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Abstract
This research proposes a new formulation for fail-safe size optimization, considering the probability of occurrence of each 
failure scenario and the random structural parameters as sources of uncertainty. Essentially, the fail-safe reliability-based 
design optimization is reformulated, where the term “damaged structure” coalesces information of the whole set of damaged 
configurations. Thus, a single random reliability index is defined, representing the reliability of a limit-state of the damaged 
structure, which accounts for the safety level of the entire set of damaged configurations. The method provides the optimum 
design for which the reliability indices of the damaged structure are achieved at the confidence level the designer demands. 
The first application example corresponds to an academic analytical problem. The second and third application examples 
correspond to practical engineering cases: a 2D truss structure with stress constraints as well as the tail section of an aircraft 
fuselage with stress and buckling constraints. Results show a considerable reduction of the objective function compared 
to the fail-safe RBDO, which could lead to oversized designs. In this sense, mass savings up to 13.6% are achieved for the 
industrial-like application example.

Keywords Fail-safe · Failure scenario · Partial collapse · Multi-model · Uncertainty · Reliability

1 Introduction

Structural design in several engineering fields must consider 
failure scenarios that are unlikely, but could occur over the 
service life, causing damage to the structure. An example 
of this can be found in the design of cable-stayed bridges, 
where regulations contemplate the possibility that the impact 
of a vehicle may break a cable. Thus, the recommendations 
for stay cable design, testing, and installation developed by 
the Post-Tensioning Institute [38] define the load combina-
tion that the bridge must withstand in the absence of the 
damaged cable after the accident. In aerospace, there are a 
huge variety of accidental situations that could lead to a loss 
of structural performance as a result of an object striking 

the aircraft. Some examples are bird strikes, runway debris, 
or hail, as well as the detachment of a rotating engine part 
and subsequent impact on the aircraft (engine blade loss, 
uncontained engine rotor failure, propeller blade failure, 
etc.). These scenarios are covered by extensive regulations 
that apply to aircraft design. Thus, requirements specified by 
the Federal Aviation Administration in FAR 25.571(e) [21] 
establish that “The airplane must be capable of successfully 
completing a flight during which likely structural damage 
occurs as a result of: uncontained fan blade impacts, uncon-
tained engine failures or uncontained high energy rotating 
machinery failure”. More specifically, the Advisory Circu-
lars AC 20-128A [17] and AC 25.905-1 [19] provide design 
recommendations for these events, establishing the set of 
load combinations that the damaged structure must with-
stand, known as Get Home Loads.

Fail-safety is a structural design philosophy that consid-
ers that a structure must be able to sustain possible dam-
age. This damage could be of different nature, and can be 
classified into two categories: deterioration and accidental 
damages. Deterioration damage refers to the degradation 
of the material properties during normal operation, e.g., 
fatigue or corrosion effects. On the other hand, accidental 
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damage is related to occasional events prompted by discrete 
sources, e.g., uncontained engine rotor failure or bird strikes. 
Niu [36] established fail-safe design practices for fatigue-
related damages, where crack propagation may lead to “a 
failure of a single member in redundant structure or par-
tial failure of a monolithic structure”. Therefore, the situa-
tion must be studied “one instance at a time”. This makes 
sense, because fatigue failure does not generally incur in 
several members failed at the same time. In contrast, when 
a structure is damaged by a discrete source, multiple failures 
can occur simultaneously at different locations. As aviation 
regulations contemplate this discrete source of damage, the 
simultaneous collapse of several members in an aircraft rep-
resents a real design practice.

Guaranteeing structural safety in damage scenarios will 
inevitably require an increase in the structural weight. The 
final design should provide alternative resistant structural 
schemes to sustain the stresses when partial damage occurs, 
hence redistributing the internal forces in the remaining 
structure. From the designer’s perspective, it is of interest to 
ascertain the minimum weight increase that will ensure the 
required safety. In that sense, several investigations were car-
ried out by combining optimization techniques with the fail-
safe strategy. They could be classified into fail-safe topology 
optimization and fail-safe size optimization.

Topology optimization is particularly attractive when the 
physical size, shape, and connectivity of the structure are 
not previously defined. Only some quantities in the prob-
lem are known, such as the design domain, applied loads, 
and boundary conditions. Due to its general approach, this 
type of structural optimization brings the best chance to find 
groundbreaking designs, making it appropriate for prelimi-
nary stages in a structural design process. Generally, fail-
safe topology optimization pursues to minimize the compli-
ance of a conceptual design that can sustain damage.

Some researchers have analyzed the local failure in 
topology optimization for truss structures, where the local 
failure can be modeled straightforwardly by removing one 
bar from the truss, since a clear definition of a structural 
member exists. Achtziger and Bendsøe  [2] studied the opti-
mal topology of a truss, so that stiffness after degradation is 
maximized. Mohr et al.  [33] proposed a redundant robust 
topology optimization of truss. Stolpe [40] modeled failure 
as either a complete damage of some predefined number of 
members or by degradation of the member areas, and con-
cluded that the optimal topology can change drastically even 
in the situation that only one member is partially degraded. 
Based on this idea, Pollini [37] performed the fail-safe opti-
mization of viscous dampers.

Another research line is focused on the fail-safe topol-
ogy optimization of continuum structures. In this case, the 
first limitation is the absence of discrete structural elements 
to be eliminated, as members emerge after performing the 

optimization process. Jansen et al. [24] were the first to 
address this aspect by defining damage scenarios in the con-
tinuum design domain, eliminating areas or patches of a 
given size. In this approach, the fail-safe optimization prob-
lem was formulated as minimizing the compliance of the 
worst-case damage scenario. As a consequence of eliminat-
ing part of the design domain, the original bar could not be 
generated; hence, robust optimization introduced redundant 
members into the design to replace the non-existing bar. 
Results showed that the designs obtained contain a number 
of redundant bars which leads to an increased robustness 
with respect to local removal of material. One of the major 
shortcomings of Jansen et al. [24] was that it involves a very 
large number of finite-element analyses (FEA) models at the 
scale equal to the number of elements. To overcome this dif-
ficulty, Zhou and Fleury [43] established a computationally 
viable solution for this problem, significantly reducing the 
computational burden. Nevertheless, some of these patches 
could be empty, containing only void regions instead of 
structural parts. To improve this aspect, Ambrozkiewicz 
and Kriegesmann  [3] proposed strategies to determine the 
placement of the damaged zones. The first approach stated 
that a patch can be considered empty if the maximum value 
of the densities in the patch is below a certain threshold. 
The second one was based on a load-path identification. As 
a result, the computational cost was reduced significantly. 
Wang et al. [42] proposed an efficient optimization strategy 
to obtain the designs which are insensitive to the occur-
rence of local failure, introducing the von Mises failure 
criterion to evaluate the patches to be damaged or undam-
aged. By defining the failure coefficient, the material prop-
erties of a given patch was regarded as degenerated if its 
von Mises stress exceeded an allowable stress. Furthermore, 
Ambrozkiewicz and Kriegesmann [4] presented a sequen-
tial topology and shape optimization for fail-safe design, 
consisting of three steps: (1) minimizing the compliance 
subject to volume constraints to get a preliminary design, 
(2) identifying the load-bearing members of the optimal 
design and creation of damage scenarios, and (3) perform-
ing a density-based shape optimization using the damage 
scenarios. Smith and Norato [39] introduced a topology 
optimization technique for the design of fail-safe structures 
made of geometric components. It was concluded that the 
methodology was significantly more efficient than density-
based techniques, since the number of analyses required 
is proportional to the number of geometric components 
and independent from the mesh. Kranz et al. [26] proposed 
load-path-based evaluation scheme for fail-safe topology 
optimization, where redundant structures are obtained at 
much less computational cost. Hederberg and Thore [23] 
combined density-based topology optimization with a mov-
ing morphable component representation of structural dam-
age, obtaining more robust fail-safe designs.
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As already discussed, topology optimization approaches 
have enormous potential in the early stages of the design 
process of a structure. However, in advanced stages of the 
design, there are numerous features of the structure that are 
already frozen and cannot be modified. Generally, shape 
and geometry of the structure are not considered variable 
at this stage and topology optimization methods cannot be 
used. It is at this point that size optimization methods gain 
prominence. Often, the industry requires fail-safe designs, 
which can be obtained by reinforcing the original structure, 
i.e., without adding additional structural elements. Thus, an 
industrial example known to the authors is the optimization 
of the tail-cone structure of an aircraft taking into account 
possible structural failures. Some of the possible failures 
that the aircraft company contemplates are the release of 
an unducted blade from open rotor engines or an uncon-
tained auxiliary power unit (APU) rotor failure, generating 
debris that strike the aircraft. Alternatively, other types of 
partial damage are the collapse of one of the bars support-
ing the APU, a failure of a fitting in the interface between 
the tail-section and the forward section, or a fire event in the 
APU compartment, which may cause damage in the skin or 
firewalls. Optimization of this structure with these failure 
scenarios cannot be tackled with fail-safe topology optimi-
zation, but can be addressed with fail-safe size optimization 
methods.

One of the first works in fail-safe size optimization of 
structures was presented by Sun et al. [41]. In their work, 
stress, displacement, buckling, and natural frequency con-
straints were applied for each failure case. Arora et al. [5] 
and Nguyen and Arora [35] proposed an optimization strat-
egy to perform fail-safe structural optimization of large 
structures. Feng and Moses [22] explored several criteria for 
optimizing size components in a structure to consider both 
extreme and accident conditions. Marhadi et al. [29] pro-
posed an optimization strategy that attempts to maximize the 
energy absorption by considering the possible damage to the 
members that integrate the structure. Recent research  con-
siders finite-element models of the intact structure and a set 
of possible partial collapses into the optimization process. 
Fail-safe deterministic size optimization was first applied 
to shell structures by Baldomir et al. [6]. This multi-model 
approach aimed to obtain a minimum penalty weight over 
the intact structure while guaranteeing the fulfillment of 
several limit-states in both the intact and damaged config-
urations. As a result, the final optimum design would be 
safe under all the damaged scenarios considered. Lüdeker 
and Kriegesmann [27] performed a fail-safe optimization 
of beam structures, aiming for the mass minimization of 
lattice structures subjected to stress constraints, proposing 
strategies to reduce the number of constraints in the optimi-
zation problem. Considering local degradation of member 
properties, recent observations by Dou and Stolpe [12] show 

that the degradation of one arbitrary member may yield to 
a worse objective function than the complete removal of 
the member. In the same trend, Dou and Stolpe [13] char-
acterized local thickness degradation in a part of a member 
by combining different damaged models into the fail-safe 
design problem.

One of the main shortcomings of the previous fail-safe 
techniques was that their formulations did not contemplate 
the quantification of reliability in the final optimal design 
when there is uncertainty in any parameter. The only way of 
increasing the reliability in those approaches is by the use of 
partial safety factors. Thus, Cid et al. [8, 9], made a further 
step by proposing a fail-safe probabilistic approach, in which 
these uncertainty data were taken into account in the fail-
safe design. In that research, the reliability index associated 
with each limit-state had to be guaranteed in the intact model 
and all damaged scenarios simultaneously. By applying this 
technique, it was possible to guarantee a specific target reli-
ability index on each limit-state.

The fail-safe approaches described in the paragraph 
above aim to simultaneously meet all limit-states in the 
whole set of damaged configurations. Admittedly, this 
strategy may seem too conservative and could lead to 
oversized designs, since the accidental situation will be 
a single event and it is unknown which partial collapse 
will occur. In addition, it should be taken into considera-
tion that some damaged configurations may have differ-
ent probability of occurrence than others. These values 
of probability of occurrence of each damaged configura-
tion can be grounded in historical evidence of accidents. 
For instance, in the aerospace field, the Federal Aviation 
Administration conducted several studies [18], charac-
terizing uncontained engine rotor failures from histori-
cal accidents occurred from 1962 to 1989. In the civil 
engineering field, companies have reported accidental 
situations applied to cable-stayed bridges, in which the 
accidental situation where three adjacent cables break 
due to an impact of a vehicle is less probable than the 
breakage of a single cable. To address this aspect, a new 
methodology, denoted as probability-damage approach 
for fail-safe design optimization (PDFSO) was proposed 
by Cid et al. [10], where the probability of occurrence of 
each damage scenario was contemplated as a new source 
of uncertainty into the deterministic fail-safe optimization 
problem. In that strategy, the main novelty was to define a 
new probabilistic formulation where the set of responses 
from the damaged configurations associated with the same 
limit-state are transformed into a single probabilistic con-
straint. That probabilistic constraint represents a limit-
state in the damaged structure. Thus, the fulfillment of 
the limit-states associated with the damaged structure are 
guaranteed for a specific confidence level RT imposed by 
the designer. That confidence level takes into account the 
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risk that designer is willing to admit in case an accidental 
situation happens. As a result, the optimum design would 
be an intermediate solution between the deterministic opti-
mization of the intact model and the fail-safe determinis-
tic optimization. In the same trend, Martínez-Frutos and 
Ortigosa [30] incorporated the probability of occurrence 
of each damage situation into a risk-averse approach for 
fail-safe topology optimization, using level-set-based opti-
mization techniques. More recently, Martínez-Frutos and 
Ortigosa [31] consider the probability of occurrence at a 
specified location and failure size as sources of uncertainty 
in a robust fail-safe topology optimization.

Although the PDFSO approach considerably improved 
the fail-safe formulation, the main shortcoming was that 
the aleatory uncertainty in parameters affecting the struc-
ture was not integrated in that approach. Thus, a preliminary 
work addressing this problem was presented by the authors 
[11]. Therefore, the purpose of this research is to extend that 
work by fully describing and formulating a new fail-safe 
optimization strategy, taking into account the two sources 
of uncertainty. The fundamental idea behind the new multi-
model approach is that the reliability index ( � ) associated 
with a limit-state of the damaged structure is not a single 
value. On the contrary, there will be as many values of � 
as damaged configurations with their associated probability 
of occurrence. Therefore, it is possible to construct a new 
discrete random distribution function of � to define the reli-
ability index associated with a limit-state of the damaged 
structure. The new constraint is then formulated as the prob-
ability of the reliability index being lower than the target 
reliability index, with the confidence level demanded by the 
designer. It is important to emphasize that if the effect of 
having different probabilities of occurrence for each dam-
aged model was disregarded, a damaged configuration very 
harmful to the structure but with a low probability of occur-
rence compared to others could lead to an oversized design, 
as the target reliability index ( �T ) of each limit-state would 
have to be guaranteed in all the damaged configurations 
simultaneously.

Since the fail-safe RBDO provides a conservative design 
by guaranteeing the reliability indices in all the damaged 
scenarios, the �-PDFSO approach improves that methodol-
ogy by including the probability of occurrence of each dam-
aged configuration into the problem statement. As a result, 

the main advantage of this method is that lighter fail-safe 
designs can be obtained with the confidence level required 
by the designer. This formulation applies to any size optimi-
zation problem that contemplates multiple failure scenarios 
and inherent random uncertainty in the parameters.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the theoretical background, summarizing 
previous fail-safe techniques relevant for this research. In 
Sect. 3, the �-PDFSO approach is formulated, providing a 
detailed description of the method. Then, Sect. 4 presents 
three application examples of increasing complexity to dem-
onstrate the capabilities of the proposed approach: the first 
example corresponds to an academic problem, with analyti-
cal expressions to simulate the structural responses in the 
intact and damaged models. The second example represents 
a steel lattice truss bridge, where the structure must resist 
accidental scenarios where some bars break due to a vehicle 
impact. The third example corresponds to a industrial-like 
application example for airplanes with open rotor engines, 
where two types of accidental situations can occur: debris 
released from the engine striking the fuselage or the detach-
ment of fittings that connect the fuselage section with the 
VTP/HTP or with the rear tail cone section. Section 5 com-
pares the computational cost in terms of iterations and func-
tion calls. Section 6 offers concluding remarks and suggests 
future research lines. Section 7 provides the link of a GitHub 
repository with the source code of the �-PDFSO method 
applied to the analytical example presented in Sect. 4.1.

2  Theoretical background

2.1  Fail‑safe deterministic optimization

Baldomir et al. [6] presented a fail-safe deterministic opti-
mization approach to achieve minimal weight structures that 
are safe in the event of partial collapse. The methodology 
defines a model of the complete structure and D incomplete 
configurations of the structure (Fig. 1). An identification 
label Mi is assigned to each model, where M0 corresponds 
to the intact model and Mi ( i = 1,… ,D ) is associated with 
the damaged configurations.

The basis of this method requires the definition of a 
group of damaged versions of the structure where design 

Fig. 1  General definition of 
the intact model and damaged 
configurations
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conditions are imposed. The modifications that the algo-
rithm performs during the optimization process on the intact 
structure are also applied to the damaged models simultane-
ously. The compact formulation of the fail-safe deterministic 
optimization is presented in Eq. (1), where F is the objective 
function that only affects the intact structure and depends on 
the set of design variables d, and g is the set of constraints 
affecting both intact and incomplete structures Mi.

2.2  Fail‑safe RBDO

Subsequently, the previous approach was completed by 
introducing the hypothesis that some parameters affect-
ing the structural responses of intact and damaged models 
were random in nature, leading to a probabilistic approach, 
denoted as fail-safe RBDO. Cid et al. [8, 9] formulated this 
method where it is necessary to solve the reliability analy-
ses on the intact structure and the damaged configurations 
simultaneously at each iteration of the optimization process. 
The formulation of the fail-safe RBDO is shown in Eq. (2): 

where P[–] is the probability operator, G represents the 
limit-state in the whole set of models Mi , which now also 
depends on the random variables x, Φ is the CDF of a stand-
ard normal distribution, and �T is the target reliability index. 
Equation (2b) means that the probability of overcoming the 
limit-state GMi

j
 has to be lower than or equal to the target 

probability of failure, Φ(−�T
j
) . If the problem in Eq. (2) is 

solved through the reliability index approach (RIA) 
[14], Eq. (2b) can be rewritten as �Mi

j
(�, �) ≥ �T

j
 , where the 

reliability index of each limit-state �Mi

j
 must be greater than 

the target reliability index �T
j
 . Normalizing this equation, the 

multi-model RBDO problem can be reformulated as in 
Eq. (3): 

(1a)min F(�)

(1b)
s.t.

g
Mi

j
(�) ≥ 0 j = 1,… ,mMi i = 0,… ,D

(2a)min F(�)

(2b)

s.t.

P[G
Mi

j
(�, �) < 0] ≤ Φ(−𝛽T

j
) j = 1,… ,mMi i = 0,… ,D

(3a)min F(�)

(3b)

s.t.

H
Mi

j
(�, �) = �

Mi

j
(�, �)∕�T

j
− 1 ≥ 0 j = 1,… ,mMi i = 0,… ,D

2.3  Probability‑damage approach for fail‑safe 
design optimization (PDFSO)

Finally, Cid et al. [10] formulated the probability-damage 
approach for fail-safe design optimization (PDFSO). That 
research incorporates a source of uncertainty that had not 
been taken into account in fail-safe optimization approaches 
until then. It involves the consideration that each damaged 
configuration has its own probability of occurrence. That 
is, accidental situations that can lead to partial collapse of 
the structure do not necessarily have the same probability 
of occurrence. This information can be introduced into the 
optimization problem in such a way that each damaged con-
figuration affects the final design based on its probability of 
occurrence.

To illustrate this concept, we consider as an example of 
structural response gj the limit-state of stress � in a generic 
element j as gj ∶ �j − �max . Figure 2 shows the limit-state g 
in the element j in each damaged configuration Mi 
( gM1

j
, g

M2

j
, g

Mi

j
,… , g

MD

j
 ). As each limit-state gj is influenced 

by the probability of occurrence of the damaged configura-
tions PMi

 , a source of uncertainty is included in the problem. 
Thus, a probabilistic formulation is defined where the values 
of the structural response gMi

j
 in all damaged models are used 

to construct a single random response Ĝj per limit-state. The 
probability mass function of the new random limit-state Ĝj 

Fig. 2  Limit-state in the element j (in black color) in each incomplete 
configuration Mi → g

Mi

j
 , i ∈ [1,D]

Fig. 3  Probability mass function of Ĝj obtained through the values in 
each incomplete configuration Mi → g

Mi

j
 , i ∈ [1,D]
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is presented in Fig. 3. The PDFSO approach is formulated 
in Eq. (4). A deeper explanation of this methodology can be 
found in Cid et al. [10]. 

 Equation (4c) means that the probability of overcoming the 
limit-state in the damaged structure ( ̂Gj ) has to be lower than 
or equal to a specific target probability of failure pT

fj
 . This 

means that in case of an accidental situation, the fulfillment 
of all the limit-states is guaranteed with at least a confidence 
level of RT

j
= 1 − pT

fj
. 

3  Reliability index strategy into PDFSO ( ̌
‑PDFSO)

3.1  Introduction

The fail-safe strategy presented in this paper merges the two 
methodologies described in Eqs. (2) and (4) to obtain an 
unified approach which simultaneously considers the uncer-
tainty due to the probability of occurrence of each dam-
aged model and the inherent uncertainty in parameters that 
affect the structural response. The main idea is to formulate 
a PDFSO problem under aleatory uncertainty, where the 
reliability index associated with a limit-state of the dam-
aged structure is defined by a probability mass function. 
The reason is that there is no certainty concerning which 
damaged configuration of the whole set may occur; hence, 
it is not possible to give a unique value of � for a limit-state 
referring to the damaged structure. This strategy, denoted 
as �-PDFSO, is described in detail in the following section.

3.2  Description and formulation

The fundamental assumption in the �-PDFSO is that a par-
tial collapse will occur, causing damage to the structure. 
Therefore, simultaneously guaranteeing a target reliability 
index over all possible damaged configurations seems a 
very restrictive approach. In addition, each failure scenario 
should contribute to the final design according its probability 
of occurrence PMi

 . It is important to note that the probabil-
ity of a given damaged configuration PMi

 is defined here 
as the following conditional probability: P[Mi|A] , where 
A is the accidental event that produces a partial collapse 

(4a)min F(�)

(4b)
s.t.

g
M0

j
(�) ≥ 0 j = 1,… ,mM0

(4c)P[Ĝj(�) < 0] ≤ pT
fj

j = 1,… ,mM0

of the structure. Thus, an initial premise to satisfy is that ∑D

i=1
PMi

= 1 , since we assume in the optimization problem 
that an accidental situation will occur and that the events Mi 
are independent of each other.

The AC 25.1309-1B [20] defines these events as “haz-
ardous failure conditions” and must be considered as 
“extreme remote events”, having an average probability per 
flight hour of the order of 10−7 (one accident per 10 million 
hour of flight). Thus, the actual probability of occurrence 
of a specific damaged configuration will be given by the 
value PMi

 multiplied by the probability of having an acci-
dent of this type P[A].

Generally, RBDO problems are formulated with the aim 
to minimize a function subject to the reliability index asso-
ciated with each limit-state j being greater than a target 
reliability index. However, applying this approach over the 
intact and all the damaged configurations simultaneously 
might be too conservative, as only one of them will hap-
pen. Given that �j (reliability index with respect to the 
limit-state Gj ) can be calculated at each damaged configu-
ration ( Mi ), there would be as many reliability indices ( �j ) 
as damaged configurations with their associated probabil-
ity occurrence, resulting in pairs of values [ �Mi

j
 , PMi

 ]. 
Therefore, the �-PDFSO approach coalesces all the �Mi

j
 

into a single random reliability index, denoted as 𝛽j , using 
the probability of occurrence of each damaged configura-
tion PMi

 . This idea is illustrated in Figs. 4 and 5. The 

Fig. 4  Reliability index in the element j (in black color) in each 
incomplete configuration Mi → �

Mi

j
 , i ∈ [1,D]

Fig. 5  Probability mass function of 𝛽j obtained through the values in 
each incomplete configuration Mi → �

Mi

j
 , i ∈ [1,D]
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sketch presented in Fig. 4 shows the reliability index in the 
generic element j in each damaged configuration Mi 
( �M1

j
, �

M2

j
,… , �

Mi

j
,… , �

MD

j
 ) with the values of probability 

of occurrence PMi
 . Using this information, the scheme pre-

sented in Fig. 5 can be created, where the horizontal coor-
dinate of each point represents the values of the reliability 
index in each damaged configuration, �Mi

j
 ( i = 1,… ,D ), 

and the vertical coordinate indicates the value of the prob-
ability of occurrence of the associated damaged configura-
tion, PMi

 . Thus, this representation can be understood as 
the probability mass function, f𝛽j , of the discrete random 
variable 𝛽j = 𝛽

M1

j
, 𝛽

M2

j
,… , 𝛽

MD

j
.

As a result, a single design constraint per limit-state can 
be generated using this new random variable 𝛽j that repre-
sents the reliability of the damaged structure in the limit-
state Gj . The idea is to define the design constraint to ensure 
that �T

j
 will be achieved with the certainty the designer 

demands. Then, a new RBDO problem can be defined ( �-
PDFSO) as presented in Eq. (5) 

Equation (5b) guarantees the specified target reliability 
index �T over the limit-states associated with the intact 
model M0 . Furthermore, Eq. (5c) denotes that the probability 
of not guaranteeing the safety level in the damaged structure 
𝛽j must be lower than the target probability of failure pT

fj
 

accepted by the designer. The complementary value of pT
fj
 is 

denoted as target reliability level, RT
j
= 1 − pT

fj
 , understood 

(5a)min F(�)

(5b)
s.t.

�
M0

j
(�, �) ≥ �T

j
j = 1,… ,mM0

(5c)P[𝛽j(�, �) < 𝛽T
j
] ≤ pT

fj
j = 1,… ,mM0

as the confidence level of the structure when an accidental 
collision occurs.

The �-PDFSO problem when pT
fj
 = 0 provides an opti-

mum solution that matches the result of solving the fail-safe 
RBDO [9], where the reliability indices for the whole set of 
damaged configurations are simultaneously greater than or 
equal to the target reliability index ( �Mi

j
≥ �T

j
, ∀ i, j ). How-

ever, as stated above, guaranteeing �T
j
 in all damaged con-

figurations seems a rather restrictive approach. When adopt-
ing a value of pT

fj
≠ 0 , �T

j
 would not be satisfied in some 

limit-states, but the final design must comply with Eq. (6)

To clarify this point, Fig. 6 shows a simplified case with 
only four damaged configurations indicating how the design 
constraints are checked at the optimum solution for a generic 
limit-state j.

As can be seen, the reliability index �j is below the target 
reliability index �T

j
 in the damaged configurations M2 and 

M4 . Thus, the probability of not guaranteeing �T
j
 in the dam-

aged structure for that limit-state will be the probability of 
M2 or M4 occurring, i.e., the sum of their probabilities of 
occurrence. Consequently, at the optimum design, PM2

+ PM4
 

must be lower than or equal to pT
fj
 , as stated in Eq. (5c).

After normalizing the probabilistic constraints (5b) and 
(5c), the �-PDFSO can be reformulated as in Eq. (7). The 
probability mass function of Ĥj is defined through the pair 
of values [ HMi

j
 , PMi

 ] ∀ i, which gives rise to a piecewise 
discontinuous cumulative distribution function FĤj

 . Figure 7 
shows the flowchart of the �-PDFSO problem formulated in 
Eq. (7) 

(6)

∑
𝛽
Mi
j

<𝛽T
j

PMi
≤ pT

fj

Fig. 6  Graphical example 
to check constraints at the 
optimum design (simplified 
case with only four damaged 
configurations)
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The optimization code was developed in MATLAB 
[32], using the SQP algorithm implemented in the fmin-
con function. The algorithm modifies the design variables 
at each finite difference step, where the input data of the 
FE models are automatically updated. An HPC cluster is 
used to simultaneously calculate the reliability indices in 
all the configurations, what greatly accelerates the iterative 
procedure. The following steps need to be performed in a 
loop until convergence: 

1. The set of damaged FE meshes representing the dam-
aged configurations must be defined prior to initiating 
the optimization procedure ( Mi , i = 0,… ,D).

2. The value for the design variables �k is established for 
the initial design, k = 0.

(7a)min F(�)

(7b)
s.t.

H
M0

j
(�, �) = �

M0

j
∕�T

j
− 1 ≥ 0 j = 1,… ,mM0

(7c)P[Ĥj(�, �) < 0] ≤ pT
fj

j = 1,… ,mM0

3. The objective function F(�k) is evaluated in the intact 
model M0.

4. The reliability indices �Mi

j
 are calculated through the 

First-Order Reliability Method (FORM) at each limit-
state j in all the models Mi . This is done by performing 
a parallel analysis of the whole set of models, since it is 
a computationally expensive task.

5. Once the reliability indices �Mi

j
 are obtained, the design 

constraints of the intact and damaged structure need to 
be evaluated: 

5.1 The constraints associated with the intact model can 
be directly evaluated with the normalized form of 
the reliability indices, HM0

j
= �

M0

j
∕�T

j
− 1 . Then, 

Eq. (7b) can be evaluated.
5.2 To evaluate each constraint associated with the dam-

aged structure (which is unknown), the CDF of the 
normalized random reliability index in the damaged 
structure ( FĤj

 ) has to be built for each limit-state j. 
The single random response ( Ĥj ) represents the reli-
ability of the damaged structure and contains the 
information of the reliability indices �Mi

j
 in all dam-

aged configurations as well as their probability of 

Fig. 7  Flowchart of �-PDFSO
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occurrence PMi
 . Since Ĥj is a discrete random 

response, it must be interpolated over the entire 
domain to apply gradient-based optimization. Fur-
thermore, FĤj

 has to be continuous and differentiable 
to compute its gradients. For this reason, the Piece-
wise Cubic Hermite Interpolating Polynomial 
(PCHIP) from Matlab was adopted to evaluate 
Eq. (7c). As a result, by evaluating FĤj

(0) at different 
values of design variables, different values of the 
constraints are obtained, allowing the algorithm to 
progress.

6 If F converged and the design constraints are satisfied, 
the final design is achieved. Otherwise, the design vari-
ables are updated.

7 The iterative process continues ( k = k + 1 ) going back 
to step 3 until the convergence criteria are satisfied. The 
first criterion is the one based on Karush–Kuhn–Tucker 
(KKT) conditions, that is, the objective function has 
to be non-decreasing in feasible directions, within the 
value of the optimality tolerance. This value is estab-
lished in the fmincon solver through the parameter Opti-
malityTolerance, set to 10−3 . The second criterion refers 
to the fulfillment of design constraints, which have to 
be satisfied within the value of the constraint tolerance. 
This value is established in the fmincon solver through 
the parameter ConstraintTolerance, also set to 10−3

4  Case studies

Three examples of structural optimization using the �-PDFSO 
formulated in Eq. (7) are presented below. In all of them, the 
same target reliability index �T

j
= �T = 3.7190 is adopted for 

all limit-states j, which corresponds to a target probability of 
failure of 10−4.

4.1  Analytical problem

This section introduces a simple analytical example to illus-
trate the application of the �-PDFSO. The main objective is 
to provide the reader with a simple example to facilitate the 
understanding of the method. The idea is to define a fail-safe 
optimization problem using mathematical expressions to simu-
late the objective function F and the structural responses Rj . 
These structural responses do not have any physical meaning. 
They are only analytical expressions that simulate the behavior 
of a structural system. That is, an increase in the value of the 
design variables leads to an increase in the value of the objec-
tive function and reduces the value of the structural responses. 
These structural responses depend on the design variables 

� = [d1, d2] , the random variables � = [x1, x2] and a vector 
of coefficients � = [c1, c2, c3, c4, c5, c6] , as shown in Eq. (8) 

By varying the vector c, the structural responses are modi-
fied, being possible to obtain different values for the intact and 
damaged configurations: the vector c is taken as the unit vector 
to represent the structural responses in the intact model ( RM0

j
 ), 

while values between 0 and 1 are used to simulate the 
responses in the damaged configurations ( RMi

j
, i = 1,… ,D ). 

In this example, a different vector c = [c1, c2, c3, c4, c5, c6] , is 
set for each response RMi

j
 , expressed as �Mi

j
 . Only some values 

of these coefficients are summarized in the arrays presented in 
Eq. (9). The full-length matrices are available in a GitHub 
repository at link: https:// github. com/ clara cbeng oa/ betaP 
DFSO

By adopting this approach, the structural responses defined 
in Eq. (8) (which could represent stresses, displacements, ...) 
increase for values of c lower than 1, being possible to simulate 
a loss of structural capacity in the damaged configurations. In 

(8a)

R
Mi

1
(�, �, �) =

1 + x1

c1 + c2 ⋅ d1 + c3 ⋅ d2 + c4 ⋅ d1d2 + c6 ⋅ d
2
2
+ x2

(8b)

R
Mi

2
(�, �, �) =

1 + x1

c1 + c2 ⋅ d1 + c3 ⋅ d2 + c5 ⋅ d
2
1
+ c6 ⋅ d

2
2
+ x2

(9a)�
M0

1
=
(
1 1 1 1 1 1

)

(9b)

⎛⎜⎜⎜⎜⎜⎝

�
M1

1

⋮

�
Mi

1

⋮

�
M60

1

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝

0.1541 0.9090 0.6027 0.8211 0.9190 0.5018

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

c1 c2 c3 c4 c5 c6
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0.4975 0.9755 0.9560 0.5210 0.3379 0.8228

⎞⎟⎟⎟⎟⎟⎠

(9c)�
M0

2
=
(
1 1 1 1 1 1

)

(9d)

⎛⎜⎜⎜⎜⎜⎝

�
M1

2

⋮

�
Mi

2

⋮

�
M60

2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0.0171 0.6790 0.5531 0.5832 0.3742 0.9777

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

c1 c2 c3 c4 c5 c6
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0.4150 0.3916 0.8286 0.3054 0.9518 0.9177

⎞⎟⎟⎟⎟⎟⎠

Table 1  Probability of 
occurrence of the partial 
collapses shown in Fig. 8

Model ID Number PMi

M1 – M20 20 0.025
M21 – M40 20 0.015
M41 – M60 20 0.010

https://github.com/claracbengoa/betaPDFSO
https://github.com/claracbengoa/betaPDFSO
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this problem, D = 60 was taken as the number of damaged 
configurations. The probability of occurrence PMi

 of each dam-
aged configuration is shown in Table 1.

The objective is to minimize the objective function F, 
defined as the sum of the design variables d = [ d1 , d2 ]. In 
a deterministic approach without any source of uncertainty, 
the design constraint would simply be that the response Rj is 
less than the allowed response Rmax . However, two sources of 
uncertainty are taken into account in this problem: the aleatory 
uncertainty in the random parameters x = [ x1 , x2 ] affecting the 
structural response and the uncertainty due to the probability 
of occurrence of each partial collapse.

The formulation of the �-PDFSO problem is presented 
in Eq. (10), with the probabilistic constraints of the intact 
(Eq. 10b) and damaged configurations (Eq. 10c). The random 
variables are defined as normally distributed with mean �

�
 = 

(0.25, 1) and standard deviation �
�
 = (0.025, 0.1). As there are 

two structural responses ( Rj , with j = 1, 2 ), the problem has 
a total of four design constraints (two for the intact model and 
two for the damaged structure) 

(10a)min F(�) = min (d1 + d2)

(10b)

s.t.

H
M0

j
=

�
M0

j

�T
− 1 ≥ 0 j = 1, 2

(10c)P[Ĥj < 0] ≤ pT
f

j = 1, 2

Fig. 8   Definition of the probabilistic constraints from the reliability indices

Table 2  Comparison of the �-PDFSO, fail-safe, and intact RBDO optima

Design vari-
ables

Fail-safe RBDO RT = 0.98 ( pT
f
 = 0.02) RT = 0.95 ( pT

f
 = 0.05) RT = 0.90 ( pT

f
 = 0.10) Intact 

model 
RBDO

d1 3.7313 2.6878 1.7964 1.9059 0.9188
d2 2.8628 3.4109 3.3413 2.3220 0.9188
F 6.5941 6.0987 ( − 7.51%) 5.1377 ( − 22.09%) 4.2280 ( − 35.88%) 1.8376

Table 3  Active constraints ( �j = 3.7190 ) at the intact and fail-safe 
RBDO optima

Active constraints

Intact model RBDO H
M0

1
   HM0

2

Fail-safe RBDO H
M26

2
   HM27

2
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Equation (10b) guarantees the specified target reliability 
index �T over the limit-state associated with the intact 
model, GM0

j
 . Equation (10c) refers to the design constraints 

associated with the damaged structure, meaning that the 
probability of not guaranteeing �T when a partial collapse 
occurs has to be lower than or equal to the admissible 
probability of failure pT

f
 . To evaluate this constraint, the 

(10d)

being �
Mi

j
the reliability index associated with

G
Mi

j
= 1 −

R
Mi

j

Rmax

≥ 0 i = 0,… , 60

with Rmax = 1∕4

probability mass function of Ĥj is built through the pair of 
values [ HMi

j
,PMi

 ] in all the damaged configurations. The 
responses HMi

j
 are obtained by performing a FORM, cal-

culating the reliability index �Mi

j
 associated with the limit-

state GMi

j
 . This limit-state is defined in its normalized form, 

Table 4  Active constraints ( P[Ĥj < 0] ≤ pT
f
 ) at the �-PDFSO optima 

for pT
f
 = 0.02, 0.05, and 0.10. Damaged configurations Mi where 

𝛽j < 3.7190

pT
f

Constraint Config. � PMi

0.02 Ĥ2
M26

− 6.8017 0.015
0.05 Ĥ2

M15
− 1.3758 0.025

M26
− 13.9550 0.015

0.10 Ĥ1
M16

− 3.7096 0.025
M32 2.1103 0.015
M34

− 7.6356 0.015
M36

− 5.6951 0.015
M58

− 3.7934 0.010
M59 0.79648 0.010

Ĥ2
M15

− 4.7747 0.025
M25

− 3.5868 0.015
M26

− 14.0063 0.015
M27

− 9.7253 0.015
M36 3.3794 0.015
M53 2.6975 0.010

Fig. 9  CDF of Ĥ2 at the �-PDFSO optima for pT
f
 = 0.02

Fig. 10  CDF of Ĥ2 at the �-PDFSO optima for pT
f
 = 0.05

Fig. 11  CDFs at the �-PDFSO optima for pT
f
 = 0.10



2136 Engineering with Computers (2023) 39:2125–2146

1 3

so that the structural response RMi

j
 is lower than the maxi-

mum value of the response Rmax . The definition of the 
probabilistic constraints is summarized in Fig. 8.

The optimization problem presented in Eq. (10) was 
solved for a target reliability index �T = 3.7190 and target 
probabilities of failure pT

f
 equal to 0.02, 0.05, and 0.10, 

which correspond to a confidence level, RT , of 0.98, 0.95, 
and 0.90, respectively. This means that the optimum 
design obtained from the �-PDFSO approach guarantees 
a target reliability index of 3.7190 when a partial collapse 
occurs with at least certainties of survival of 98, 95, and 
90%, respectively.

The results are presented in Table 2, along with the 
results of the intact and fail-safe RBDO. As can be seen, 

�-PDFSO result is bounded between the intact (F = 
1.8376) and fail-safe (F = 6.5941) RBDO designs, leading 
to a reduction in the objective function of 7.51%, 22.09% 
and 35.88% for pT

f
 = 0.02, 0.05, and 0.10, respectively. 

Analyzing for example the case with pT
f
 = 0.05, it means 

that when a partial collapse occurs, �j ≥ �T is satisfied with 
at least 95% probability. Thus, the objective function can 
be reduced by 22.09% with respect to the fail-safe RBDO, 
where �T is guaranteed with a reliability level of 100%.

The active constraints for the intact model and fail-safe 
RBDO designs are summarized in Table 3. In these for-
mulations, the target reliability index is guaranteed in all 
configurations, having exactly the value � = 3.7190 for the 
active limit-states. The active constraints for the �-PDFSO 

Fig. 12  Two-dimensional truss 
structure with 125 bars

Fig. 13  46 partial collapses of 
the structure
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problem appear in Table 4. It can be drawn from this table 
that the sum of PMi

 associated with those damaged con-
figurations where the target reliability index is not guaran-
teed is always below the value of pT

f
 imposed by the 

designer in the optimization problem, as stated in Eq. (6). 
In addition, Figs. 9, 10 and 11 show the CDFs associated 
with active constraints in the �-PDFSO for pT

f
 = 0.02, 

0.05, and 0.10, respectively.

4.2  Two‑dimensional truss structure

This example corresponds to a practical engineering case 
of a 125-bar truss structure, with elements supporting axial 
and bending forces. The structure represents a 160 m long 
and 10 m high bridge, with a spacing of 5 m between 
vertical bars. The load case considered corresponds to the 
application of concentrated forces of 200 kN in the nodes 
of the bottom cord, as presented in Fig. 12. It is assumed 
that an accident causing loss of some bars will occur as a 
result of a vehicle impact. Recent civil engineering codes 
[7] contemplate that “structural schemes must ensure that 
the accidental removal of a limited part of the structure 
does not compromise its integrity”. The FE model was 
defined in Abaqus [1], with bars modeled through the B21 
element type and solid circular section. The bar IDs appear 
in Fig. 12, where only the left part is shown due to the 
symmetry of the structure. Uncertainty is present in the 
concentrated forces applied in nodes of the bottom chord, 
taking the load value as a normal random variable with 
mean �P = 200 kN and standard deviation �P = 20 kN. 

Figure 13 shows the set of 46 damaged models consid-
ered in the problem. It is assumed that only the inner bars 
can be damaged and the likelihood of simultaneously break-
ing two bars will be less than breaking only one. Scenarios 
where more than two bars are damaged simultaneously are 
not taken into account. Three types of partial collapses were 
considered, whose probabilities of occurrence are summa-
rized in Table 5.

The design variables are the cross-sectional radius of the 
members. The structure has been divided into 12 zones with 
one design variable each. Table 6 lists the members that have 
the same design variable, as well as their initial values.

Table 5  Probability of occurrence for each damaged model

Model ID Number PMi
Damaged bars for each model

M1 – M16 16 0.0175 Vertical bar (IDs from 33 to 47 and 
200)

M17 – M31 15 0.0425 Diagonal bar (IDs from 48 to 62)
M32 – M46 15 0.0055 Vertical and diagonal bar connected at 

a bottom node

Table 6  Definition of the 12 design variables (DV)

Category Zone DV Bar IDs

Bottom cord 1 1 1, 2, 3, 4, 5, 6
2 2 7, 8, 9, 10, 11
3 3 12, 13, 14, 15, 16

Top cord 1 4 17, 18, 19, 20, 21, 22
2 5 23, 24, 25, 26, 27
3 6 28, 29, 30, 31, 32

Vertical bars 1 7 33, 34, 35, 36, 37
2 8 38, 39, 40, 41, 42
3 9 43, 44, 45, 46, 47, 200

Diagonal bars 1 10 48, 49, 50, 51, 52
2 11 53, 54, 55, 56, 57
3 12 58, 59, 60, 61, 62

Table 7  Comparison of the �-PDFSO, fail-safe, and intact RBDO optima

Category Zone DV Fail-safe RBDO RT = 0.98 ( pT
f
 = 0.02) RT = 0.95 ( pT

f
 = 0.05) RT = 0.90 ( pT

f
 = 0.10) Intact model RBDO

Bottom cord (m) 1 1 0.1913 0.1922 0.1913 0.1768 0.1538
2 2 0.2227 0.2224 0.2178 0.2207 0.1931
3 3 0.2319 0.2321 0.2319 0.2152 0.2149

Top cord (m) 1 4 0.3348 0.3297 0.3222 0.3258 0.1824
2 5 0.3714 0.3714 0.3706 0.3120 0.2214
3 6 0.3196 0.3177 0.3118 0.2768 0.2442

Vertical bars (m) 1 7 0.1026 0.1026 0.0955 0.1019 0.0783
2 8 0.1085 0.1085 0.1084 0.0997 0.0839
3 9 0.0812 0.0810 0.0797 0.0691 0.0606

Diagonal bars (m) 1 10 0.1061 0.1067 0.1055 0.1027 0.0818
2 11 0.1096 0.1096 0.1071 0.1086 0.0842
3 12 0.0739 0.0741 0.0739 0.0727 0.0570

Obj. Fun. (m3) 102.1052 101.3046 ( − 0.79%) 98.5004 ( − 3.66%) 86.5801 ( − 17.93%) 52.1511
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The complete formulation of the problem is presented 
in Eq. (11), where the volume V of the intact structure is 
considered as the objective function. Probabilistic design 
constraints of normal stress in the members are estab-
lished. As discussed in Sect. 3, two types of constraints 
are defined: the first one affects only the limit-states of the 
intact structure and the second one affects the damaged 
structure, which is unknown. Therefore, it is necessary to 
define the confidence level required over these restrictions. 

(11a)min V =

125∑
i=1

(� ⋅ r2
i
) ⋅ li

(11b)
s.t.

H
M0

j
= �

M0

j
∕�T − 1 ≥ 0 j = 1,… , 125

(11c)P[Ĥj < 0] ≤ pT
f

j = 1,… , 125

Fig. 14  Limit-states of stress 
( �Mi

j
 ) associated with active 

constraints ( �j = 3.7190 ) at 
the intact (a) and fail-safe (b) 
RBDO optima

Fig. 15  Limit-states of stress 
( ̂𝜎j ) associated with active 
constraints ( P[Ĥj < 0] ≤ pT

f
 ) at 

the �-PDFSO optima
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with G
Mi

j
= �max − �

Mi

j
≥ 0 (tension bars)

G
Mi

j
= �

Mi

j
− �min ≥ 0 (compression bars)

�min = −104 MPa, �max = 130 MPa.

In this example, a minimum reliability index of �T = 
3.719 is imposed and three confidence levels have been con-
sidered: RT

j
 = 0.98, 0.95 and 0.9 which correspond to a prob-

ability of failure of pT
f
 = 0.02, 0.05 and 0.1, respectively. 

Table 7 shows the optimum values of the bar radius in the 
intact structure that minimizes its weight satisfying the 
probabilistic constraints. The results show that the final vol-
ume of the design is always between the intact (V = 52.1511 
m 3 ) and fail-safe (V = 102.1052 m 3 ) RBDO designs. We can 
appreciate that if the designer increases the confidence level 
close to the maximum ( RT

j
 = 1), the design leads to the fail-

safe RBDO. On the contrary, if the confidence level 
decreases, the solution leads to the RBDO optimum when 
only the intact structure is considered. With this approach, 
the savings obtained for each RT

j
 are the following: 0.79%, 

3.66%, and 17.93% for RT
j
 of 0.98, 0.95, and 0.9, 

respectively.
Furthermore, it was found that the decrease in the value 

of RT is not linear with the decrease achieved in the objective 
function. Also, it is observed that although the �-PDFSO 
provides designs with values of the objective function 
bounded between the intact RBDO and fail-safe RBDO 
results, the design variables do not necessarily follow this 
rule. For instance, for RT = 0.98, the bottom chord in zones 
1 and 3 are higher than the values in the fail-safe RBDO.

Bars with active stress constraints for the intact and fail-
safe RBDO designs are shown in Fig. 14, all of them with a 
reliability index equal to 3.719. Figure 15 and Table 8 show 
the active limit-states for the �-PDFSO designs ( pT

f
 = 0.02, 

0.05 and 0.10). Particularly, the damaged configurations 
where the reliability indices are not guaranteed are shown. 
Thus, although �T is not achieved in some damaged configu-
rations, the addition of their probabilities of occurrence is 
less than the pT

f
 set by the designer.

Table 8  Limit-states of stress ( ̂𝜎j ) associated with active constraints 
( P[Ĥj < 0] ≤ pT

f
 ) at the �-PDFSO optima for pT

f
 = 0.02, 0.05, and 

0.10

Damaged configurations Mi where 𝛽j < 3.7190

pT
f

Limit-state Config. � PMi

0.02 �̂�10 M8 3.6895 0.0175
�̂�28 M41 3.5873 0.0055

0.05 �̂�10 M8 3.2524 0.0175
�̂�14 M28 3.6955 0.0425
�̂�28 M26 3.5911 0.0425

M41 3.1332 0.0055
�̂�49 M19 3.3112 0.0425

M34 3.5944 0.0055
�̂�52 M20 3.6812 0.0425

0.10 �̂�10 M8 2.0658 0.0175
M24 2.4789 0.0425
M39 3.4968 0.0055

�̂�13 M11 1.3478 0.0175
M27 1.3623 0.0425
M42 2.0222 0.0055

�̂�22 M20 3.5486 0.0425
M22 2.9533 0.0425
M35 3.0584 0.0055
M37 1.7871 0.0055

�̂�24 M7 2.1910 0.0175
M22 0.8094 0.0425
M37

− 0.0260 0.0055
M39 2.7682 0.0055

�̂�28 M11 1.9587 0.0175
M26 0.6665 0.0425
M41

− 0.0279 0.0055
M43 3.1712 0.0055

�̂�39 M6 1.6282 0.0175
M8 1.5226 0.0175
M21 3.3434 0.0425
M36 2.2579 0.0055
M38 2.8041 0.0055

�̂�43 M10
− 0.0356 0.0175

M12 1.5528 0.0175
M25 1.7849 0.0425
M40 0.0456 0.0055
M42 2.7995 0.0055

�̂�52 M20 3.3641 0.0425
M22 2.3274 0.0425
M35 3.4684 0.0055
M37 2.5855 0.0055

Fig. 16  CDF of stress constraint in bar 43 at the �-PDFSO optima for 
pT
f
 = 0.10
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Thus, in the case pT
f
 = 0.10, the stress in bar 43 ( �43 ) is 

an active limit-state in the damaged structure, since 
P[Ĥ43 ≤ 0] = 0.099963 as can be seen in Fig. 16, satisfy-
ing the probabilistic constraint shown in Eq. (11c). This 
can also be checked by the sum of the values of PMi

 where 
�T is not achieved, M10 , M12 , M25 , M40 , and M42 , being 
lower that the target value of 0.1. This slightly difference 
is due to the use of the polynomial interpolation to evalu-
ate the piecewise CDF, as can be seen in the zoom pre-
sented in Fig. 16. The same behavior can be observed in 
Table 8 for the remaining limit-states and different values 
of pT

f
.

4.3  Aircraft‑tail fuselage

The motivation for this industrial-type example comes 
from the demands of the aviation sector. One of the designs 
considered for the new generation of single-aisle aircraft 
includes two open rotor engines with two blade planes. 

This configuration must account for incidents produced by 
unleashed debris striking the fuselage, such as the release of 
unducted blades or debris originated by uncontained engine 
failures. Thus, the proposed failure cases correspond to a 
representative sample of the damage scenarios contemplated 
by the industry in modern aircraft (Table 11). The 3D model 
presented in Fig. 17 represents the rear part of a commercial 
aircraft. The propulsion system consists of two open rotor 
engines, which are mounted in section 19 of the aircraft. 
This section is 6100 mm long, with a frontal interface frame 
3300 mm wide and 3500 mm high, and a rear frame 1200 
mm wide and 1400 mm high connecting to the tail cone. 
Section 19 consists of a fuselage skin stiffened by frames, 
stringers, and a torsion box; whose purpose is to absorb the 
VTP and HTP loads. These engines contain big unducted 
blades that could be released in the event of failure, as well 
as other rotating components inside the nacelle that could 
lead to an uncontained rotor failure [25, 28].

The FE model of section 19 was defined using Nastran 
[34]. It has a total of 4044 degrees of freedom, compris-
ing 570 shell elements (CQUAD4 and CTRIA3), 543 bar 
elements (CBAR and CBEAM), and 280 truss elements 
(CROD), to represent the fuselage skin, frames, stringers, and 
the torsion box. Rigid connections (RBE3) are used to simu-
late the load transmission of the vertical and horizontal tail 
plane (VTP and HTP). Another RBE3 is defined to constrain 
the nodes of the interface frame, as shown in Fig. 17. Loads 
from the VTP, HTP, and tail cone are applied in section 19, 

Fig. 17  Position of section 19 in the airplane (left) and FE model (right)

Table 9  Definition of load cases VTP and HTP loads (N and N mm) Tail cone loads (N)

Fx Fy Fz Mx My Mz Fx Fy Fz

LC1 0 −1 × 105 0 2.5 × 108 0 1.5 × 108 0 −8 × 103 −12 × 103

LC2 0 1 × 105 0 −2.5 × 108 0 −1.5 × 108 0 8 × 103 12 × 103

LC3 −1 × 104 0 −1 × 105 0 4 × 108 0 0 0 −28 × 103

LC4 1 × 104 0 1 × 105 0 −4 × 108 0 0 0 28 × 103

LC5 2 × 104 0 1 × 105 0 −5 × 108 0 −8 × 103 0 8 × 103

LC6 −2 × 104 0 −1 × 105 0 5 × 108 0 −8 × 103 0 −8 × 103

Table 10  Definition of random variables

Random variable � � Density

Eskin (AL2024-T3) 73,100 MPa 7310 MPa 2.78 ×10−6 kg/mm3

Estif feners (AL7075-
T6)

71,700 MPa 7170 MPa 2.81 ×10−6 kg/mm3

� 1.0 0.1 –
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Fig. 18  Partial collapses ( M1 – M54 ) in example 3

Table 11  Probability of 
occurrence of the damaged 
configurations presented in 
Figs. 18 and 19

IDs Number PMi
Shape and distribution Description of the accidental situation

M1 – M18 18 0.025 Scattered holes A component fails, breaking loose other ele-
ments (spontaneous shrapnel)

M19 – M36 18 0.015 Entry-exit hole Turbine/compressor disk failure (big fragment)
M37– M54 18 0.010 Elongated hole Unducted fan blade failure
M55 – M62 8 0.010 – VTP/HTP fitting detachment
M63 – M66 4 0.005 – Lug detachment with section 19.1
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as shown in Fig. 17. The load cases used in this example are 
defined in Table 9. Young moduli of the materials used in 
skin and stiffeners are considered as normal random variables 
whose mean and standard deviations are shown in Table 10. 
Uncertainty in load values is contemplated through the defi-
nition of a multiplication factor � , defined as a new normal 
random variable as presented in Table 10.

Essentially, two types of failure scenarios associated with 
discrete events were considered in this research. The first one 
represents the accidental situations that generate debris strik-
ing the aircraft fuselage, such as the release of broken blades 
or uncontained engine failures. Examples of real accidents 
of this type can be found in reports by the Federal Aviation 
Administration [15, 16, 18]. The damaged models related to 
these events correspond to those presented in Fig. 18, going 
from M1 to M54 . The second failure scenario is associated 
with the fitting failure in the VTP/HTP or rear tail cone 
joints. These situations are commonly studied in the aero-
space industry when analyzing airframe assemblies, where 
a failure of the lugs and bolts can lead to the detachment of 
two assembled sections. In this case, the damaged models 
are presented in Fig. 19, with labels from M55 through M66 , 
where one of the fittings fails. 

The aerospace industry agrees upon different probabilities 
of occurrence for damage scenarios of different nature. In 
this example, as the real values should be obtained from con-
fidential aircraft reports, approximate values were adopted 
to simulate a realistic probability assignment of the failure 
events. Table 11 shows each type of failure considered as 
well as their probability of occurrence.

Fig. 19  One fitting failure ( M55 – M66 ) in example 3

Fig. 20  Design variables: frame 
section (left), side view (center), 
and top view (right)

Table 12  Comparison of the �
-PDFSO, fail-safe, and intact 
RBDO optima

Design variables Fail-safe RT = 0.95 RT = 0.90 Intact model

Category Description Name RBDO (pT
f
 = 0.05) (pT

f
 = 0.10) RBDO

Skin (mm) Zone Sk1 1.1467 1.1468 1.0435 0.4
Zone Sk2 1.3482 1.3483 1.3339 0.4
Zone Sk3 1.1910 0.4093 1.1692 0.4
Zone Sk4 3.7838 3.7833 3.6936 1.1816
Zone Sk5 3.2275 3.2271 3.0721 1.4469

Frames (mm) Web length Fh1 104.7336 93.4742 89.4582 57.1235
Fh2 107.7789 102.5923 88.6991 73.2887

Flange length Fb1 27.2634 24.2766 20.0000 25.8977
Fb2 34.3031 29.7569 27.4679 32.6178

Web thickness Fth1 6.7527 6.7493 5.7670 3.6830
Fth2 6.9490 6.9406 5.7349 4.7254

Flange thickness Ftb1 6.4453 6.4523 6.1060 6.1224
Ftb2 9.0838 9.1708 7.0639 7.7110

Obj. Fun. (kg) 514.8307 487.5254 445.0398 230.6758
(− 5.30%) (− 13.56%)
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The aim is to obtain the minimum mass of the skin and 
frames in the intact structure due to the consideration of the 
probability of occurrence of the set of 66 partial collapses 
and the uncertainty in the random parameters presented in 
Table 10. The skin was divided in five zones, and frames 
were organized into two groups, corresponding to a different 
channel profile. Thus, the skin thickness of each zone and the 
dimensions of each frame profile amount to a total number of 
13 design variables. All of them are presented in Fig. 20. The 
skin thicknesses ( Ski ) are bounded between 0.4 and 5 mm. 
The dimensions of each frame profile are the web length ( Fhi ), 
bounded between 50 and 150 mm, the flange length ( Fbi ) 

bounded between 20 and 100 mm, and the web thickness and 
flange thickness ( Fthi , Ftbi ) bounded between 3 and 12 mm.

The �-PDFSO problem is formulated in Eq. (12). Von 
mises stress constraints over each skin zone, normal stress 
constraints over each frame, and buckling constraints over 
the first eigenvalue are considered. For the CQUAD4 ele-
ments, von Mises stresses are evaluated at the centroid of the 
element. Then, the stresses are calculated at the top and bot-
tom faces of the element. For the design constraints, the 
maximum value is taken. For the CBAR elements, stresses 
are evaluated at both ends in the outer vertices of the trans-
versal cross section. The minimum and maximum values are 
taken for the design constraints. Equation (12b) refers to the 
design constraints of the intact model, in which �T = 3.719 
is guaranteed for all the limit-states. Equation (12c) corre-
sponds to the design constraints of the damaged structure, 
where �T is guaranteed with a confidence level RT = 1 − pT

f
 . 

Two problems were solved, using pT
f
 values of 0.05 and 0.10. 

(12a)min M = MSk +MF [kg]

(12b)

s.t.

H
M0, LC j
�Sk zone k

= �
M0, LC j
�Sk zone k

∕�T − 1 ≥ 0 k = 1,… , 5

H
M0, LC j
�max, f rame k

= �
M0, LC j
�max, f rame k

∕�T − 1 ≥ 0 k = 1,… , 8

H
M0, LC j
�min, f rame k

= �
M0, LC j
�min, f rame k

∕�T − 1 ≥ 0 k = 1,… , 8

H
M0, LC j

�1
= �

M0, LC j

�1
∕�T − 1 ≥ 0

⎫⎪⎪⎬⎪⎪⎭

j = 1,… , 6

(12c)

P[Ĥ
LC j
𝜎Sk zone k

< 0] ≤ pT
f

k = 1,… , 5

P[Ĥ
LC j
𝜎max, f rame k

< 0] ≤ pT
f

k = 1,… , 8

P[Ĥ
LC j
𝜎min, f rame k

< 0] ≤ pT
f

k = 1,… , 8

P[Ĥ
LC j

𝜆1
< 0] ≤ pT

f

⎫
⎪⎪⎬⎪⎪⎭

j = 1,… , 6

Table 13  Limit-states associated with active constraints ( � = 3.7190 ) 
at the intact and fail-safe RBDO optima

Active constraints

Intact model RBDO �
M0, LC 5

min, frame 2
   �M0, LC 6

min, frame 6
   �M0, LC 6

Fail-safe RBDO �M3, LC 6      �M7, LC 6     �M15, LC 5   �M20, LC 6

min, frame 5

�
M40, LC 1

Sk zone 1
     �M40, LC 2

Sk zone 1
     �M40, LC 5   �M49, LC 6

min, frame 6

Table 14  Limit-states associated with active constraints 
( P[Ĥj < 0] ≤ pT

f
 ) at the �-PDFSO optima for pT

f
 = 0.05 and 0.10. 

Damaged configurations Mi where 𝛽 < 3.7190

pT
f

Limit-state Config. � PMi

0.05 �̂�LC 6

1
M7 3.4833 0.025
M38 3.0331 0.010

0.10 �̂�LC 6

min, frame 5
M2 0.7999 0.025
M18 0.6113 0.025
M20

− 1.0159 0.015
M46 3.3007 0.010
M50 2.4137 0.010

Fig. 21  CDF of the first buckling eigenvalue constraint for LC6 at the 
�-PDFSO optima for pT

f
 = 0.05

Fig. 22  CDF of the minimum normal stress constraint in frame 5 for 
LC6 at the �-PDFSO optima for pT

f
 = 0.10
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Table 12 shows the optimum values of skin thicknesses 
and dimensions of frame profiles. It can be concluded 
that the final mass of the design is always between the 
intact (M = 230.6758 kg) and fail-safe (M = 514.8307 kg) 
RBDO designs. Mass savings increase up to 5.30% for a 
confidence level of 0.95 and 13.56% for a confidence level 
of 0.90. As in the previous example, the design variables 
are not bounded between the lower and upper bounds pro-
vided by the intact and fail-safe RBDO designs. In this 
case, the flange length in the type 2 frame ( Fb2 ) is not 
bounded between 32.6178 and 34.3031, having values for 
RT = 0.95 and 0.90 of 29.7569 and 27.4679 mm. This 
means that that the optimum design resulted in a different 
load-path structure compared with the fail-safe RBDO.

By assuming the confidence level of RT =0.90, the mass 
of the design is considerably reduced compared to the fail-
safe RBDO, while still yielding acceptable safety levels. 
The reason is that an accidental scenario leading to a par-
tial collapse of the structure is an event categorized in the 
AC 25.1309-1B [20] as extremely remote, that corre-
sponds to a probability less than 10−7 . Therefore, consider-
ing a pT

f
 = 0.10 implies that only in the 10% of the acci-

dents of this type that occur, the reliability index of some 

(12d)11.2799 ≤
Fhk

Fthk

≤ 15.5099 k = 1, 2

(12e)3.1725 ≤
Fbk

Ftbk

≤ 4.23 k = 1, 2

with G
Mi , LC j
�Sk zone k

= �VON
max

− �
Mi , LC j

Sk zone k
≥ 0

G
Mi , LC j
�max, frame k

= �normal
max

− �
Mi , LC j

max, frame k
≥ 0

G
Mi , LC j
�min, frame k

= �
Mi , LC j

min, frame k
− �normal

min
≥ 0

G
Mi , LC j

�1
= �

Mi , LC j

1
− 1.2 ≥ 0

�VON
max

= 300MPa, �normal
min

= −180MPa, �normal
max

= 300MPa

limit-states will not reach the desired �T in some of the 
damaged configurations. Active constraints for the opti-
mum designs shown in Table  12 are summarized in 
Tables 13 and 14. As in the example presented in Sect. 4.2, 
there are some damaged configurations where �T is not 
guaranteed in some limit-states. However, the addition of 
the probability of occurrence associated with these con-
straints is less than the pT

f
 set by the designer. In addition, 

Figs. 21 and 22 show the CDF of the limit-states associ-
ated with active constraints in the �-PDFSO for pT

f
 = 0.05 

and 0.10, respectively.

5  Computing facilities

The examples developed have been solved in a high-perfor-
mance cluster (HPC) with 1504 computing cores, a theoretical 
peak performance of 32.5 TFLOP’s and a physical memory of 
4 TB. Table 15 shows a summary of the computational effort 
in terms of iterations and number of analyses for all examples. 
All the cases have been run employing 1 core of the HPC and 
assigning a physical memory of 2 GB to each.

A summary of the computational burden for all the exam-
ples is presented in Table 15. The number of iterations and 
function evaluations is compared for the intact model RBDO, 
fail-safe RBDO, and �-PDFSO. As can be seen, the number 
of function evaluations in the intact model RBDO is consider-
ably lower than the other approaches. The reason is that the set 
of design constraints is greatly reduced, because there are no 
damaged configurations in the optimization problem; hence, 
the final structure is not fail-safe. In the fail-safe RBDO and �
-PDFSO, the reliability indices in all the damaged configura-
tions need to be calculated. The difference is that in fail-safe 
RBDO each constraint refers to the reliability index �j of one 
damaged model. In contrast, �-PDFSO requires the construc-
tion of a new constraint that groups the values of �j from dif-
ferent damaged models, which complicates convergence.

Table 15  Summary of the computational effort (iterations and function evaluations)

(a) Example 4.1: analytical example
Fail-safe RBDO pT

f
 = 0.02 pT

f
 = 0.05 pT

f
 = 0.10 Intact model RBDO

5 iterations 13 iterations 12 iterations 7 iterations 8 iterations
140,544 evaluations 783,240 evaluations 717,360 evaluations 402,600 evaluations 4056 evaluations
(b) Example 4.2: truss structure
Fail-safe RBDO pT

f
 = 0.02 pT

f
 = 0.05 pT

f
 = 0.10 Intact model RBDO

15 iterations 12 iterations 9 iterations 15 iterations 10 iterations
5,279,112 evaluations 8,895,420 evaluations 6,732,612 evaluations 6,802,380 evaluations 146,000 evaluations
(c) Example 4.3: aircraft-tail fuselage
Fail-safe RBDO pT

f
 = 0.05 pT

f
 = 0.10 Intact model RBDO

12 iterations 6 iterations 14 iterations 10 iterations
21,446,752 evaluations 10,188,288 evaluations 22,180,752 evaluations 415,223 evaluations
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6  Conclusions

The �-PDFSO is a new fail-safe optimization strategy to 
obtain minimum weight structures that takes into account 
the probability of occurrence of each accidental scenario, 
as well as uncertainty in parameters affecting structural 
responses. The results show that it is possible to avoid 
oversized designs compared to those obtained using a 
standard fail-safe RBDO approach, in which the prob-
ability of occurrence of each damaged configuration is 
disregarded.

The advantages provided by the proposed method can 
be clearly seen in example 1, where a reduction of 8.92% 
is achieved for a confidence level of RT = 0.98 compared 
to the result given by the fail-safe RBDO. Furthermore, 
for RT equal to 0.95 and 0.90, the methodology achieves 
reductions of the objective function up to a 20.99% and 
32.60%, respectively. In structural application example 2, 
savings achieved are 0.79%, 3.66%, and 17.93% for the 
same RT values as in example 1. Finally, in example 3, the 
objective function is reduced by up to 5.30% for RT = 0.95 
and a 13.56% for RT = 0.90.

It is worth mentioning that an accident leading to a 
partial collapse of a structure is an event categorized by 
the regulations as extremely remote. In the case of an 
aeronautical structure, a probability of less than 10−7 is 
established. In this context, it seems appropriate to estab-
lish a confidence level on the constraints affecting the 
damaged structure. The �-PDFSO has demonstrated to 
be a promising approach for achieving optimum designs 
under fail-safe conditions for industrial application in 
which specific probability of occurrence of each dam-
aged configuration is available. Nevertheless, authors are 
aware that the method is computationally expensive due 
to having to calculate the reliability indices of all limit-
states for all damaged configurations. Further research 
concerning strategies to alleviate the computational cost 
are currently under development. They are oriented to 
reduce the set of reliability indices to calculate for each 
iteration of the optimization process. Other future work 
is aimed at including not only random uncertainty but 
also epistemic uncertainty.

7  Replication of results

MATLAB code with the �-PDFSO method applied to the 
analytical example presented in Sect. 4.1 is available at 
link: https:// github. com/ clara cbeng oa/ betaP DFSO.
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