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A B S T R A C T   

Uncertainties of refractive and group index in dispersion measurement by spectrally resolved white light 
interferometry are deeply analyzed. First, the contribution to uncertainty of the different parameters affecting 
both indices is identified. Afterwards, results are presented for a 1.5 mm thick fused silica sample over a broad 
spectral range, from 400 to 1000 nm, and the effects that mostly deteriorate the measurement accuracy are 
established. Finally, the different contributions are quadratically combined to determine the total uncertainty of 
the two indices.   

1. Introduction 

The possibility of using spectrally resolved white light interferometry 
(SRWLI) as a refractometric technique was already suggested in the 
early 1990s [1]. The first studies [2,3], focused on the measurement of 
the refractive index and its dispersion curve, n(λ), in a relatively wide 
spectral range (tens of nanometers). Soon after, these works were 
extended to incorporate the measurement of other dispersion parame-
ters, mainly chromatic dispersion, dn/dλ, and group index, d(σn)/dσ, 
where σ = 1/λ is the wavenumber, although some authors evaluated 
higher order dispersion parameters [4,5]. All these studies aim to 
measure the refractive index or some kind of spectral derivative by 
combining spectroscopy with interferometry, and we will refer to these 
techniques as Refractive Index Spectroscopy by Broadband Interferom-
etry (RISBI). Like other techniques based on SRWLI, to apply RISBI we 
basically need three elements: a broadband source, an interferometer, 
and a spectrometer. RISBI was used to measure the dispersion of refer-
ence materials, both isotropic [6–10] and anisotropic [11–13], to mea-
sure dispersion in fibers [14–17], to determine the group delay of 
dispersive mirrors [18,19], to measure ocular dispersion [20], to 
calculate thermo-optical coefficients [21], visualization of thermal lens 
effect [22] or to model the dispersion of families of fluids [23,24]. 
Furthermore, while the first works applied RISBI in the visible range, 
dispersion results in the near infrared [25,26] or even the UV range [27] 
can be found in the literature. 

Of course, the validity of the obtained results was analyzed in many 
works, but the analysis was often based on comparison with the values 

obtained using other methods. However, in some works, [1,26,28], the 
precision or the uncertainty of the measurements was alluded to, but 
always in a simplified way, and only regarding to refractive index. In this 
work, we aim to evaluate the accuracy of RISBI techniques to measure 
the refractive and group index dispersion of a generic sample in a broad 
and rigorous way. To perform the study, we derived the theoretical 
expressions describing the contribution to uncertainty of each parameter 
involved in a generic RISBI measurement. The previous expressions are 
used, without any loss of generality, to evaluate the uncertainty of a real 
measurement taken with our experimental RISBI system on a fused silica 
sample. Note that the parameters governing the uncertainty in our de-
vice are similar to those governing uncertainty in any other RISBI device 
and, in consequence, our uncertainty evaluation can be easily extrapo-
lated to other experimental setups and to the measurement of other kind 
of samples. 

The rest of this contribution is organized as follows: in the next 
section, the different parameters that affect the measurements are 
identified and the fundamental formulas to calculate the two indices and 
their corresponding uncertainties are presented. In Section 3, the un-
certainties associated to each of these parameters are modeled and 
evaluated separately, and, in Section 4, the results obtained with a thin 
sample of fused silica are presented and discussed. The discussion is first 
devoted to each parameter, and, afterwards, to their combination, which 
yields the final uncertainties of the indices. Finally, in Section 5, the 
conclusions are presented. 
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2. Foundations 

In a SRWLI experiment (see Fig. 1), two broadband beams are 
superimposed, and the interference pattern is resolved in the spectral 
domain. At an arbitrary wavelength, λ, the irradiance can be written as: 

I(λ) = I0(λ)[1 + V(λ)cosφ(λ) ], (1)  

with I0 the background irradiance, V the fringe visibility, and φ, the 
phase difference between the light beams. In the case in which one of the 
beams passes through a transparent plate of thickness d, the phase dif-
ference is given by: 

φ(λ) =
2π
λ
[d(n − nA) − nAl ], (2)  

where n and nA are the plate and air refractive index, respectively, at 
wavelength λ, and l is the path difference travelled by one of the beams 
with respect to the other, in air. In this expression, it is assumed that no 
path difference has been introduced other than that generated in the thin 
plate and in air propagation. It is important to stress that the computed 
phase differs from that given by the equation by a multiple of 2π. This is 
because the arc cosine is a multivalued function or, in other words, 
different phases differing by a multiple of 2π result in the same value of 
the cosine. Therefore, when calculating the refractive index, we have an 
ambiguity that results from this lack of definition of the phase. Specif-
ically, the refractive index at a wavelength λ is calculated as 

n = nA +
1
d

(
λφ
2π + nAl + kλ

)

, (3)  

where k is an unknown integer. Using this equation and the well-known 
formula for the propagation of uncertainties, we obtain the uncertainty 
of the refractive index, Δn as1:   

In addition, in the third and fifth summands we have introduced n to 
abbreviate the formula and ngeq is the group index at the so-called 
equalization wavelength, that at which the irradiance has a stationary 
point [4,7,39], that is, the wavelength at which the phase in Eq. (2) 
presents a minimum and, therefore, its derivative is zero Applying this 
last condition it is obtained: 

l = d

[
ngeq

ngeq
⃒
⃒

air

− 1

]

(5) 

As discussed in the introduction, in addition to refractive index, 
another parameter that can be calculated with RISBI is the group index, 
ng: 

ng =
d

dσ (nσ) = n+ σ dn
dσ, (6)  

With σ = 1/λ, the wavenumber. Like refractive index dispersion, the 
group dispersion, that is, the wavelength dependence of the group 
refractive index, belongs to one of the fundamental dispersion 

characteristics of transparent optical materials. Nonlinear and ultrafast 
optics, optical fibers and waveguide photonics are specific areas in 
which group dispersion is of wide interest. From Eqs. (2) and (3), the 
following expression is obtained: 

ng = ngA +
1
d

(

ngAl +
1

2π
dφ
dσ

)

, (7)  

being ngA the group index of air. One way to compute the phase deriv-
ative is to determine the fringe periodicity, Λ. It is [29]: 

Λ(σ) = 2π
|dφ/dσ|, (8)  

and therefore: 

ng = ngA +
1
d

(

ngAl ±
1
Λ

)

, (9)  

where the modulus and the ± sign come from the fact that the phase 
derivative is zero at the equalization wavelength and changes its sign at 
each side: negative for shorter wavelengths, and positive for longer 
wavelengths. 

The corresponding uncertainty is, Δng: 

Δng =
1
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
ngAΔl

)2
+
[(

ng − ngA
)
Δd

]2
+

(
1

Λ2 ΔΛ
)2

√

. (10) 

Eqs. (4) and (10) are the key equations of this study. To determine 
the value of the refractive and group index uncertainty, each term will 
be analyzed separately. Note that in the case of double pass in-
terferometers, as the Michelson interferometer, one of the beams crosses 
the sample twice, so in the previous equations d = 2e, where e is the 
sample thickness. 

3. Uncertainties 

In this section, the uncertainties of the different parameters 
contributing to the refractive and group indices are discussed in detail. 
With respect to the uncertainty in the refractive index of air, an excellent 
review can be found in ref. [30]. 

3.1. Spectrometer calibration 

The most common way to compute spectral irradiance is by means of 
a spectrometer. Here, no particular configuration will be considered, it is 
simply assumed that the resolution of the device is sufficient to resolve 
the interference fringes and that a linear camera is the spectrum sensing 
system. Calibration of the spectrometer consists in determining which 
wavelength falls in any pixel of the spectrometer camera. In a typical 
calibration procedure, various sources of known wavelength illuminate 
the camera, to establish the correspondence between pixels and wave-
lengths, λ(N), being N the pixel number, for the source wavelengths. 
Then, interpolation, polynomial fitting, or physical modeling [31–36] 
are used to determine a relation between wavelength and any pixel in 
the camera. In this work, we do this last step by means of a WLSI-based 
approach [37]. The process of calibration is described in detail in that 
reference; here, only a brief discussion is given. 

Once the available sources of known wavelength allow us to identify 
the λ arriving at some of the pixels of the spectrometer camera, the 

Δn =
1
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

λ
2π Δφ

)2

+ (λΔk)2
+
(n − ngeq

λ
dΔλ

)2
+ (nAΔl)2

+ [(n − nA)Δd ]
2
+ [(d + l)ΔnA ]

2

√

. (4)   

1 In the third term on the root, the following approximation was performed: 
(
ng/ngeq

) ⃒
⃒
air ≃ 1 
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proper RISBI device without sample is used so that a broadband source 
illuminates the camera. By applying RISBI procedure, an array of dif-
ferential phase values, φ, corresponding to every pixel is also used in 
order to get a set of (N,φ) points. That ϕ measurement is made for a 
suitable path difference, chosen to have many spectral fringes. Pairs of 
values of wavelength and phase difference are interesting for our pur-
pose because if there is no sample in the interferometer, the spectral 
phase will be linear with the wavenumber σ = 1/λ That means: 

φ(N) = 2πlnAσ(N) − 2kπ, (11)  

where l is, as before, the path difference in air travelled by the beams. 
This equation can be inverted to express the wavenumber as: 

nAσ(N) = aφ(N)+ b, (12)  

with a = 1/(2πl) and b = k/l. Now, the known values of the calibration 
wavelengths are used to perform a linear fit and determine the constants 
a and b. They are employed to transform the measured phase difference 
into wavenumber for every pixel, providing the desired relationship 
σ(N) or λ(N). Note that this fitting can be highly enhanced by choosing a 
path difference l showing many resolved spectral fringes, but, obviously, 
the relationship λ(N) is independent of the value of l. since different path 
differences corresponds to different sets of φ values. Finally, Eq. (12) 
furnishes the uncertainty equation: 

Δσ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(aΔφ)2
+ (φΔa)2

+ Δ2b
√

/nA, (13) 

together with: 

Δλ = Δσ/σ2 = λ2Δσ. (14) 

To know how to evaluate Δφ in Eq. (13), see Section 3.4. 

3.2. The path difference in air 

The uncertainty of the path difference in air can be calculated by 
taking advantage of the linear relationship between phase and wave-
number in the absence of sample. Once the previous calibration was 
carried out, both magnitudes are related by the slope a as: 

l = 1/(2πa)⇒Δl = lΔa/|a|, (15)  

where we apply the absolute value to compute the uncertainty. 
Although in this section we apply the same methodology as in the pre-
vious one, it is common for the path difference to be measured with a 
specific spectrometer of smaller spectral range than the one used to 
measure dispersion. This will be the case when the latter spectrometer 
cannot resolve the fringes associated with the measurement of l (smaller 
than the sample thickness, but of the same order of magnitude). 

3.3. The sample thickness 

If the sample is solid, its thickness can be measured directly with a 

high-resolution gauge. We must take into account the instrument reso-
lution, δdr, the flatness, δdf, and parallelism, δdp, of the sample surfaces. 
The corresponding uncertainties are Δdr = δdr/

̅̅̅
3

√
, Δdf = δdf/

̅̅̅
3

√
, and 

Δdp = δdp/
̅̅̅
3

√
, respectively. In addition to these uncertainties, we must 

include the statistical uncertainty that results from carrying out the same 
measurement several times. 

The uncertainty estimation of liquid samples is a little more 
complicated since they must be introduced into a transparent cell to be 
measured. You can proceed in two ways: (a) measuring the total thick-
ness of the cell, the thickness of the walls and subtracting both magni-
tudes to obtain the internal thickness, d; (b) directly measuring the 
internal thickness by applying RISBI to a liquid of known refractive 
index. In this case, the phase difference added by the walls must be 
subtracted. Typically, in both methods, the estimated uncertainty is 
twice that of solid samples. 

3.4. Phase computation 

The calculus of the phase uncertainty is undoubtedly the most 
complicated step. It is determined by errors in the measurement of 
irradiance, but the latter also affects the background irradiance and 
visibility. To understand the effect of the irradiance variation on the 
phase, pay attention to Fig. 2. It plots the actual (I) and measured irra-
diance (I + ΔI) as a function of phase in one cycle and a bit. The oscil-
lations are assumed to be very fast with respect to the background and 
visibility variation, so that we can keep the latter constant during a 
cycle. The irradiance variation affects both the upper and lower enve-
lopes of the measurement as well as the phase. On the one hand, there is 
(or it can be) a change in the maximum and minimum values, which is 
associated to changes in the envelopes. On the other hand, there is also 
(or at least it could be) a lateral shift at any point of the interferogram, 
which is associated with a change in phase. Consequently, the uncer-
tainty of the phase depends on the uncertainty of the irradiance and its 
envelopes. Each contribution can be determined separately. 

Let us begin with the contribution of irradiance. The assumption that 

Light Source Interferometer

Spectrom
eter

Fig. 1. Outline of a SRWLI device.  

Fig. 2. Graph example of irradiance variation.  
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the envelopes are constant implies that the background irradiance and 
visibility are also constant. Therefore, from Eq. (1) it is obtained that the 
maximum phase variation due to irradiance is: 

I +ΔI = I0[1 + Vcos(φ + Δφ) ], (16) 

or reusing Eq. (1): 

ΔI = I0V[cosφ(cosΔφ − 1) − sinφsinΔφ ] (17) 

In addition, we can approximate cosΔφand sinΔφ, so that to order 
Δφ2 we have: 

ΔI = − I0V
[
cosφ(Δφ)2

/2 + sinφΔφ
]
, (18) 

or, by reordering: 

cosφ(Δφ)2
/2+ sinφΔφ+ΔI/(I0V) = 0. (19) 

The solutions to this equation are written as: 

Δφ =
− sinφ ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
sin2φ − 2cosφΔI/(I0V)

√

cosφ
, (20)  

where for consistency, ΔI and cosφ have opposite sign and, therefore, 
the solutions are real. Although both solutions are correct, only certain 
branches of these remain bounded and are physically valid (see Fig. 3). 

On the other hand, the uncertainty is taken as positive. Therefore, the 
physical solution for the uncertainty can be summarized in a single 
equation as: 

Δφ0 = |tanφ|
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2|cosφ|ΔI/(I0Vsin2φ)
√

− 1
]
, (21)  

where ΔI is assumed to be positive. This solution has two branches that 
meet at φ = 0 (see Fig. 3), at which: 

Δφ0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ΔI/(I0V)

√
, (22)  

value which corresponds to an extreme of the solution. On the other 
hand, at φ =± π/2, the solutions tend asymptotically to: 

Δφ0 = ΔI/(I0V). (23) 

Under normal conditions ΔI/(I0V) < 1, the maximum value of un-
certainty corresponds to the one given in Eq. (22), while the minimum 
value is the one corresponding to Eq. (23). 

In a second step, we must compute the contribution of the envelopes 
to the phase uncertainty. The envelopes, I±, can be put as a function of 
background irradiance and visibility according to the following ex-
pressions: 

I± = I0(1 ± V), (24)  

and therefore, the irradiance can be recast as: 

I =
I+
2
(1 + cosφ)+

I−
2
(1 − cosφ). (25) 

If we consider separately the variation of each envelope, we obtain: 

I =
I± + ΔI±

2
[1 ± cos(φ + Δφ) ]+

I∓
2
[1 ∓ cos(φ + Δφ) ] (26) 

Proceeding similarly to the previous case, and after some simple 
calculations, we arrive at: 

cosφ(Δφ)2
/2+ sinφΔφ − ΔI±(1 ± cosφ)/(2I0V) = 0, (27)  

which is similar to Eq. (19). Therefore, solving the equation we obtain 
the contribution of the envelopes to the phase uncertainty: 

Δφ± = |tanφ|
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + |cosφ|(1 ± cosφ)ΔI±/(I0Vsin2φ)
√

− 1
]
, (28)  

with ΔI± positive. In particular, there is no contribution of the upper 
envelope to the phase uncertainty when φ = (2m + 1)π, m ∈ Z, and 
there is not contribution of the lower envelope when φ = 2mπ. On the 
other hand, maximum uncertainty is Δφ± =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ΔI±/(I0V)

√
. Putting all 

together and applying the law of propagation of uncertainties we obtain: 

Δφ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δ2φ0 + Δ2φ+ + Δ2φ−

√

. (29) 

Examples of each relative contribution to the total phase uncertainty 
are shown in Fig. 4. As uncertainty decreases, the contribution of the 
irradiance approaches the sum of the contributions of the two envelopes. 

3.5. Phase ambiguity 

According to Eq. (3), the measured refractive index, here nk, is a 
function of an arbitrary integer k for a given wavelength and sample: 

nk =
λ
d

k+ a, (30)  

with a independent of k. Because of k being an arbitrary integer, the raw 
refractive index measured with RISBI is also arbitrary in terms of k. The 
variation of the refractive index produced by two consecutive values of k 
is: 

Δn =
λ
d
. (31) 

That means that the error in the refractive index changes in steps of 
Δn. Therefore, in the case that the reference refractive index is known 
within a band smaller than Δn, the uncertainty associated to k can be 
considered null. To overcome the ambiguity, the refractive index of the 
sample at a fixed wavelength, λ0, is usually measured by a second 
method, which provides a way to determine k. In general terms, the 
result of measuring the reference refractive index by whatever proced-
ure is n0 ± δn, where n0 is the measured refractive index at the wave-
length λ0 and δn its uncertainty. Hence, it can be said that the real value 
of the refractive index at λ0 is contained in the interval [n0 - δn, n0 + δn] 
with a high degree of confidence. This implies that we can get the correct 
value of k provided that: 

δn⩽
Δn0

2
=

λ0

2d
, (32)  

because in this case there is only one possible value of nk in the above 
interval [n0 - δn, n0 + δn]. In consequence, nk is the value that must be 
taken as correct instead of the measured reference refractive index n0. 
On the other hand, if Eq. (31) is not fulfilled, the value of k cannot be 
reliably assured. In view of this discussion, it can be said that the un-
certainty in the value of k is: 

Δk = floor
(

2d
λ0

δn
)

(33) Fig. 3. Mathematical variation of the phase (dashed line) and the associated 
uncertainty (continuous line). 
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Here we assume that near λ0, δn ≈ δn0. So, to reduce Δk as much as 
possible, it is better to measure the reference refractive index at a longer 
wavelength. The k uncertainty contributes to refractive index uncer-
tainty as: 

Δn
λ

=
1
d

floor
(

2d
λ0

δn
)

(34) 

In Fig. 5 this contribution is plotted for λ = λ0 as a function of the 
sample thickness, d. 

For a fixed λ, Δn makes a jump just when the argument of the floor 
function is an integer and, then decreases with d until another jump 
arises. In this figure, the upper envelope is just 2δn/ λ0, and the lower 

envelope is 2δn/ λ0 – 1/d. So, independently of the value of d, the 
maximum contribution to the refractive index uncertainty at wave-
length λ is: 2δn λ/ λ0. 

3.6. Fringe spacing 

The local fringe spacing, Λ(σ), corresponds to the distance in 
wavenumber between two consecutive maxima or minima. It is also 
twice the distance between consecutive extremes (i.e., the absolute 
difference between a maximum and its adjacent minimum). So, to 
determine Λ(σ), the extremes of the irradiance must be located. Calling 
σ± = σ ± Λ/4the wavenumber for two consecutive minima and 

Fig. 4. Phase uncertainty related to irradiance Δφ0 (blue), upper envelope Δφ+ (green) and lower envelope Δφ- (red). In each case, the irradiance uncertainty is 
constant and equal to 5 × 10− 1 (top), 1 × 10− 1 (middle) and 5 × 10− 2 (bottom). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. Refractive index uncertainty normalized by the reference wavelength and caused by phase ambiguity against sample thickness. In this example, λ0 
= 633 nm 

and δn = 1 × 10− 4. 
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maxima, Λ(σ) takes the form: 

Λ(σ) = 2(σ+ − σ− ), σ = (σ+ + σ− )/2, (34)  

and for the uncertainty: 

ΔΛ(σ) = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δσ+)
2
+ (Δσ− )

2
√

. (35) 

By definition, irradiance maxima belong to the previously defined 
upper envelope, I+, and irradiance minima belong to the lower enve-
lope, I-. As discussed above, a change in irradiance leads to a change in 
phase which, in turn, varies the wavenumber of the irradiance extrema. 
However, a change in the value of envelopes, does not affect the position 
of extrema but only affects to their value. So, the uncertainty in wave-
number can be written as (see Eq. 7): 

Δσ =
Δφ

2π
[
dng − ngA(d + l)

], (36)  

where Δφ is related to ΔI by Eq. (20). Note that once the period is 
determined using Eq. (34) for two extrema, it can be interpolated for any 
value of σ, and, for this reason, Eq. (36) applies to every σ It can also be 
calculated directly from the irradiance pattern by noticing that:   

and taking care that σ± = σ ± Λ/4when the uncertainty at σ is 
computed using Eq. (35). 

4. Results and discussion 

In order to evaluate the impact of the different uncertainty sources 
on the retrieval of refractive and group indices over a broad spectral 
range, we analyze in this section measurements of standard experiments 
carried out in our laboratory. Although results are specific to our 
experimental setup, the analysis is general enough to be applicable to 
measurements with typical RISBI devices. The main features of our 
RISBI system have been described elsewhere [10]. It can perform real- 
time dispersion measurements in a broad spectral range, from 260 to 
1650 nm. With the purpose of keeping the discussion as general as 
possible, the results shown in this work are restricted to the interval 
from 400 to 1000 nm, where only one single spectrometer is used. 
Despite RISBI can operate with just two spectral acquisitions, one of the 

interferogram and another of the background irradiance, we have 
repeated each one of them 10 times to have statistically meaningful 
measurements. Indeed, it could be possible to extract the background 
irradiance from the interferogram, but we prefer to acquire it separately, 
since it allows for a double-check of the validity of the data. In Fig. 6 we 
show how a standard measurement with our device looks like. As it is 
usual in our experiments, the interferogram contains the stationary 
phase point, which assures good visibility in the whole spectral range, 
even for high dispersive samples. 

To obtain information about the sample dispersion, the phase must 
be extracted from Eq. (1). There are a variety of methods to extract the 
phase from a rapid varying interferogram such as the one shown in 
Fig. 6. For example, applying the Hilbert, Fourier, and wavelet trans-
forms, phase shifting methods, or phase calculation from minimum and 
maximum detection [39–41]. Unfortunately, many of these methods do 
not work well near the stationary phase point. Here, we use the pro-
cedure detailed in [10,39]. First, we separate the measured background 
irradiance in Eq. (1) (blue line in Fig. 6); second, we determine the upper 
and lower envelopes by interpolation of their maxima and minima, 
respectively. In this step, the stationary phase point must be omitted. 
The visibility function is obtained by subtraction of the two envelopes, it 
is removed from the equation and the cosine is extracted. Finally, the 

phase principal value is obtained by applying the arc cosine function. 
In this section, we present results obtained with a fused silica optical 

window, 2 mm thick. Characteristics and manufacturer’s specifications 
are detailed in Table 1. As in the preceding section, we analyze the 
impact on the measurement of each parameter separately. 

Fig. 6. Example of interferogram and background irradiance against pixel number.  

Table 1 
Sample parameters.  

Diameter 20.0 mm 

Material UV Grade Fused Silica 
Antireflection Coating Uncoated 
Surface Flatness λ/10 @ 632.8 nm 
Surface Quality 20–10 scratch-dig 
Thickness 2.0 mm 
Thickness Tolerance ± 0.1 mm 
Wavefront Distortion λ/10 @ 632.8 nm 
Parallelism <5 arc seconds 
Clear Aperture Central, 80% of diameter 
Diameter Tolerance +0.0/-0.2 mm  

[I(σ+) − I0(σ+) ]/V(σ+) = cos[φ(σ + Λ/4) ] = − cos[φ(σ − Λ/4) ] = [I0(σ− ) − I(σ− ) ]/V(σ− ), (37)   
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4.1. Spectrometer calibration 

A low-pressure mercury discharge lamp was used to carry out the 
spectrometer spectral calibration, which is performed without sample in 

the interferometer. The spectra lines of this lamp in the range of mea-
surement are shown in Fig. 7. Only the marked lines were used for 
calibration purposes. In order to remove any dispersion in the interfer-
ometer and ensure that induced phase difference is a linear function of 
the wavenumber in air, two interferograms corresponding to two 
different optical paths in air were taken and their phases subtracted. The 
computation of phase and its uncertainty was done using the method 
described in Section 3.4. Among the three sources of uncertainty (slope 
and intercept of the linear regression, and phase), the phase is the most 
important one. Hence, the calibration can be considered correct, but 
there is a need of improving the phase measurement (this will be dis-
cussed below, in Section 4.4). Fig. 8 shows that this phase uncertainty 
produces fast oscillations in the uncertainty of the (a) wavenumber and 
(b) wavelength within a period. In a real experiment, such a rapid 
change in uncertainty will be unrealistic and the phase is averaged over 
one cycle, which corresponds to the red line in Fig. 8(b). 

Fig. 7. Spectrum of a low-pressure Hg discharge lamp. Red points correspond to the lines used to perform the fit. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 8. (a) Wavenumber and (b) wavelength uncertainty. The red line is the 
local mean. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 9. Ten different measurements of the sample thickness, d, and their mean (green line). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 2 
Sample thickness uncertainty and mean.   

Uncertainty (nm) Mean (mm) 

Resolution 58  – 
Flatness 9  – 
parallelism 69  – 
Statistical 135  2.05713 
Total 160  2.05713  
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4.2. Path difference in air 

The slope of the linear regression of the calibration process can be 
used to extract path difference l. The uncertainty of this magnitude is 
straightforward to obtain, and it is Δl = 141 nm for a path difference of l 
= 1.9860 mm. Notice that these magnitudes correspond to a Michelson 
interferometer where light passes through the sample twice and that it 
will be the half in a Mach-Zehnder type interferometer. 

4.3. Sample thickness 

The fused silica plate thickness was measured with a high accuracy 
micrometer with resolution of 100 nm. The measure was repeated 10 
times to get its statistical mean and its standard deviation (see Fig. 9). To 
calculate the uncertainty due to the sample flatness and parallelism, a 
beam diameter of 5 mm and centered in the sample was considered. 
Results are shown in Table 2. Please, note that in the case of using a 
Michelson interferometer, light passes through the sample twice, so 
both, means and uncertainties of the table, have to be multiplied by a 
factor of two. 

4.4. Phase 

There are several sources of errors that contribute to phase uncer-
tainty. On the one hand, mechanical and thermal vibrations vary the 
phase in the interferometer and so the interference pattern; on the other 
hand, lack of visibility and noise in the spectrometer deteriorate the 
image interferogram. In order to take into account the different contri-
butions, we first took up to 10 interferograms and calculated their mean 
plus the standard deviation, as well as the mean and standard deviation 
of their envelopes (in blue, in Fig. 10). Furthermore, we applied a filter 
in the Fourier space and quantified the difference between the filtered 
and unfiltered interferograms (in green, in Fig. 10) as well as the dif-
ference of the corresponding envelopes. This gives an idea of the influ-
ence of noise. As a limit, absolute values of the spectrum smaller than 
one thousandth of the maximum value were filtered. 

Both statistical and noise contributions to the uncertainty of the 
irradiance are noisy, however the statistical contribution is greater in 
magnitude. Regarding the uncertainty of the envelopes, it is mainly 
constant with large modulations. While we believe that those modula-
tions at the border of the spectrum are caused by lack of visibility, we do 
not recognize any possible cause of those in the center of the spectrum. 
However, note that they are smaller than 1% of the values of the 

envelope. 
In Fig. 11 the three contributions to the phase uncertainty are 

separately shown. In agreement with the analysis in Section 3.4, all 
contributions present oscillations from period to period following Eqs. 
(21) and (28). The maxima and minima (zeros) of the phase contribu-
tions related to the upper and lower envelopes alternate at phase values 
multiple of π, coinciding with the maxima of the phase contribution 
related to the irradiance, while the minima of the later (greater than 
zero) occur when the phase is an odd multiple of π/2. Except at the 
spectrum borders, the greater contribution is related to the irradiance 
uncertainty, followed by the one related to the upper envelope. 

In Fig. 12, which is taken as the final result of this section, the total 
phase uncertainty and its local average between 0.1 and 0.3 rad are 
shown. 

4.5. Phase ambiguity 

The uncertainty due to the phase ambiguity, Δk, depends on the 
sample thickness, the wavelength at which the reference refractive index 
is measured, λ0, and the uncertainty of this measure, δn. In Fig. 13 we 
plot Δk against δn for our sample in both Michelson and Mach-Zehnder 
type interferometers, taking as reference the emission wavelength of a 
He-Ne laser, 632.8 nm. In the first case, there is no contribution of the 
phase ambiguity for δn less than 7.7 × 10− 5 (the double, in the case of a 
Mach-Zehnder interferometer). This accuracy can be easily achieved by 
widely used refractometric techniques as those based on many inter-
ferometric approaches or minimum deviation methods. Indeed, com-
mercial refractometers are available with an accuracy in the order of 5 
× 10− 5 or better. We note that the impact of the phase ambiguity in the 
refractive index uncertainty increases with sample thickness, just the 
opposite to the contributions of phase, thickness, and path difference in 
air. 

In Fig. 14(a) it is shown the largest sample thickness for which the 
phase ambiguity contribution to the refractive index uncertainty is zero 
as a function of δn. In Fig. 14(b) it is plotted the contribution to the 
refractive index uncertainty of the minimum value of the sample 
thickness that produces Δk = 1, at a wavelength of 1 μm, for a varying δn 
too. As before, the reference wavelength is 632.8 nm. 

4.6. Fringe spacing 

As discussed in Section 3.6 the local periodicity is first calculated as 
Λ(σ) = 2(σ+ − σ− ) with σ± = σ ± Λ/4, corresponding to maxima and 
minima of the interferogram. That means that σ is close to a point where 
the irradiance equals the background (φ = π/2). Then, the periodicity is 
interpolated to cover all the measured points. The result is plotted in 
Fig. 15. The periodicity goes from approximately 10 nm at the spectrum 
borders to infinity at the equalization wavelength. Since the periodicity 
is proportional to the phase uncertainty, it shows oscillations as depicted 
in Fig. 16. 

4.7. Spectrometer calibration and material dispersion 

The wavenumber and wavelength uncertainties associated to the 
spectrometer calibration were modeled in section 3.1 (Eqs. 13 and 14) 
and, in section 4.1, they were quantified for the Vis-NIR spectrometer of 
our RISBI device (Fig. 8). The next step consists in introducing the 
wavelength uncertainty in Eq. (4) to compute its contribution to the 
total refractive index uncertainty (third term in the square root). Since 
the expression of the group index in Eq. (9) is independent of wave-
length, it means that there is not a similar contribution to the group 
index uncertainty. Therefore, it could seem that the measured group 
index dispersion is independent of spectrometer calibration and of any 
miscalibration. This is meaningless. The explanation is that Eq. (10) 
refers only to the group index uncertainty that comes from the effect of 
the parameters that appear in the expression used to compute the group 

Fig. 10. Statistical (blue) and noise (green) contribution to irradiance (top), 
upper (medium) and lower (bottom) envelope uncertainty. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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index given in Eq. (9). However, the dependence on Δλ, and thus on any 
calibration error, appears as soon as the dispersion curve, ng(λ), is 
considered. That is, if for a particular wavelength λ there is a mis-
calibration Δλ, it means that the value of the group index at this 
wavelength will be proportional to Δλ, and the same can be say about 
the refractive index uncertainty. Hence, apart from the contribution of 
wavelength miscalibration to the refractive index uncertainty taken into 

Fig. 11. Contributions to the phase uncertainty related to the irradiance (blue), upper envelope (green) and lower envelope (red). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Total phase uncertainty and its local average.  

Fig. 13. Error in k as a function of uncertainty of the reference refractive index 
for a Mach-Zehnder (blue line) and Michelson (red line) type interferometer. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig 14. Largest d for which Δk is zero as a function of δn (top) and the 
contribution to refractive index uncertainty at a wavelength of 1 μm if Δk =
1 (bottom). 
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account in Eq. (4), there are other “dispersive” contributions to the 
indices uncertainties associated to their chromatic or dispersion 
dependence. They can be calculated as: 

ΔnD =
dn
dλ

Δλ

ΔngD =
dng

dλ
Δλ,

(38)  

where de subindex “D” refers to dispersion and Δλ is the wavelength 
uncertainty analyzed in Section 3.1. The first derivative corresponds to 
the chromatic dispersion, while the second one is the dispersion coef-
ficient (usually denoted by D) multiplied by the light velocity in vacuum, 
c, that is, cD. 

In Fig. 17 there are shown the three calibration contributions to the 
refractive and group index uncertainty. They are all less than 4 × 10− 5 in 
the whole spectral range. The contribution to refractive index uncer-
tainty included in Eq. (3) dominates the dispersion contribution except 
for lower wavelengths. The dispersion contribution to group index is the 
greater one in the first half of the spectrum while in the second part the 

contribution to refractive index uncertainty included in Eq. (3) 
dominates. 

4.8. Refractive and group index uncertainty 

After individually analyzing the different sources of uncertainty to 
refractive and group indices, all these contributions are considered 
together in this section. Fig. 18 shows the total refractive index uncer-
tainty as a function of the wavelength as well as the contribution of each 
of the uncertainty sources. We have assumed that the phase ambiguity is 
well resolved so its contribution to refractive index uncertainty is zero. 
Below in the text, some appointments were done about this issue. In 
addition, the uncertainty of air refractive index is not shown since, ac-
cording to [38], it is orders of magnitudes smaller than the rest of 
contributions (≈ 10− 8). Observing the graph, it can be concluded that 
the main contribution to the refractive index uncertainty results from 
the path difference in air, l, (≈ 6.8 × 10− 5), followed by the sample 
thickness (≈ 3.3 × 10− 5). The contribution of the calibration of the 
spectrometer is only relevant at IR wavelengths, whereas the phase 
contribution is negligeable. That gives a total refractive index uncer-
tainty nearly constant, in the range from 7.6 × 10− 5, at visible wave-
lengths, to 8.3 × 10− 5, at IR wavelengths. 

On the other hand, incorporating the contribution of the periodicity, 
the uncertainty of the group index can be computed. Fig. 19 shows the 
group index uncertainty together with the contributions of its different 
sources. In this case, the periodicity is the factor that most affects the 
group index uncertainty, except near the equalization wavelength, 
where it increases greatly. Regarding the contributions of path 

Fig. 15. Local periodicity as a function of wavelength.  

Fig. 16. Periodicity uncertainty and its local average.  

Fig. 17. The different contribution of calibration to the indices uncertainties: refractive index (blue),group index (green) dispersion and refractive index computation 
via Eq. (3) (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 18. The different contributions to the refractive index uncertainty and the 
resulting refractive index uncertainty. 
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difference in air, l, and sample thickness, d, they are very similar to those 
to refractive index uncertainty, as can be appreciated comparing the 
expressions in Eqs. (4) and (10). 

Finally, in Fig. 20, refractive and group index uncertainty are plotted 
together. The group index uncertainty exceeds the refractive index un-
certainty in the whole spectrum, being both very similar near the 
equalization wavelength. At short wavelengths, the group index uncer-
tainty reaches out values that are too high, of the order of 10− 3. Results 
are also summarized in Table 3. 

4.9. The sample thickness again 

We have seen that the two parameters that most effectively 
contribute to refractive index uncertainty are path difference in air, l, 
and sample thickness, d, both contributions decreasing with d. There-
fore, we could think that by increasing d, the uncertainty of the refrac-
tive index could be further reduced. However, in that case, the 
contribution of the phase ambiguity (k) may not be negligible, and it 
may even exceed the previous ones if the reference refractive index is 
measured with not so good accuracy. In Fig. 21, we illustrate this effect 
by representing the total uncertainty of refractive index in addition to 
the contributions of d, l and k as a function of sample thickness. The 
considered wavelength is the Sodium D line, and the corresponding 
reference refractive index uncertainty is taken as 2 × 10− 4. In this case, 
the limiting value of the k contribution is 4 × 10− 4, and it begins to be 
the main contribution for sample thickness greater than 1.47 mm (0.75 
if the interferometer is a Michelson one). In addition, increasing d, also 
produces a reduction of the fringe periodicity of the interferogram which 
reduces visibility, and, collaterally, increases the phase uncertainty, 
which becomes the most relevant contribution to group index 
uncertainty. 

5. Conclusions 

It has been proved that difference of path in air, sample thickness 
measurements and phase ambiguity are the factors that mostly affect the 
accuracy of refractive index measures in RISBI. The uncertainty related 
to difference of path in air and sample thickness decreases with sample 
thickness. In turn, phase ambiguity cancels for very thin samples but as 
the thickness increases it can exceed any other contribution, being 
limited by the measure of the reference refractive index. In the example 
presented, a compromise between these different components gives a 
smaller uncertainty for sample thickness about 1 – 1.5 mm. With respect 

Fig. 19. The different contributions to the group index uncertainty and the resulting group index uncertainty.  

Fig. 20. Comparison between refractive and group index uncertainties.  

Table 3 
Uncertainty in n and ng associated to different contributions.   

Δn (x 10− 5) Δng (x 10− 5) 

Sample thickness 3.3 3.3 
Path difference in air 6.8 6.9 
Calibration < 3.5 – 
Phase < 2 – 
Air index 0.001 – 
Periodicity – < 80 
Total 7.6 – 8.3 8 – 80  

Fig. 21. Refractive index uncertainty against sample thickness. Δnd, Δn, and 
Δnk correspond to d, l and k contribution, respectively. 
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to the measure of group index, another parameter comes into play: the 
interferogram local periodicity or fringe spacing. Indeed, the measure of 
this parameter is the great cause of inaccuracy of group index mea-
surement. While we have obtained refractive uncertainties less than 
10− 4, the attained group index accuracy must certainly be improved. 

We have chosen fused silica, a well-known material, to illustrate the 
quality and accuracy of RISBI technique but the analysis can be applied 
to any kind of materials, isotropic and anisotropic solids, optical fibre 
components or liquid sample contained in a transparent cell. For a given 
sample with a given material dispersion, it is a task of the researcher to 
select its thickness judiciously if possible, and to adapt the experimental 
system to obtain accurate results using RISBI. 
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