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ABSTRACT 
Nondeterministic optimization methods have been studied in depth from an academy and industrial 
point of view. The main drawback when implementing probabilistic optimization methods to complex 
structures is the computational cost. Many researchers have dedicated their efforts to the development 
of efficient algorithms to decrease the computational time required by the original formulation of the 
Reliability Based Design Optimization (RBDO) problems. Among these efficient methodologies the 
SORA (Sequential Optimization and Reliability Assessment) method has been widely used due to its 
decoupled formulation. Two application examples are presented with the objective to show the 
possibilities of taking into account uncertainty data into structural optimization for large-scale 
engineering problems. 
Keywords:  RBDO, RBTO, aleatory uncertainty, multi-model optimization, reliability index, fail-safe. 

1  INTRODUCTION 
Structural optimization is a common tool used by engineers to improve their designs 
efficiently [1]–[4]. Generally, the deterministic formulation of the optimization problem is 
performed using ultimate limit states with their corresponding partial safety coefficients. This 
approach sometimes leads to oversized structures due to its general treatment of the system 
uncertainty. A good characterization of the uncertainty affecting structural responses allows 
us to improve the final design. In that sense Reliability Based Design Optimization (RBDO) 
methods [5]–[7] have been positioned as the solution to a better link between safety and cost 
of structures. The main advantages of this approach are the possibility of establishing the 
target reliability for each specific constraint and consider the real uncertainty that affects to 
structural parameters independently. On the contrary, the main disadvantage is the 
computational effort required by these methods when numerous random variables or state 
limits are involved. RBDO methods were initially applied only to analytical examples and 
later to more complex numerical problems. Among the structural applications we can find 
examples in aerospace [8], [9], automobile components [10], [11] or in civil engineering 
structures like long-span bridges [12], [13]. 
     Although original formulation of RBDO is a nested optimization problem, decoupled 
methods have proven to be very efficient algorithms to obtain accurate results with a low 
computational effort, being possible their use in combination with finite element models of 
industrial applications. In that regards two application examples are presented: first a 
topology optimization of a simplified aircraft tail fuselage and second a multi-model 
optimization of a stiffened panel considering partial collapses. 

2  RBDO FORMULATION AND METHODS 
Defining the vector of design variables d and the set of random variables as x, the general 
RBDO problem can be formulated as: 

 min ,F xd μ ,                                                      (1a) 

subject to 
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 , 0 1,...,
ii fP G P i m 

  
  d x ,                                       (1b) 

where F is the objective function, G is the limit state and Pf  is the probability of failure. 
When uncertainty is included it is important to know which values of the random variables 
are used to evaluate the constraints. As can be seen in Fig. 1 there exist uncertainty in the 
curves that define the design region. Therefore the probabilistic optimum solution is moved 
into the design region in order to satisfy the constraints with the probability of failure 
specified in eqn (1b). 
     There is extensive research about find the optimal solution of problem defined above [6], 
[7], [14]. This problem can be directly solved by using a two level optimization approach 
with an inner optimization loop to evaluate the probabilistic constraints and an outer loop for 
the optimization problem. The most popular two level methods are the Reliability Index 
Approach (RIA) [5] and the Performance Measurement Approach (PMA) [6]. A flowchart 
of these methods is presented in Fig. 2. 
 

 

Figure 1:  Comparison between RBDO and DO approach. 

 

Figure 2:  Flowchart of two level methods. 
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     As indicated in Fig. 2 the reliability analysis consist of a new optimization problem that 
searchs the Most Probable Point of failure (MPP) that represents the nearest point from the 
mean value over the limit state surface. This distance measured in the standard normalized 
u-space is defined as the realibility index   [15]. 
     As commented initially, these methods require a high computational effort. A very 
interesting strategy consist of separating the reliability assessment from the DO problem. 
Thus the RBDO problem becomes in a sequence of deterministic optimizations, each 
followed by its corresponding reliability analysis. Sequential Optimization and Reliability 
Assessment (SORA) is one of the most popular decoupled method proposed by Du and Chen 
[7]. The formulation of this method is the following: 

 min ,F xd μ ,                                                       (2a) 

subject to 

 MPP,, 0ii sG  x pd μ ,                                               (2b) 

where x are random design variables and p are non-design random variables. The first step 
is to perform the deterministic optimization considering MPP xx and MPP Pp . Vector s 

gets to keep the MPP into the deterministic boundary and is defined as  x MPPs x . Fig. 
3 shows a simplified flowchart of this decoupled method. 

3  APPLICATION EXAMPLE 1: TOPOLOGY OPTIMIZATION 

3.1  Introduction 

Topology optimization is becoming one of the most popular optimization techniques since 
the emergence of modern fabrication processes as Additive Layer Manufacturing (ALM). 
These techniques are even applied with metals such as titanium, which allows the fabrication 
of geometries similar to those obtained by topology optimization. The objective of this work 
is to include uncertainty at early stages of the design and analyze the effect in subsequent 
design phases. 

 

 

Figure 3:  Simplified flowchart of SORA method. 
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3.2  Simplified aircraft tail fuselage 

Fig. 4 shows the FE model with 75978 3D finite elements of a simplified aircraft fuselage 
previously studied in López et al. [16]. The fuselage is loaded in the rear part of the structure 
and with the loads transmitted by the vertical and horizontal tail planes (VTP-HTP). 
     First, the deterministic topology optimization (DTO) is performed with the objective of 
minimizing the material volume subject to Von Mises stress constraint of σmax=300 MPa. 
Once the DTO is solved, the weighted compliance is obtained, being considered as constraint 
in the following RBDO problem. 
     In this example uncertainty in loads and material are defined as shown in Table 1. 
     Afterwards, the RBDO problem is defined, being the target to obtain a design as stiff as 
the preliminary structural scheme provided by the DTO when uncertainty in the load values 
and Young’s modulus are taken into account. The RBDO problem is formulated as: 

  s.t.min V d ,                                                       (3a) 

3 (1.35 10 3)( ) DTO T

fP WC WC P  
     d ,                             (3b) 

max( ) d ,                                                          (3c) 
 

where WCDTO = 4.56E7 mm/N, value obtained in the previous DTO. 
     Numerical results are presented in Table 2 and the final structural layout is presented in 
Fig. 5. As can be observed the optimal structural layout is different in both approaches. Thus, 
considering uncertainty in early stages of the design can lead to a different structure. 
 

 

Figure 4:  3D design region of the simplified aircraft fuselage. 

Table 1:  Definition of the uncertainty data. 

Random variable Distribution       

Young’s modulus E (MPa) Log-Normal 74000 3700 0.05 
Load multiplier factor ( 1,...,6)i i   Normal 1.0 0.1 0.1 
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Table 2:  Numerical results. 

 DTO RBDO 
Obj. function (mm3) 3.62E9 4.33E9 
Vol. frac (%) 4.26 5.10 
WC constraint (mm/N) 4.56E7 3.59E7 

 

 

Figure 5:  Topology results for DTO (left) and RBTO (right). 

     The following step is to analyse which structure is better in a subsequent size RBDO with 
the same target reliability (βT). The results of both optimization problems can be interpreted 
in two different internal bar structures as can be seen in Fig. 6. For both structures the same 
size RBDO problem is performed as: 

min s.t.W ,                                                       (4a) 

bars 400 MPa  ,                                                  (4b) 

skin 300 MPa  ,                                                  (4c) 

[ ] P ( 3)DTO T

fP WC WC    .                                       (4d) 

 

Figure 6:  Comparison of designs provided by the RBTO and DTO results. 
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     Fig. 6 shows the sequence of the entire process of comparison between RBTO and DTO 
approaches. The idea is to compare the final weight of the same RBDO problem (size 
optimization) of two different structures. The optimum weight obtained for the model based 
on DTO and RBDO results were 8.16 kN and 7.35 kN respectively. There is a significant 
weight reduction in the final design when uncertainty is included in early stages of the design 
as the topology optimization procedure. 

4  APPLICATION EXAMPLE 2: MULTI-MODEL OPTIMIZATION 

4.1  Introduction 

Several aerospace regulations contemplate the possibility of accidental damages in aircrafts 
that produce loss of structural parts in flight. Therefore, the possibility of a partial collapse 
must be contemplated into the design process of these structures. For that purpose, a set of 
additional configurations need to be considered into the design process of certain structures 
apart from the intact model. This strategy is known as multi-model optimization. 

4.2  Curved stiffened panel of an aircraft fuselage 

The Federal Aviation Administration published the Advisory Circular 25.905-1 [17]. This 
design regulation aims to minimize the hazards that could occur to an airplane if a propeller 
blade fails and its impact causes a loss of structure in the fuselage. The curved stiffened panel 
presented [18] is composed by four frames (curved stiffeners), four stringers (longitudinal 
stiffeners) and the skin. Fig. 7 shows the geometry and the notation used for the definition of 
stringers and frames profiles, as well as the skin thickness. 
     Shear and compression loads presented in Fig. 7 are used to perform the buckling analysis 
of the structure through a FE model defined in Abaqus [19]. The material used was aluminum 
type AL2024-T3 for the skin and aluminum type AL7075-T6 for the stiffeners. The design 
variables (d) considered are the set of cross-sectional dimensions of frames, stringers and 
skin shown in Fig. 8. 
     Five damaged models (d=1,…,5) were arbitrarily generated as a result of the removal of 
part of the panel structure. The proposed incomplete configurations can be seen in Fig. 9, 
with the corresponding identification number d and the first buckling factor of the initial 
design. 
 

 

Figure 7:  Geometry and loads. Units in kN and m. 
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Figure 8:    Transversal cross section of frames (left), stringers (right) and skin thickness 
(bottom). 

 

Figure 9:  FEM of the panel (d = 0) and partial collapses (d = 1,…,5). 

Table 3:  Mean and standard deviation of the normal random variables. 

 
  

1 0.6 0.5 0.3 72000 71000 
0.1 0.06 0.05 0.03 7200 7100 

 
     The random variables (x) considered are the values of the compression (Pc

0, Pc
d) and shear 

(Ps
0, Ps

d) loads defined in the buckling analysis, apart from the elasticity modulus of the skin 
(Eskin) and the stiffeners (Estiffeners) material (Table 3). 
     The objective is to get the minimum structural mass of the intact structure satisfying 
probabilistic buckling constraints in both intact and damaged configurations. Thus, the multi-
model RBDO problem can be formulated as: 

0 (kN/m)
c

P (kN/m)d

c
P 0 (kN/m)

s
P (kN/m)d

s
P (MPa)

skin
E (MPa)

stiffeners
E

 x

 x
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    21.45 0.58 kg mF MF MS MSk        ,                              (5a) 

subject to 

 
0

0 0 0 0
min, , , , 1 0C S skin stiffeners fP P P E E P     d ,                         (5b) 

  min, , , , 1 0 1,...,
d

d d d d
C S skin stiffeners fP P P E E P d D      d ,               (5c) 

 
0

0 0 01 , , , , 0 1,...,ii C S skin stiffeners max Sf
P w P P E E w P i n     d ,              (5d) 

 1 , , , , 0 1,...,   1,...i
d

d d d
i C S skin stiffeners max Sf

P w P P E E w P i n d D      d ,    (5e) 

211.423 15.714; 11.423 15.714; 3.214 4.286

211.423 15.714; 11.423 15.714; 3.214 4.286

FA F FB

Fe Fe Fe
SA S SB

Se Se Se

      

     


,    (5f) 

being MF, MS and MSk the mass in kg of the frames, stringers and skin, respectively. The 
probabilistic constraints are established on the buckling factor λd of each configuration of the 
panel (eqns (5b) and (5c)) as well as the buckling mode amplitude wi

d of the stiffeners (eqns 
(5d) and (5e)). Slenderness constraints of the cross section in stiffeners (eqn (5f)) are also 
included as deterministic constraints. The minimum values of buckling factors imposed in 
eqns (5b) and (5c) are λ0

min=125 and λd
min=75 respectively, and the maximum displacement 

allowed in the stiffeners (eqns (5d) and (5e)) must be wmax=0.05, that is, less than 5% of the 
maximum displacement of the buckling mode. The target safety index is set βT=3.719, 
corresponding to a probability of failure of Pf=0.0001. The probabilistic optimization of eqn 
(5) has initially been solved for the intact model exclusively, d=0. Then, more damaged 
models were added progressively to the existent ones, increasing the size of the probabilistic 
optimization problem. Results are presented in Table 4. 

Table 4:    Results of the RBDO considering only the intact model (d=0) and the multi-
model configurations D=2, D=3, D=4 and D=5. 

DV 
(mm) d=0 

D=2 
(d=0,1,2)

D=3 
(d=0,1,2,3)

D=4 
(d=0,1,2,3,4)

D=5 
(d=0,1,2,3,4,5) 

Skt 1.9871 2.0806 2.4385 2.4999 2.5023 
F1 5 5 5 5 7.972 
F2 14.5386 14.5386 20.2624 14.5386 25.3471 
FA 20 20 20.2624 20 34.8687 
FB 4.0906 4.0906 4.1443 4.0906 7.1317 
Fe 1.2728 1.2728 1.2895 1.2728 2.219 
S1 5 5 5 5 7.0317 
S2 19.8293 20.3639 22.8302 23.4465 23.5314 
SA 27.2781 28.0135 31.4063 32.2541 32.3709 
SB 5.5792 7.2098 6.4236 7.1994 6.6209 
Se 1.7359 1.7827 1.9986 2.0526 2.06 

F(kg/m2) 7.6865 8.0877 9.5459 9.7951 10.711 

118  High Performance and Optimum Design of Structures and Materials III

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 175, © 2019 WIT Press



 

Figure 10:  Evolution of the objective function for D=5 in SORA and PMA method. 

     As can be seen in Table 4, the penalty mass of the panel, compared with the optimum 
design of the intact structure (d=0), is not linear with the number of damages considered, 
being the determining factor the size and location of the damage. This phenomenon can be 
appreciated in the volume increment when including the partial collapse 3 and 5. Fig. 10 
summarizes the evolution of the objective function after each cycle of the SORA method in 
the optimization problem with D=5, as well as the evolution of the objective function using 
PMA method. From Table 4 it can be drawn that although the optimum mass of the panel 
increases progressively by adding damaged configurations, the same does not happen with 
the value of the design variables. For instance, comparing the optimum design for D=2 and 
D=3, all the values of the design variables increase except the vertical border height of the 
stringers (SB). Moreover, the values of the design variables F2, FA, FB and Fe when D=4 
decrease considerably in comparison with the corresponding values when D=3. 

5  CONCLUSIONS 
Probabilistic optimization problems can be efficiently solved with complex structural 
analyses or even with different optimization strategies. In this work two different application 
examples have been presented in order to visualize the effect of considering uncertainty data 
in topology optimization or in fail-safe design processes. 
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