and 88.59%, respectively). As we can see, the results from the
proposed method including the propagation step are satisfactory. In addition,
Figure 13 shows the ROC curve obtained by the proposed system, with an area
under the curve of 0.901, reinforcing the validity of the designed methodology.

Table 2. Accuracy, specificity and sensitivity results in the A/V classification process
with propagation.

Accuracy Sensitivity Specificity

90.10% 91.67% 88.59%

Fig. 13. ROC curve with the results of the classification process using propagation.

Despite the non-existence of any other proposal for the same image modal-
ity, we compared the proposed system with other reference approaches of the
literature that were proposed for classical retinographies. The results of this
comparison are shown in Figure 14. As we can see, our proposed method offers
a competitive performance, outperforming the rest of the strategies, considering
that each one was tested in their particular conditions and datasets.

Figure 15 shows a representative example illustrating the final result of the
proposed methodology. As we can see, the method offers accurate results, pro-
viding information that can be easily analysed by the experts clinicians in their
daily practice.
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Fig. 14. Vessel classification performance comparative between different techniques of
the literature and our proposal.

Fig. 15. Example of final result of the proposed methodology. (a) NIR retinography
image. (b) Removal of the optic disc region and segmentation of the vasculature image.
(c) Vessel tree centerline identification image. (d) Final result of the vascular segment
with propagation.
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4 Conclusions

The retina is the only tissue of the human body where the morphological infor-
mation of the blood vessels can be directly obtained non-invasively and in vivo. A
precise identification and characterization of the retinal vasculature and poten-
tial interesting biomarkers facilitate the diagnose, prevention and treatment of
many systemic diseases, such as hypertension, diabetes or arteriosclerosis, among
others, that significantly modify and damage the blood vessels architecture.

The CAD systems are increasing its relevance in the daily clinical practice,
many of them also including the analysis of many medical image modalities, fa-
cilitating the doctor’s analysis and diagnosis. Hence, these systems are developed
to assist the clinical experts and simplify their work of detection and interpre-
tation of characteristic pathological patterns that are typically present in the
medical images of interest.

Among all the modalities, the OCT imaging is a non-invasive medical image
modality with a high-speed capture process (being taken in real time) that pro-
vides a three-dimensional image of the biological tissues of the eye fundus with
micron-level resolution. These specifications enable a precise evaluation and de-
tection of slight modifications in the retinal microcirculation structure.

In this work, we present a new computerized system for the automatic retinal
vasculature extraction and classification into arteries and veins using the NIR
retinography images. These images are taken in combination with the histolog-
ical sections in the OCT scans. To identify and classify the vessel structures,
the proposed method analyzes the characteristics of each point of the vascular
tree structure. The strategy combines the application of the k-means clustering
technique with the feature vectors that were obtained from the extracted vessel
profiles.

To validate the proposed methodology, we used 30 OCT scans of different
patients including their corresponding NIR retinography images. From this OCT
image dataset, 597 vessels were identified and manually label by an expert clin-
ician. As result, the proposed method provided an accuracy of a 90.10% in the
classification process. This satisfactory performance was achieved with the com-
plete version of the method including the application of the propagation stage.
Finally, we performed a comparative analysis with similar proposals that are
present in the literature. This review emphasized the relevance and efficiency of
the proposed method, comparatively with the rest of the approaches.

Although the favourable obtained results, we expect to reinforce the proposed
methodology. In that sense, as future works, we aim to improve the different
phases of the method to increase the success rates. In particular, we plan to ex-
tend the methodology with the inclusion of a more heterogeneous set of features
as well as different testing classifiers to increase the performance of the method.
Further, future plans include the design and implementation of an automatic
method for the AVR calculation as a relevant biomarker, among others of inter-
est. This way, we take the opportunity of having identified and categorized the
arterio-venular tree to derive useful interesting biomarkers for being provided
to the specialist. Finally, a CAD system could be developed to combine this
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methodology with an automatic detection of other eye-related diseases, such as
the diabetic retinopathy.
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