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A B S T R A C T

Models involving interfaces with discontinuities or even singularities of some fields across them
are very frequent in real life problems modelling. In the last decades, the use of the eXtended
Finite Element Method (XFEM) instead of the traditional FEM has become more and more
popular, mainly because of two advantages: the mesh of the domain can be independent of the
interface position, therefore avoiding remeshing, and it allows to enrich an area with specific
shape functions fitted to the particular properties (singularities, discontinuities) of the expected
solution, obtaining more accurate results with less computational efforts. Nevertheless, a critical
point of XFEM is its implementation since it varies from one problem to another, due to the
different kind (and number) of degrees of freedom on each node. A diligent organization of
nodes, degrees of freedom and enrichment functions is fundamental to achieve an efficient
implementation. Our aim in this paper is to provide a common reference framework for the
implementation of XFEM from a mathematical point of view, providing the readers with a set
of tools that will allow them to apply it to any kind of problem. To this aim, we present a
detailed description of XFEM implementation, with special emphasis on the terms that involve
integration over interfaces. The proposed tools are presented in a general context, and as
an example, we will apply them to a problem of solids mechanics. In particular, we will
contextualize the procedure on a Rayleigh waves propagation problem in a cracked structure
considering a Signorini contact condition on the crack sides.

1. Introduction

When the solution of a problem involves jumps or singularities, for an accurate approximation of the actual solution, the standard
FEM is very expensive, computationally speaking. It usually needs very refined meshes, and even re-meshing from time to time if
the position of the singularities or defects evolves. Numerical simulation of cracks and effective contact between their lips, or of
free boundary problems with surface tension at the interface, are good examples where the choice of FEM is debatable because of
its high computational cost.

The eXtended Finite Element Method (XFEM) introduces local enrichments to the standard shape functions to replicate the
discontinuities or the singular behaviour of the solution. Examples are the contact problems, the propagation of cracks or the
movement of interfaces in two-phase problems involving free boundaries (see [1–3]). Such local enrichments allow a more accurate
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approximation of non-smooth solutions without the need of creating a new mesh with every evolution of the interface and also
avoiding mesh refining to accurately capture the singularities where present. So, XFEM offers an obvious computational advantage
in such cases. There are some references that deal with the implementation of the XFEM in various contexts of solid and fluid
mechanics (see [4–9]), or most recently [10] for COMSOL Multiphysics or Abaqus/Explicit [11], but none of them tackles the
implementation of terms that deal with jumps on the interface.

There is already a wide variety of literature concerning the effectiveness of solving this type of problems with XFEM methodology.
or instance, an enriched FEM technique for thermo-mechanical contact problems is employed in [12], and in [13], in which a
ormulation allowing crack lips contact in terms of a penalty formulation for normal contact is presented. The XFEM formulation is
lso discussed in [14] for modelling crack growth with frictional contact, or in [15] for fatigue crack growth of interfacial cracks
n bi-layered materials. Also, in fluid mechanics, the literature highlighting its advantages is extensive. Thus, in [16] different
nrichment schemes and time-integration schemes within the XFEM for two-phase and free-surface flows are investigated. Also,
n [17] an XFEM approach is presented in the case of a quasi-static Stokes n-phase flow. Problems of fluid–structure interaction are
ealt with in [18–22], while in [23] a review of its application to fractured porous media is done. One can also find applications
o acoustics [24], materials science (corrosion) [25] or environmental science [26].

In [27] the authors tackled the particularities of the XFEM method related to the integration on enriched elements in a general
ramework. In particular, they introduced an automatic partition technique for elements with enriched nodes, in the two- and
hree-dimensional cases. The proposed procedure avoids a casuistic analysis for each element crossed by the interface, and it
acilitates obtaining new schemes for the numerical integration over them from the classical quadrature rules. However, and to
ur knowledge, nothing has been published concerning a detailed description of the implementation of the method when the model
nvolves integration on the interface.

For this reason, in this paper we focus now on the general implementation of the XFEM, to allow the process to be as automatic
s possible in aspects such as the contribution to the stiffness matrix of the elements crossed by the interface, or the assembling of
he interface terms that usually appear when there is contact, friction, or a jump by surface tension. The different kinds of degrees
f freedom that might appear on the same problem, the local character of the enrichments, which might apply to some nodes now,
nd to different ones later in time, if the interface were to evolve, has a big influence on the discrete matrices and even more when
he model involves integration on the interface terms. Therefore, a good systematization of the implementation is a critical point
o guarantee efficient and accurate results. In this work a general methodology will be presented, which can be applied to any
odel, with minor changes. To systematize the discretization process, we will present a series of mathematical tools that will allow
s to easily define and establish the local to global mappings needed for an automatic implementation of the elementary matrices.
irstly, we will need to define the different kind of nodes, elements, and edge sets that depend on the type of problem and on
he singularities of the expected solution. Then, we define some embeddings relating the elements of one set to the others. These
mbeddings will play a key role for computing and assembling the elementary matrices appearing in the mass, stiffness or jump on
he interface terms. Also, all the local-to-global mappings needed for an automatic implementation of the elementary matrices will
e detailed. This rigorous study of the particularities that the XFEM implementation presents compared with the classical FEM has
ever been approached (to the authors knowledge) and it establishes the key points to be taken into account when implementing
FEM to simulate many different problems.

The main feature of the XFEM is that the mesh is not adapted to the interface. In this way, the integration on the interface
annot be achieved through integration over element boundaries, so all the nodes in one element will contribute to the integral
erm, but, depending on the problem, not all their associated degrees of freedom will. Therefore, a key point will be the selection of
he degrees of freedom that actually contribute to the elementary matrices to be computed. To this end, the proposed methodology
ill use the embedding operators described in this work which will allow us to select some specific degrees of freedom on each
lement, computed automatically, and it can be applied and/or generalized to any XFEM enrichment. The proposed methodology
s therefore applicable to any discretization algorithm, and leaves the user freedom to transform the proposed operators to their
orresponding formulation in classes, structures, arrays, etc. for being used in any programming language.

The outline of the paper is as follows: Firstly, in Section 2 we present the schematics of the implementation process, from the
hysical model to the various parts of the XFEM programme that will be detailed in the following sections. Then, in Section 3
e will present the example model that will serve as a practical use case for the XFEM implementation methodology showed in

his paper. It is a plain strain problem for the contact between the lips of a crack. But again, it is just an example, since the
ethodology is presented in such way that might be applied to 3D problems, or to many other problems involving contributions

n the interface, like the movement of bubbles in a fluid or phase change problems with moving boundary among others. Then, in
ection 4 we will introduce the basic mathematical elements that will vertebrate the implementation procedure. In particular, the
otations for the nodes, elements, and edge sets will be presented there as well as the embeddings that relate them all. Next, in
ection 5 we will review the XFEM approximation and enrichment functions considered for the framework problem. Two different
ind of enrichments will be considered, so that any generalization to more kinds would be straightforward. In Section 6 we will
riefly recall some results concerning the integration on enriched elements and the resulting quadrature formulas. In Section 7 we
ill present the discretization of the differential operators involved. In Section 8 we will propose coherent local-to-global mappings

n order to achieve an efficient matrices assembling as well as the integration procedure over the interface. Finally, in Section 9
ome numerical results and the performance of XFEM over FEM will be shown, and in Section 10 the main results of this work will
e summarized.
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Fig. 1. Flow chart of a general XFEM implementation.

2. Implementation overview

In this section we will give an overview of the main steps that one needs to consider when creating an XFEM code to solve a
mathematical model. This rough description will be detailed on the next sections, especially those that differ most from a standard
FEM implementation. To illustrate the process, a flow chart of the proposed implementation procedure is presented in Fig. 1 where
each box gives the information on which section will describe the corresponding step. The different stages are grouped by colour
as follows:

• Green steps are related to the modelling, and are preliminary to the numerical simulation. Defining the physical problem,
mathematical model, variational formulation, domain on which it is posed, and interface description by level sets are the first
steps to consider.

• In yellow, the discretization steps are represented. These correspond to the determination of the approximation spaces, FEM
approximation, type and number of enrichment functions needed, mesh of the domain, adjacency operators, and discrete form
of the differential operators on the variational formulation.
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Fig. 2. Domain decomposition given by the extended interface.

• Then, the steps related to the computation of the system matrices are represented in orange. This includes integration on
elements (main focus on integration on enriched elements and on the interface), elementary matrices computation and
assembly.

• Then, depending on the kind of problem, we might need to iterate in time, or even use an iterative algorithm to solve a
nonlinear system on each time step. This being the case of our practical use case, there is a subsection devoted to such
algorithm.

• Finally, a decision is made whether the interface evolves or not. That being the case, the mesh sets and adjacency operators
might need to be updated, together with the enriched parts of the discrete matrices. The criteria for the interface evolution
will depend on the kind of problem (growing crack(s), moving bubble, moving boundary for phase change problems, etc.) so
we will not enter into details here. The relevant part of this decision is that, depending on the result, one goes back to the
interface description by level sets and redefine all the necessary discrete elements, like the adjacency operators (Section 4)
and the enriched part of the elementary matrices (Section 8).

Under the proposed methodology, if the interface does not evolve, the steps over a grey background will not be recomputed. And
even if the interface evolves, there is no need to recompute everything, but only those parts related to the enriched nodes, which
are only a few compared with the total number of nodes on a typical finite elements mesh.

3. Mathematical model

As a thread of the implementation methodology presented in this document, and just as a practical use case, we will consider
the mathematical model associated with the behaviour of a Rayleigh wave on a plate with a crack. This model was studied and
solved with standard FEM in [28] and was chosen to be the thread in this work because it involves mass and stiffness matrices,
external and body forces and, above all, interface terms due to contact conditions between the crack lips as well as a singularity on
the crack tip. Therefore, it serves well to the purpose of presenting the methodology on a framework that can be easily transferred
to other problems involving some kind of discontinuity in the interface, and need the calculation of integrals on it, or that present
singularities in some area of their domain. Since we are only interested in this model as a use case that provides us with a discrete
variational formulation general enough to facilitate the understanding of the main challenges arising on XFEM implementation, we
will omit the details of the obtention of such formulation and the algorithm used to solve it, since these details can be consulted
in [28] and they do not constitute the aim of this work.

We consider a three dimensional plate that occupies the region (0, 𝑙1) × (−𝑙2, 0) × (−𝑙3, 𝑙3) of the space 𝑋𝑌𝑍, being 𝑙𝑖, 1 ≤ 𝑖 ≤ 3
positive numbers. We assume that there exists a crack near the surface 𝑦 ≡ 0 that is independent of 𝑧 and that there is no initial gap
between its lips. In the following we assume that the applied forces and boundary conditions are compatible with a plane strain
hypothesis which allows us to solve the problem on the vertical middle surface. Therefore, all the variables only depend on the
spatial variables 𝑥, 𝑦, and the time variable, 𝑡. The plate middle section corresponds to 𝛺 = (0, 𝑙1) × (−𝑙2, 0). Its boundary, 𝛤 , splits
into two disjoint parts: 𝛤𝐷 = [𝑥 ≡ 0] ∪ [𝑦 ≡ −𝑙2] where the displacements are imposed and 𝛤𝑁 = [𝑦 ≡ 0] ∪ [𝑥 ≡ 𝑙1], where the body is
free, or traction forces are applied.

Let [0, 𝑇 ] be the time interval of interest. Let 𝒖(𝑥, 𝑦, 𝑡) denote the displacement field and 𝑢𝛼 its components, 𝛼 ∈ {1, 2}. The
components of the linearized strain tensor, 𝜀𝛼𝛽 (𝒖), are related to the stress tensor, 𝜎𝛼𝛽 (𝒖), through Hooke’s constitutive law for
elastic materials.

The crack restricted to 𝛺 will be denoted by . It is assumed to be an oriented line such that given 𝑠 ∈ [0, 𝑙𝑐 ], with 𝑙𝑐 a positive
number, 𝑙𝑐 ≪ 𝑙2, then (𝑥(𝑠),−𝑠) is a point on the crack, and (𝑥(𝑙𝑐 ),−𝑙𝑐 ) is the crack tip. To obtain later the variational formulation,
it is convenient to split the domain 𝛺 into two subdomains, by extending  with enough regularity, as can be seen in Fig. 2, in
such a way that  is part of their boundary. For that, we consider a prolongation of  in the direction of the tangent vector to
 at the crack tip. It will be denoted as 𝛤𝐹 . We denote by 𝛺+ (resp. 𝛺−) the domain whose points lay to the right (resp. left) of
the curve , when walking along it in the direction of the positive orientation of the crack. With this decomposition the fictitious
269
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boundary is 𝛤𝐹 = (𝜕𝛺+ ∩ 𝜕𝛺− ∩𝛺) ⧵, and natural transmission interface conditions are assumed on it. Let us emphasize that 𝛤𝐹 is
nly needed for the definition of the approximation spaces and the rigorous obtention of the discrete variational formulation, but it
lays no role on the numerical resolution of the problem. Note that in other use cases, such as models with phase changes like gas
ubbles in fluids, the definition of the 𝛺± subdomains may not require the incorporation of fictitious boundaries. Let us also denote
y 𝒖+ (resp. 𝒖−) the vector field associated to the displacements restricted to 𝛺+ (resp. 𝛺−), which, in the following, for the sake

of brevity we will denote by 𝒖+(−). We apply the same criteria to 𝝈+(−). Finally, the vector 𝒏+(−) denotes the unit outward normal
vector to 𝛺+(−). If there is no room for confusion, we denote 𝒏+ as simply 𝒏. Under plane strain assumptions, the behaviour of the
late is governed by:

𝜌0𝒖̈ − div𝝈 = 𝒇 in 𝛺+ ∪𝛺−, (1)

𝝈𝒏 = 𝒈 on 𝛤𝑁 , (2)

𝒖 = 𝒖𝐷 on 𝛤𝐷, (3)

[𝜎𝑛] = 0; 𝜎𝑛 ≤ 0; 𝝈𝑇 = 𝟎 on  , (4)

𝜎𝑛[𝑢𝑛] = 0; [𝑢𝑛] ≤ 0 on  , (5)

𝒖(𝒙, 0) = 𝒖0(𝒙) in 𝛺+ ∪𝛺−, (6)

𝒖̇(𝒙, 0) = 𝒗0(𝒙) in 𝛺+ ∪𝛺−, (7)

[𝒖] = 𝟎; [𝝈𝒏] = 𝟎 on 𝛤𝐹 , (8)

ith 𝒙 = (𝑥, 𝑦), and being [𝒖] = 𝒖+ − 𝒖−, [𝝈𝒏] = 𝝈+𝒏+ + 𝝈−𝒏−, and [𝑢𝑛] the jump of the normal component of 𝒖, this is,
𝑢𝑛] = 𝒖+ ⋅ 𝒏+ + 𝒖− ⋅ 𝒏−. Also 𝜎𝑛 = 𝝈𝒏 ⋅ 𝒏 and 𝝈𝑇 = 𝝈𝒏 − 𝜎𝑛𝒏. For the boundary 𝛤𝑁 to be free, we take 𝒈 = 𝟎 without loss of
enerality.

.1. Discrete variational formulation

In order to numerically solve problem (1)–(8), we follow the work in [28] where the interested reader can find the suitable
ariational framework, the treatment of the contact condition as well as an algorithm that combines a penalization method with a
eneralized Newton method to solve a fixed point problem using finite elements compatible with the crack position. In this work,
or the sake of brevity, we only present the discrete variational equation that needs to be solved at each iteration 𝑗 of the algorithm,
hich results from the application of the previous techniques, so we can focus on the implementation of the different integral terms
hen XFEM is used.

Let us consider a discretization of the domain 𝛺 by 𝑛ℎ𝑒 elements. For the sake of simplicity, we consider that the elements are
riangles and the standard shape functions are piecewise linear. The extension to other types of elements of shape functions is not
ifficult. Let

ℎ = {𝑇 𝑘 ∶ 𝑘 = 1,… , 𝑛ℎ𝑒}, (9)

e the set of all elements in the mesh and

ℎ = {𝒙𝐼 ∶ 𝐼 = 1,… , 𝑛ℎ𝑛},

he set of all nodes of ℎ, being 𝑛ℎ𝑛 its cardinality. In the following, if there is no confusion, we will refer to the nodes 𝒙𝐼 just by
heir index 𝐼 .

The mesh ℎ induces a discretization of the interface, , obtained by linearly approximating the interface on each element crossed
y it. So,  is approximated by a polygonal line, ℎ,

ℎ = {𝑒𝑖 ∶ 𝑖 = 1,… , 𝑛ℎ𝑓 },

eing 𝑛ℎ𝑓 its cardinality. In Fig. 3 the actual interface and its linearization are shown.
We will see in Section 4.1 how this linearization of the interface is obtained.
To get the discrete variational formulation of (1)–(8) at each time step, we consider the following spaces:

𝑊ℎ = {𝒗ℎ = (𝒗+ℎ , 𝒗
−
ℎ ) ∈ [0(𝛺̄+)]2 × [0(𝛺̄−)]2}

𝑉ℎ = {𝒗ℎ ∈ 𝑊ℎ∕𝒗ℎ|𝑇 𝑘± ∈ [𝑃1(𝑇 𝑘±)]2,∀𝑇 𝑘 ∈ ℎ, 𝒗ℎ = 𝟎 on 𝛤𝐷, [𝒗ℎ] = 𝟎 on 𝛤𝐹 },

here 𝑇 𝑘+ = 𝑇 𝑘 ∩𝛺+ and 𝑇 𝑘− = 𝑇 𝑘 ∩𝛺−, and

𝑃ℎ = {𝑞ℎ ∈ 𝐿∞(ℎ); 𝑞ℎ|𝑒𝑖 ∈ 𝑃0(𝑒𝑖), 1 ≤ 𝑖 ≤ 𝑛ℎ𝑓 }.

Notice that this definition of 𝑊ℎ and 𝑉ℎ allows for a discontinuity of 𝒗ℎ along  ∪ 𝛤𝐹 .
We also denote by 𝑐𝑗 the subset of edges in ℎ where effective contact happens at iteration 𝑗 of the iterative algorithm solving

he nonlinearity.
Now, let 𝐵 ∶ 𝑉ℎ → 𝑃ℎ be the operator defined by
270

𝐵(𝒗ℎ)|𝑒𝑖 = [𝑣ℎ𝑛]|𝑒𝑖 for all edge 𝑒𝑖 in ℎ. (10)
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Fig. 3. Near the crack mesh and linearized interface.

Then, we consider a penalty-duality algorithm introduced in [29], which is a generalization of the Uzawa’s method for the
augmented Lagrangian, combined with a generalized Newton’s method to accelerate the rate of convergence. The details of the
algorithm can be consulted by the interested reader in, for example, [28,30,31] where the increased rate of convergence is shown.
This algorithm is robust, and no oscillations or loss of convergence have been observed, achieving convergence very fast in less than
ten iterations on each time step.

The discrete variational formulation can be obtained by following the same procedure as in [28] where the mesh was assumed to
be compatible with the crack, this is, 𝑇 𝑘 = 𝑇 𝑘+ or 𝑇 𝑘 = 𝑇 𝑘−. Therefore, at each time step, the system to be solved at each iteration,
𝑗, comes from the following equation:

∫𝛺
𝜌0𝒖̈

𝑗
ℎ ⋅ 𝒗ℎ 𝑑𝒙 + ∫𝛺

𝝈𝑗ℎ ∶ 𝜺ℎ(𝒗ℎ) 𝑑𝒙 + 1
𝜖 ∫𝑐𝑗−1

𝐵(𝒖𝑗ℎ)𝐵(𝒗ℎ) 𝑑𝛤 = ∫𝛺
𝒇ℎ ⋅ 𝒗ℎ 𝑑𝒙 + ∫𝛤𝑁

𝒈ℎ ⋅ 𝒗ℎ 𝑑𝛤 , (11)

or all 𝒗ℎ ∈ 𝑉ℎ, where 𝜖 is a small positive parameter, 𝜺ℎ(𝒗ℎ) is the linearized strain tensor associated to 𝒗ℎ|𝑇 𝑘 related to 𝝈ℎ(𝒗ℎ)
hrough Hooke’s law and 𝑐𝑗−1 is the subset of edges in ℎ where effective contact happens at iteration 𝑗 − 1. It is in this set, 𝑐𝑗−1,
here the jump of the displacement needs to be zero, so this will constitute the stopping criteria of the algorithm (along with a
aximum number of iterations of 20 which is never reached). The algorithm will stop when 𝐵(𝒖𝑗ℎ) < 1.𝑒 − 10 on 𝑐𝑗−1.

emark 1. Notice that this variational formulation involves a term that requires integration on the interface, which is the main aim
f this work. Furthermore, it also includes the usual terms appearing on the variational formulation of a wide range of problems,
uch as the acceleration term (leading to a mass matrix), internal stress (stiffness matrix) and loading terms. This is the reason why
his model has been chosen as the framework to present the proposed methodology, because it can be easily transferred to any other
roblem involving this kind of terms or similar ones.

This variational framework takes into account the discontinuity across the interface, but to capture the solution singularity near
he crack tip with this approximation we would need a very refined mesh. This will be avoided by adding to the discrete space new
hape functions that present the same kind of singularity. The resulting enriched discrete space will not be 𝑉ℎ, but a new 𝑉 𝑋

ℎ , and
he variational formulation in (11) will also hold. We deal with it in Section 5.

Another advantage of this enriched approximation is that the mesh does not need to be compatible with the crack, so in the case
f the crack growing, there is no need for re-meshing, saving the additional computational cost that it would mean on each time
tep.

. Sets of mesh nodes and elements. Adjacency

In this section we introduce the mathematical elements that will vertebrate a general XFEM implementation procedure and the
elations between them.

As the model to be solved might have different singularities, the kind and number of enrichments might vary from one problem
o another. Throughout this paper, we will set ourselves on the case that two different kinds are needed, being this the case for our
xample. The generalization to other problems with more (or less) enrichments needed would be easy to perform following the same
ethodology and operators presented here. To this end, Fig. 6 plays a key role in order to define the necessary embeddings and
iscard the negligible ones. Our practical use case presents a type I discontinuity on the displacement and a type II discontinuity
n the stress, so we consider two kind of enrichment functions: 𝐻 is a discontinuous function through ℎ, and a set, 𝛹 , of four
unctions 𝛹 , 𝑙 = 1,… , 4, which reproduce the singular behaviour of the stress near the crack tip.
271
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Fig. 4. Example case: representation of the crack through level sets.

Fig. 5. Linear approximation of the interface within each element.

4.1. Level sets representation

Let us assume that the interface is given by level sets. In the model example of this paper, being the interface a crack near the
surface of the plate, only two types of level set functions (see Fig. 4) are needed to describe it. Let us consider 𝜙, defined in 𝛺ℎ,
and 𝜑, defined in (−𝑙2, 0), such that:

⎧

⎪

⎨

⎪

⎩

𝜙(𝒙) > 0, if 𝒙 ∈ 𝛺+
ℎ ,

𝜙(𝒙) = 0, if 𝒙 ∈ ℎ ∪ 𝛤𝐹 ,
𝜙(𝒙) < 0, if 𝒙 ∈ 𝛺−

ℎ ,

𝜑(𝑦) < 0, if 𝑦 ∈ (−𝑙𝑐 , 0],
𝜑(𝑦) = 0, if 𝑦 = −𝑙𝑐 ,
𝜑(𝑦) > 0, if 𝑦 ∈ (−𝑙2,−𝑙𝑐 ).

The zero level set of 𝜙 corresponds to the interface when 𝜑 < 0 too. Besides, the point 𝒙 ∈ 𝛺ℎ verifying 𝜙(𝒙) = 0 and 𝜑(𝒙) = 0
represents the interface ending point.

The discontinuous enrichment function 𝐻 is defined as

𝐻(𝒙) = 𝐻̃(𝜙(𝒙)), (12)

being 𝐻̃(𝜍) the Heaviside-like function

𝐻̃(𝜍) =
{

1, if 𝜍 ≥ 0,
−1, if 𝜍 < 0.

Recall that the element edges might not be aligned with the interface and let us denote by {𝑁𝐼 ∶ 𝐼 ∈ ℎ} the set of the standard
shape functions associated to the nodes of the partition. In practice, the values of the level set functions are computed only on the
nodes, so 𝜙𝐼 = 𝜙(𝒙𝐼 ), 𝜑𝐼 = 𝜑(𝒙𝐼 ), with 𝐼 = 1,… , 𝑛ℎ𝑛. Therefore, new level-set functions, still denoted by 𝜙 and 𝜑, can be defined as
the approximation of 𝜙 and 𝜑 using the standard shape functions 𝑁𝐼 (𝒙). So, at any point 𝒙 ∈ 𝛺ℎ, this new level set functions are
given by 𝜙(𝒙) =

∑

𝐼 𝑁𝐼 (𝒙)𝜙𝐼 (respect. with 𝜑). In this way, the interface is approximated by a straight segment on each element
as shown in Fig. 5. Consequently, the finer the mesh the more accurate the approximation of the interface. More details on the
interface approximation can be found in [27].

4.2. Node sets

We classify the mesh nodes regarding the kind of shape functions associated to each one (see Fig. 3):

• 𝜓 the subset of ℎ that contains all the nodes enriched with the singular functions 𝛹 . We will refer to these nodes as psi-nodes.
The total number of nodes in  is denoted by 𝑛 ,
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• 𝐻 the subset of ℎ that contains all the nodes enriched with the Heaviside type functions 𝐻 . We will refer to these nodes as
H-nodes. The total number of nodes in 𝐻 is denoted by 𝑛𝐻𝑛.

• 𝑆 the subset of ℎ that contains all non-enriched nodes. We will refer to these nodes as standard nodes. The total number of
nodes in 𝑆 is denoted by 𝑛𝑆𝑛.

Therefore, ℎ is the union of the three disjoint subsets 𝑆 , 𝐻 and 𝜓 and 𝑛ℎ𝑛 = 𝑛𝜓𝑛+𝑛𝐻𝑛+𝑛𝑆𝑛. When referring to the numbering
of a node with respect to any of the previous sets 𝐿, 𝐿 ∈ {ℎ,𝐻,𝜓, 𝑆}, the notation 𝐼𝐿 will be used. As we said before, from now
on, 𝐿 will also denote the sets of local indices corresponding to the nodes of the set 𝐿.

Let us consider the embeddings 𝑛𝐿 ∶ 𝐿 ↪ ℎ, that correlate the nodes local numbering on 𝐿, 𝐿 ∈ {𝑆,𝐻,𝜓} with their
respective global one on ℎ. We also consider the mappings 𝑛−1𝐿 , 𝐿 ∈ {𝑆,𝐻,𝜓} defined by

𝑛−1𝐿 (𝐼ℎ) =
{

𝐼𝐿 if 𝐼ℎ = 𝑛𝐿(𝐼𝐿),
0 otherwise. (13)

It is clear that this mapping is a left inverse of 𝑛𝐿, since

𝑛−1𝐿 (𝑛𝐿(𝐼𝐿)) = 𝐼𝐿, ∀𝐼𝐿 ∈ {1,… , 𝑛𝐿𝑛}, 𝐿 ∈ {𝑆,𝐻,𝜓}.

Note that a fictitious node must be added to the sets 𝐿, 𝐿 ∈ {𝑆,𝐻,𝜓}, so that 𝑛−1𝐿 is well defined. Such node will be labelled
y 0𝐿.

The relations between the different sets and embeddings are graphically shown in the diagram shown in Fig. 6.

.3. Element sets

Taking into account the specific characteristics of the nodes considered, a classification of the elements of the mesh in three
isjoint sets is obtained (see Fig. 3):

• 𝜓 contains all elements with at least one node belonging to 𝜓 . We will refer to these elements as psi-elements. The total
number of elements in 𝜓 is denoted by 𝑛𝜓𝑒,

• 𝐻 contains all elements with at least one node belonging to 𝐻 and none belonging to 𝜓 . We will refer to these elements
as H-elements. The total number of elements in 𝐻 is denoted by 𝑛𝐻𝑒.

• 𝑆 contains all elements with only standard nodes, this is, without any nodes belonging to 𝜓 ∪ 𝐻 . We will refer to these
elements as standard elements. The total number of elements in 𝑆 is denoted by 𝑛𝑆𝑒 = 𝑛ℎ𝑒 − (𝑛𝜓𝑒 + 𝑛𝐻𝑒).

Therefore, ℎ is the union of the three disjoint subsets 𝑆 , 𝐻 and 𝜓 .
Similarly to what we did with the node sets, we consider the inclusions 𝑇𝐿 ∶ 𝐿 ↪ ℎ, correlating the element sets for

𝐿 ∈ {𝑆, 𝐻, 𝜓}.
We can see in the diagram in Fig. 6 how the applications and sets defined above relate to each other.

4.4. Edge sets

The previous classification of elements induces a similar classification of edges in the polygonal interface, ℎ, that approximates
the real one depending on which element the edge belongs to. Indeed, we consider the subsets 𝐻 and 𝜓 that contain the edges
of ℎ that cross elements in 𝐻 or 𝜓 , respectively. Because of their definition 𝐻 and 𝜓 are disjoint sets such that ℎ = 𝐻 ∪𝜓 .
Also notice that, due to the linear approximation of the interface, each edge can only belong to one element in ℎ. Similarly to what
we did for nodes and elements, in order to integrate on the interface ℎ, we need to relate the interface edges with the elements
they cross. This is why the applications 𝐷, 𝐷𝐻𝐻 and 𝐷𝜓𝜓 , are defined, assigning to each interface edge the corresponding mesh
element, according to the diagram in Fig. 6.

4.5. Adjacency operators

The final step to describe a mesh oriented to the XFEM implementation is to establish the relations between edges, nodes and
elements. The adjacency element-node is defined by operators, 𝐶𝐿𝑀 ∶ 𝐿 → 3

𝑀 , 𝐿, 𝑀 ∈ {ℎ, 𝑆,𝐻, 𝜓} giving for each element in 𝐿
the set of nodes belonging to this element with their numbering on the set 𝑀 . After fixing indexation on 𝐿 and 𝑀 , the adjacency
operator can be represented by a matrix, denoted by [𝐶𝐿𝑀 ] ∈ 3×𝑛𝐿𝑒 , being [𝐶𝐿𝑀 ]𝑖𝑘 the local numbering on 𝑀 of the 𝑖th node of
the element 𝑇 𝑘 ∈ 𝐿, 1 ≤ 𝑘 ≤ 𝑛𝐿𝑒, 1 ≤ 𝑖 ≤ 3, or 0 if the node does not belong to 𝑀 .

The commutative diagram on Fig. 6 shows how the applications and sets defined above relate to each other.
If we denote by 𝒏−1𝐿 , 𝐿 ∈ {𝑆,𝐻,𝜓} the vector-valued function that acts like 𝑛−1𝐿 ∶ ℎ → 𝐿 defined in (13) on each component,

we can define the previous adjacency operators by

𝐶𝐿𝑀 = 𝒏−1𝑀𝐶ℎℎ𝑇𝐿, 𝐿,𝑀 ∈ {𝑆,𝐻,𝜓}. (14)

These operators will be used to build the local-to-global allocation arrays that are essential to the mass and stiffness matrices
assembling. Even though there are more possibilities, only five of them are relevant to the implementation and are shown in the
diagram in Fig. 6. Note that all the information relative to standard degrees of freedom that might be needed for the assembling is
provided by both [𝐶 ] and [𝐶 ] while the information related to psi-nodes and H-nodes is provided by [𝐶 ], [𝐶 ] and [𝐶 ].
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Fig. 6. Relevant adjacency operators.

emark 2. Note that although the sets of elements 𝑆 , 𝐻 and 𝜓 are disjoint, not all the nodes on one element need to be on
the same nodes set. An element on 𝜓 might have some nodes on 𝜓 and the rest on 𝐻 or 𝑆 (see Fig. 3).

Remark 3. Notice that if the interface were to evolve, we will not need remeshing, but updating these sets and embeddings. One
node that was previously enriched might not be enriched on the next time step and vice versa. A careful definition of the adjacency
operators and the local-to-global allocation mappings is essential for a flawless implementation.

5. XFEM approximation

The key point of the extended finite element method is to add to the standard FEM basis some particular shape functions verifying
the basic concept of partition of unit and displaying specific properties of the expected solution (see [1,2] or [3] for instance). As
stated before, the standard shape functions considered here are piecewise linear (Lagrange 𝑃 1). Besides, for representing a crack near
the surface we need two types of enrichment functions: the first one that accounts for the possible discontinuity of the displacement
when crossing the interface, 𝐻 , and the second type that is well adapted to the expected singularity in the stresses near the tip
of the crack; in this example a set of four functions 𝛹𝑙 , 𝑙 = 1,… , 4, affecting the nodes on 𝜓 , are considered (see [7] or [32]).
Therefore, the approximation of a function 𝒖 ∶ 𝒙 ∈ 𝛺 → 𝒖(𝒙) ∈ R2, is considered as

𝒖ℎ(𝒙) =
𝑛ℎ𝑛
∑

𝐼ℎ=1
𝑁𝐼ℎ (𝒙)𝒖𝐼ℎ +

𝑛𝐻𝑛
∑

𝐼𝐻=1
𝑁𝑛𝐻 (𝐼𝐻 )(𝒙)𝐻(𝒙)𝒄𝐼𝐻 +

𝑛𝜓𝑛
∑

𝐼𝜓=1
𝑁𝑛𝜓 (𝐼𝜓 )(𝒙)

4
∑

𝑙=1
𝛹𝑙(𝒙)𝒃𝑙𝐼𝜓 , (15)

where 𝒖𝐼ℎ , 𝒄𝐼𝐻 , 𝒃
𝑙
𝐼𝜓

∈ R2.
In [27] the interested reader can find the graphical representation of the one- and two-dimensional standard and Heaviside shape

functions. We remark that this choice for 𝐻 is not unique and other options can be found in [3]. Here we are dealing with two
different types of enrichment, having some nodes enriched with only one function (𝐻), some nodes enriched with 4 functions (𝛹𝑙,
in this case 1 ≤ 𝑙 ≤ 4) and of course, most nodes not enriched at all. The procedure can be easily generalized to more (or less)
enrichment types and any other number of enrichment functions, depending on the expected characteristics of the solution of each
particular problem.

Regarding the enrichment functions near the crack tip, 𝛹𝑙 are given by (see [33])

𝛹1(𝒙) =
√

𝑟 sin 𝜃
2
; 𝛹2(𝒙) =

√

𝑟 cos 𝜃
2
; 𝛹3(𝒙) =

√

𝑟 sin 𝜃
2
sin 𝜃; 𝛹4(𝒙) =

√

𝑟 cos 𝜃
2
sin 𝜃, (16)

where (𝑟, 𝜃) ∈ (0,+∞) × [−𝜋, 𝜋] are the polar coordinates of point 𝒙 = (𝑥, 𝑦) with origin on the crack tip, and polar axis tangent to
the crack at its tip so that the crack lips correspond to 𝜃 = ±𝜋.

emark 4. Notice that the limit of 𝛹1(𝒙) =
√

𝑟(𝒙) sin 𝜃(𝒙)
2 , when 𝒙 approaches the crack from positive angles, i.e., 𝜃 → 𝜋, is

√

𝑟(𝒙) sin 𝜋
2 =

√

𝑟(𝒙), while from negative angles (𝜃 → −𝜋) is
√

𝑟(𝒙) sin −𝜋
2 = −

√

𝑟(𝒙). This fact makes it necessary to keep the
lignment of the segment 𝜃 = 𝜋 with the crack edges belonging to ℎ in those elements adjacent to the one containing the crack
ip (whose nodes are enriched with the near-tip functions) by taking into account a change of reference system on each element
r alternative near-tip functions. This procedures can be consulted in many works, see for example [14,34–36]. For the sake of
274



Mathematics and Computers in Simulation 218 (2024) 266–291M.T. Cao-Rial et al.

[

P

simplicity, in this work we consider that the crack is straight near the tip, i.e. on the elements of 𝜓 . Notice that this is not a
restriction since it could be achieved simply by refining the mesh near the tip.

The graphical representation of the functions (16) can be found in [27]. The compact support of these singular enrichment is
guaranteed when these functions are multiplied by the standard shape functions.

Finally, with the shape functions introduced in (15), we can write the approximation space 𝑉ℎ as

𝑉ℎ =< 𝑁𝐼ℎ (𝒙) >𝐼ℎ∈{1,…,𝑛ℎ𝑛} ⊕ < 𝑁𝑛𝐻 (𝐼𝐻 )(𝒙)𝐻(𝒙) >𝐼𝐻∈{1,…,𝑛𝐻𝑛}, (17)

and introduce a new space 𝑉 𝑋
ℎ as

𝑉 𝑋
ℎ = < 𝑁𝐼ℎ (𝒙) >𝐼ℎ∈{1,…,𝑛ℎ𝑛} ⊕ < 𝑁𝑛𝐻 (𝐼𝐻 )(𝒙)𝐻(𝒙) >𝐼𝐻∈{1,…,𝑛𝐻𝑛} ⊕ ∪4

𝑙=1

(

< 𝑁𝑛𝜓 (𝐼𝜓 )(𝒙)𝛹𝑙(𝒙) >𝐼𝜓∈{1,…,𝑛𝜓𝑛}

)

. (18)

6. Integration on enriched elements

For numerical integration on elements crossed by the interface, the use of classical quadrature formulas is not recommended. To
avoid loss of precision, it is recommended that these elements be partitioned beforehand so that the functions to be integrated are
continuous for each of them. Such partitioning is only considered for the purpose of achieving a good numerical integration, and it
does not affect the number of degrees of freedom of the discrete problem.

There are several works that consider strategies for integration over cut elements. For example in [37] the authors use a Schwarz–
Christoffel conformal mapping to integrate without splitting into subelements, in [38] the authors propose a quadrature scheme for
arbitrarily shaped convex or concave volumes, or in [39] where they use DG mortaring to deal with nonconforming overlapping
meshes. Other authors introduce new transformation methods for the numerical integration of singular functions e.g. [40,41] for
2D and 3D respectively. In this section, just for the sake of completeness, we will briefly recall some results from [27] that allow
us to integrate over enriched elements regardless of the quadrature formula used on the non-enriched elements, maintain the same
order on the enriched ones, and it is easily adaptable into the automatic processing proposed in the rest of the paper.

6.1. Integration of discontinuous functions

Let 𝑇 𝑘 ∈ ℎ be an element crossed by the interface, ℎ. Let 𝛯𝑘 = {𝑇 𝑒 ∶ 𝑒 = 1,… , 𝑛𝑘} a partition of 𝑇 𝑘 verifying that
ℎ ∩ 𝑇 𝑘 ⊂ ∪𝑛𝑘𝑒=1𝜕𝑇

𝑒. Note that with this condition, 𝑇 𝑘+ and 𝑇 𝑘− defined in Section 3.1, can be expressed as the union of some
of these subelements and each subelement belongs either to 𝛺+ or to 𝛺−. Besides, this condition ensures that the interface on 𝑇 𝑘

can be described as union of edges of some subelements. For each 𝑒 = 1,… , 𝑛𝑘, we define an affine map  𝑒 ∶ 𝑇 𝑘 → 𝑇 𝑒 by assigning
to each point 𝒙 ∈ 𝑇 𝑘, a point 𝒙′ ∈ 𝑇 𝑒 having the same barycentric coordinates with respect to 𝑇 𝑒 than 𝒙 with respect to 𝑇 𝑘. We
will denote by 𝐽 𝑒 the Jacobian of the affine map  𝑒. Besides, we define the partition matrix [ 𝑒], of 𝑇 𝑒 ∈ 𝛯𝑘 with respect to
𝑇 𝑘 as the matrix whose components are the barycentric coordinates of the vertices of 𝑇 𝑒 with respect to the shape functions 𝑁𝑉 𝑘𝑖
associated to the nodes of 𝑇 𝑘. Notice that this matrix is the one associated to  𝑒. A procedure to build these partition matrices in
a automatic way, independently of the elements casuistic, was detailed in [27] both for the two and three-dimensional cases. Let
𝑉 𝑘
𝑖 be the vertices of 𝑇 𝑘 and 𝑉 𝑒

𝑖 , 1 ≤ 𝑒 ≤ 𝑛𝑘 the vertices of subelement 𝑇 𝑒 for 1 ≤ 𝑖 ≤ 3. We denote by 𝑁𝑉 𝑘𝑖
and 𝑁𝑉 𝑒𝑖

, the standard
shape functions associated to the elements 𝑇 𝑘 and 𝑇 𝑒 respectively. Given a point 𝒙 ∈ 𝑇 𝑒 ⊂ 𝑇 𝑘, let us denote by

[

𝑁𝑘
𝑆
]

(𝒙) =
[

𝑁𝑉 𝑘1
(𝒙), 𝑁𝑉 𝑘2

(𝒙), 𝑁𝑉 𝑘3
(𝒙)

]

, (19)

the matrix belonging to 1×3 whose components are the standard shape functions associated to the vertices of 𝑇 𝑘, 𝑁𝑉 𝑘𝑖
(𝒙), and

𝑁𝑒
𝑆 ](𝒙) for the one with components 𝑁𝑉 𝑒𝑖

(𝒙), 1 ≤ 𝑖 ≤ 3.

roposition 1. Given 𝑓 ∈ 𝐿1(𝑇 𝑘), and a 𝑛𝑞-points integration rule

𝑄𝑛𝑞 (𝑓 ) =
𝑛𝑞
∑

𝑝=1
𝜔𝑝𝑓 (𝜂𝑝, 𝜉𝑝), (20)

with [𝜔𝑝, (𝜂𝑝, 𝜉𝑝)]𝑝=1,…,𝑛𝑞 as weights and quadrature points on the reference element, the integral

∫𝑇 𝑘
𝑓 (𝒙)𝑑𝒙

on any element 𝑇 𝑘 intersected by the interface with associated partition 𝛯𝑘, can be approximated by

𝑄𝑛𝑞 (𝑓 ) = |𝐽𝑘|
𝑛𝑘
∑

𝑒=1

𝑛𝑞
∑

𝑝=1
𝜔𝑒𝑝𝑓 (𝜂

𝑒
𝑝, 𝜉

𝑒
𝑝), (21)

where 𝐽𝑘 is the Jacobian of the affine transformation from the reference element to 𝑇 𝑘, the weights 𝜔𝑒𝑝 and the coordinates of the integration
points (𝜂𝑒𝑝, 𝜉𝑒𝑝), are computed as

𝑒 𝑒 𝑒 𝑘 𝑒
275
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being [𝑁𝑛𝑞 ] the matrix of barycentric coordinates of the integration points on the reference element 𝑇 , this is

[𝑁𝑛𝑞 ] = [[𝑁𝑘
𝑆 ]
𝑡(𝜂1, 𝜉1)...[𝑁𝑘

𝑆 ]
𝑡(𝜂𝑛𝑞 , 𝜉𝑛𝑞 )],

nd [ 𝑒] the corresponding partition matrix.

.2. Integration of singular functions

In order to integrate over partially cut elements, one must take into account not only the discontinuity due to the interface but
lso the singularity near the crack tip. That is why special quadrature rules are also recommended to capture the singularity more
ccurately. A summary of the different techniques can be found in [40,41] or [3].

.3. Integration on the interface

When the variational formulation of the problem of interest involves some integral on the interface, the integrands will typically
e jumps on the interface coming from displacements, gradients, pressure, or any other field of interest. The line integral (for 2-D
roblems) poses not additional difficulties in terms of quadrature, nor does it require any partitioning (assuming that the interface has
een linearly approximated on each element), so interface integration was not treated in [27]. However, the jump terms add special
atrices to the matrix formulation of the problem, aside from the typical mass, damping or stiffness matrices, so the construction

nd assembling of this jump matrices will be detailed in Section 8.

. Discrete differential operators

Now that we know how to integrate any function 𝑓 over an element partially or totally cut by the interface, in this section we
ocus on how the XFEM formulation affects the discrete expression of variational formulation (11) in comparison with the standard
EM approximation. Since the domain (and boundary) integrals are computed as the sum of elementary (edges) ones, we will initially
ocus our attention on the expression of the main differential operators when restricted to an element; afterwards, in Section 8.2
e will propose coherent local-to-global mappings in order to achieve an efficient assembling avoiding a casuistic analysis about

he number of nodes of each type belonging to the element. The procedure will be presented for the 2-D case, and it can be easily
eneralized to 3-D cases with minor changes, take for example that each standard node would have three associated degrees of
reedom instead of two.

Given 𝒖ℎ ∈ 𝑉 𝑋
ℎ , we denote by {𝑢ℎ} the column vector composed by all scalar coefficients in expression (15), so

{𝑢ℎ} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{𝒖𝐼ℎ}𝐼ℎ∈{1,…,𝑛ℎ𝑛}

{𝒄𝐼𝐻 }𝐼𝐻∈{1,…,𝑛𝐻𝑛}

{𝒃𝐼𝜓 }𝐼𝜓∈{1,…,𝑛𝜓𝑛}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (23)

s a vector in R𝑛𝑔𝑑𝑓 whose components are the global degrees of freedom of 𝒖ℎ. In particular, 𝑛𝑔𝑑𝑓 = 2(𝑛ℎ𝑛+𝑛𝐻𝑛+4𝑛𝜓𝑛). Furthermore,
he column vectors {𝒖𝐼} and {𝒄𝐼} belong both to R2 and represent the standard and 𝐻 degrees of freedom respectively, while the

column vector {𝒃𝐼} ∈ R8 comprises 4 vectors {𝒃𝑙𝐼} ∈ R2 organized as

{𝒃𝐼} =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

{𝒃1𝐼}

⋮

{𝒃4𝐼}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

nd represents the degrees of freedom associated to the 𝛹 enrichment at each 𝜓-node.
Since we will be working on the element level, given any element 𝑇 𝑘 ∈ ℎ, the first step is to extract from the global degrees

of freedom vector only those associated to 𝑇 𝑘. Actually, among the elements 𝑇 𝑘 ∈ ℎ we can distinguish four cases, elements on
𝑆 , elements on 𝐻 , elements on 𝜓 with some node on 𝐻 and elements on 𝜓 without nodes on 𝐻 . Even though unrealistic,
for the simplicity of the exposition and to automate the process, here and in the following section we will consider that the nodes
on 𝑇 𝑘 are enriched with all the enrichment functions. Therefore, let us denote by 𝑛𝑒𝑑𝑓 = 36 the number of degrees of freedom per
element. If 𝑉 𝑘

𝑖 represents the 𝑖th vertex of the 𝑘th element, {𝒖𝑉 𝑘𝑖 } ∶= {𝒖[𝐶ℎℎ]𝑖𝑘}, {𝒄𝑉 𝑘𝑖 } ∶= {𝒄𝑛−1𝐻 ([𝐶ℎℎ]𝑖𝑘)
} and {𝒃𝑉 𝑘𝑖 } ∶= {𝒃𝑛−1𝜓 ([𝐶ℎℎ]𝑖𝑘)

},
for 1 ≤ 𝑖 ≤ 3, will represent the standard, 𝐻 and 𝜓 element degrees of freedom associated to vertex 𝑉 𝑘

𝑖 . As we said before, 𝑁𝑉 𝑘𝑖
denotes the standard shape function associated to node 𝑉 𝑘

𝑖 , this is, 𝑁𝑉 𝑘𝑖
∶= 𝑁[𝐶ℎℎ]𝑖𝑘 . Note that 𝑛−1𝐿 ([𝐶ℎℎ]𝑖𝑘), 𝐿 ∈ {𝐻,𝜓} might be

zero, so we will just assume that 𝒄0 = {𝟎} ∈ R2, and 𝒃0 = {𝟎} ∈ R8.
We consider the matrix [𝐴𝑘] ∈ 𝑛𝑒𝑑𝑓×𝑛𝑔𝑑𝑓 such that

𝑘 𝑘
276
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being {𝑢𝑘ℎ} ∈ R𝑛𝑒𝑑𝑓 the vector whose components are the element degrees of freedom. This matrix [𝐴𝑘] is closely related to the
ssembling procedure that will be described on Section 8.2, so we will not enter into details here. The disposition of the local
egrees of freedom on {𝑢𝑘ℎ} will be different to the global one, since they will be grouped by components as follows:

{𝑢𝑘ℎ} =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

{𝑢𝑘1}

{𝑢𝑘2}

{𝑐𝑘1}

{𝑐𝑘2}

{𝑏𝑘1}

{𝑏𝑘2}

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

, (25)

here {𝑢𝑘𝑠} ∈ 3×1, with 1 ≤ 𝑠 ≤ 2 represents the standard degrees of freedom associated to the 𝑠th component of 𝒖ℎ on all the
ertices, this is,

{𝑢𝑘𝑠} =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

𝑢𝑘
𝑉 𝑘1

)

𝑠
(

𝑢𝑘
𝑉 𝑘2

)

𝑠
(

𝑢𝑘
𝑉 𝑘3

)

𝑠

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

, (26)

nd {𝑐𝑘𝑠 } and {𝑏𝑘𝑠} are organized similarly.

emark 5. Clearly, for many elements some vector {𝒄𝑉 𝑘𝑖 }, {𝒃𝑉 𝑘𝑖 } or even both might be null as well as the respective rows on [𝐴𝑘],
nd the corresponding columns on the elementary matrices are unnecessary and will not be assembled. The choice of considering
eparate cases is left to the programmer.

From (15) one can easily deduce that the expression of 𝒖ℎ when restricted to 𝑇 𝑘, which is noted by 𝒖ℎ|𝑇 𝑘 , is given by

𝒖ℎ|𝑇 𝑘 (𝒙) =
3
∑

𝑖=1
𝑁𝑉 𝑘𝑖

(𝒙)

(

𝒖𝑉 𝑘𝑖 +𝐻(𝒙)𝒄𝑉 𝑘𝑖 +
4
∑

𝑙=1
𝛹𝑙(𝒙)𝒃𝑙𝑉 𝑘𝑖

)

,𝒙 ∈ 𝑇 𝑘. (27)

ur aim is to find a matrix [𝑁̂𝑘] such that

𝒖ℎ|𝑇 𝑘 (𝒙) = [𝑁̂𝑘](𝒙){𝑢𝑘ℎ}, 𝒙 ∈ 𝑇 𝑘. (28)

Let us recall the definition of
[

𝑁𝑘
𝑆
]

given by (19) and let us denote by
[

𝑁𝑘
𝐻
]

= 𝐻
[

𝑁𝑘
𝑆
]

and [𝑁𝑘
𝜓 ] ∈ 1×12 the matrix whose

components are the standard shape functions multiplied by the 𝛹𝑙 functions, this is

[𝑁𝑘
𝜓 ] =

[

𝑁𝑉 𝑘1
[𝛹 ]|𝑁𝑉 𝑘2

[𝛹 ]|𝑁𝑉 𝑘3
[𝛹 ]

]

,

with

[𝛹 ] =
[

𝛹1, 𝛹2, … , 𝛹4
]

.

Then considering the matrix [𝑁̂𝑘] belonging to 2×𝑛𝑒𝑑𝑓 and defined as

[𝑁̂𝑘] =
[


(

[𝑁𝑘
𝑆 ]
)

| 
(

[𝑁𝑘
𝐻 ]

)

| 
(

[𝑁𝑘
𝜓 ]
)]

, (29)

being  ∶ 𝑝×𝑞 → 2𝑝×2𝑞 the pattern function defined by

([𝒗]) =
[

[𝒗] 0
0 [𝒗]

]

, [𝒗] ∈ 𝑝×𝑞 ,

where 𝑝 and 𝑞 are natural numbers, it verifies relation (28).
In order to obtain the components of the gradient of the function 𝒖ℎ|𝑇 𝑘 (𝒙) defined by (27), we follow a similar procedure. Note

that since the interface might introduce singularities on 𝒖ℎ or its derivatives, we only define the gradient components on points
not belonging to the interface . When integrating on an element containing these singularities, a division into subelements will be
ecessary and some boundary terms might appear. We will deal with this issue on the following sections.

We denote by [∇𝑁𝑘
𝑆 ] the 2 × 3 matrix whose columns are the gradient of the standard shape functions, which is given by

[∇𝑁𝑘
𝑆 ] =

[

∇𝑁𝑉 𝑘1
|∇𝑁𝑉 𝑘2

|∇𝑁𝑉 𝑘3

]

=

[

𝜕1𝑁𝑉 𝑘1
𝜕1𝑁𝑉 𝑘2

𝜕1𝑁𝑉 𝑘3
𝜕 𝑁 𝑘 𝜕 𝑁 𝑘 𝜕 𝑁 𝑘

]

.
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Similarly, [∇𝑋𝑁𝑘
𝐻 ] = 𝐻[∇𝑁𝑘

𝑆 ] on 𝛺+ ∪𝛺−, and

[∇𝑁𝑘
𝜓 ] =

[

∇
[

𝑁𝑉 𝑘1
[𝛹 ]

]

|⋯ |∇
[

𝑁𝑉 𝑘3
[𝛹 ]

]]

, (30)

which is easily obtained on 𝛺+ ∪𝛺− by using the chain rule as products of 𝑁𝑉 𝑘𝑖
, [𝛹 ] and their gradients matrix, [∇𝛹 ], given by

[∇𝛹 ] =
[

𝜕1𝛹1 𝜕1𝛹2 𝜕1𝛹3 𝜕1𝛹4
𝜕2𝛹1 𝜕2𝛹2 𝜕2𝛹3 𝜕2𝛹4

]

, (31)

hich is well defined except at the tip point.
Then, the matrix [∇𝑁̂𝑘] built as

[∇𝑁̂𝑘] =
[


(

[∇𝑁𝑘
𝑆 ]
)


(

[∇𝑁𝑘
𝐻 ]

)


(

[∇𝑁𝑘
𝜓 ]
)]

,

elongs to 4×𝑛𝑒𝑑𝑓 , is well defined on 𝛺+ ∪𝛺− and taking into account (27) it verifies:

⎧

⎪

⎨

⎪

⎩

∇𝑢1ℎ|𝑇 𝑘 (𝒙)

∇𝑢2ℎ|𝑇 𝑘 (𝒙)

⎫

⎪

⎬

⎪

⎭

= [∇𝑁̂𝑘](𝒙){𝑢𝑘ℎ}, 𝒙 ∈ 𝑇 𝑘 ⧵ ̄ . (32)

From the gradient vector defined on (32) we can easily obtain the components of any other operator involving the partial
erivatives, like for example the strain vector

{𝜀(𝒖ℎ)(𝒙)}|𝑇 𝑘 = [2][∇𝑁̂𝑘](𝒙){𝑢𝑘ℎ}, 𝒙 ∈ 𝑇 𝑘 ⧵ ̄ , (33)

eing

{𝜀} =

⎧

⎪

⎨

⎪

⎩

𝜺11
𝜺22
2𝜺12

⎫

⎪

⎬

⎪

⎭

and [2] =
⎡

⎢

⎢

⎣

1 0 0 0
0 0 0 1
0 1 1 0

⎤

⎥

⎥

⎦

. (34)

emark 6. In order to compute the derivatives with respect to 𝑥 and 𝑦 of the 𝛹 shape functions we need to use the chain rule and
the Jacobian matrix [𝑄]

[𝑄] =
⎡

⎢

⎢

⎣

cos 𝜃 − sin 𝜃
𝑟

sin 𝜃 cos 𝜃
𝑟

⎤

⎥

⎥

⎦

, so that [∇𝑥𝑦𝛹 ] = [𝑄][∇𝑟𝜃𝛹 ].

emark 7. In the following, to simplify the notation, we will omit the operator  on the matrix representations if no mistake is
ossible, so

[


([

𝑁𝑘
𝑆
])


([

𝑁𝑘
𝐻
])


([

𝑁𝑘
𝜓

])]

ill be denoted by
[

𝑁𝑘
𝑆 𝑁

𝑘
𝐻 𝑁𝑘

𝜓

]

.

. Elemental matrices and assembling

One of the main difficulties of the practical implementation of the extended finite elements is the variable number of degrees
f freedom per node and element. Even for elements belonging to the same subset 𝑀 , 𝑀 ∈ {𝐻,𝜓}, their nodes do not necessarily
elong to the same set of nodes as has been pointed out in Remark 2. Therefore, there will be standard elements with 6 degrees of
reedom, or an element with all nodes enriched with the 𝜓−functions, in which case the element will have 30 degrees of freedom
ssociated, as well as many combinations in between. In particular, on a two-dimensional domain and for a mesh of triangular
lements almost any even number between 6 and 30 might occur depending on the particular element. The matrix representation
resented on Section 7 for a function 𝒖ℎ restricted to 𝑇 𝑘 was (see (28), (29) and Remark 7):

𝒖ℎ|𝑇 𝑘 =
[

𝑁̂𝑘] {𝑢𝑘ℎ} =
[

𝑁𝑘
𝑆 𝑁

𝑘
𝐻 𝑁𝑘

𝜓

]

{𝑢𝑘ℎ}.

Let us note also that the matrix formulation on elements belonging to  or 𝐻 is slightly different, needing only [𝑁𝑘
𝑆 ] or [𝑁𝑘

𝑆 𝑁
𝑘
𝐻 ],

espectively. There are several possible combinations, but in practice we only need to distinguish between the three element sets
resented at the beginning of this paper, ℎ, 𝐻 and 𝜓 . We will present here just the more complex case, since the other two are
imilar. The elementary matrices will be built by blocks and for each element at most three arrays will be used to relate the local
278
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8.1. Elemental matrices

In this section we will study the computation of the elementary stiffness and mass matrices in the more general case, assuming
hat the element belongs to 𝜓 , so it could have the three kinds of degrees of freedom. In order to do so, we will use the matrix

formulations (28) and (32) obtained in Section 7.
We will see first the computation of the mass matrix, related to terms like ∫𝛺 𝒖ℎ ⋅ 𝒗ℎ 𝑑𝒙.
As usual on the FEM, because of the properties of the shape functions 𝑁𝐼 , the domain integral can be obtained more easily as

he sum of the elementary integrals,

∫𝛺
𝒖ℎ ⋅ 𝒗ℎ 𝑑𝒙 =

∑

𝑇 𝑘∈ℎ
∫𝑇 𝑘

𝒖ℎ|𝑇 𝑘 ⋅ 𝒗ℎ|𝑇 𝑘 𝑑𝒙. (35)

ith the matrix formulation (28), the elementary integral on 𝑇 𝑘 can be expressed as:

∫𝑇 𝑘
𝒖ℎ|𝑇 𝑘 ⋅ 𝒗ℎ|𝑇 𝑘 𝑑𝒙 = ∫𝑇 𝑘

[

𝑁̂𝑘] {𝑢𝑘ℎ} ⋅
[

𝑁̂𝑘] {𝑣𝑘ℎ} 𝑑𝒙 = ∫𝑇 𝑘
{𝑣𝑘ℎ}

𝑡 [𝑁̂𝑘]𝑡 [𝑁̂𝑘] {𝑢𝑘ℎ}𝑑𝒙 = {𝑣𝑘ℎ}
𝑡
(

∫𝑇 𝑘
[

𝑁̂𝑘]𝑡 [𝑁̂𝑘] 𝑑𝒙
)

{𝑢𝑘ℎ},

nd therefore, the elementary mass matrix, [𝑀𝑘], with dimension 𝑛𝑒𝑑𝑓 × 𝑛𝑒𝑑𝑓 is defined by

[𝑀𝑘] = ∫𝑇 𝑘
[

𝑁̂𝑘]𝑡 [𝑁̂𝑘] 𝑑𝒙, (36)

o

∫𝑇 𝑘
𝒖ℎ|𝑇 𝑘 ⋅ 𝒗ℎ|𝑇 𝑘 𝑑𝒙 = {𝑣𝑘ℎ}

𝑡[𝑀𝑘]{𝑢𝑘ℎ}. (37)

imilarly, the stiffness matrix, related to terms like ∫𝛺± ∇𝒖ℎ ∶ ∇𝒗ℎ 𝑑𝒙, is computed on each element as

∫𝑇 𝑘±
∇𝒖ℎ|𝑇 𝑘± ∶ ∇𝒗ℎ|𝑇 𝑘± 𝑑𝒙 = ∫𝑇 𝑘±

[

∇𝑁̂𝑘] {𝑢𝑘ℎ} ⋅
[

∇𝑁̂𝑘] {𝑣𝑘ℎ} 𝑑𝒙 = {𝑣𝑘ℎ}
𝑡
(

∫𝑇 𝑘±
[

∇𝑁̂𝑘]𝑡 [∇𝑁̂𝑘] 𝑑𝒙
)

{𝑢𝑘ℎ},

eing 𝑇 𝑘± = 𝑇 𝑘 ∩𝛺±. The elementary stiffness matrix is defined by [𝐾𝑘] = [𝐾𝑘+] + [𝐾𝑘−], being

[𝐾𝑘±] = ∫𝑇 𝑘±
[

∇𝑁̂𝑘]𝑡 [∇𝑁̂𝑘] 𝑑𝒙. (38)

emark 8. Note that given the particular form of [𝑁̂𝑘] and [∇𝑁̂𝑘], the elementary matrices can be built by blocks, so for example
remember again Remark 7)

[𝑀𝑘] =

⎡

⎢

⎢

⎢

⎢

⎣

[

𝑁𝑘
𝑆
]𝑡 [𝑁𝑘

𝑆
] [

𝑁𝑘
𝑆
]𝑡 [𝑁𝑘

𝐻
] [

𝑁𝑘
𝑆
]𝑡
[

𝑁𝑘
𝜓

]

[

𝑁𝑘
𝐻
]𝑡 [𝑁𝑘

𝑆
] [

𝑁𝑘
𝐻
]𝑡 [𝑁𝑘

𝐻
] [

𝑁𝑘
𝐻
]𝑡
[

𝑁𝑘
𝜓

]

[

𝑁𝑘
𝜓

]𝑡
[

𝑁𝑘
𝑆
]

[

𝑁𝑘
𝜓

]𝑡
[

𝑁𝑘
𝐻
]

[

𝑁𝑘
𝜓

]𝑡 [
𝑁𝑘
𝜓

]

⎤

⎥

⎥

⎥

⎥

⎦

, (39)

here [𝑀𝑘] ∈ 36×36, and similarly for the elementary stiffness matrix. Also noticeable is that the non-diagonal blocks involving
he 𝛹 functions are not square. For example,

[

𝑁𝑘
𝜓

]𝑡
[

𝑁𝑘
𝑆
]

∈ 24×6. Actually, the whole elementary matrix is never built, the several
locks are computed and assembled separately. That is why three destination arrays will be used, one for each kind of degrees of
reedom, which are combined to assemble the different blocks.

Any other integral involving divergence or strain deformation tensor can be obtained similarly just by using the appropriate
atrices and patterns.

.2. Computing the assembling matrices

In order to pass from the global to the local degrees of freedom on the previous section, we used the matrix [𝐴𝑘] ∈ 𝑛𝑒𝑑𝑓×𝑛𝑔𝑑𝑓
erifying (24).

In this section we will see how this matrix can be used also to assemble the elementary matrices just computed. The property
hat will allow us to do it is that

[𝐴𝑘][𝐴𝑘]𝑡 = 𝐼𝑑(𝑛 ), (40)
279
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so, if we consider expression (36) we can actually write

∑

𝑘
{𝑣𝑘ℎ}

𝑡[𝑀𝑘]{𝑢𝑘ℎ} =
∑

𝑘
{𝑣𝑘ℎ}

𝑡[𝐴𝑘][𝐴𝑘]𝑡[𝑀𝑘][𝐴𝑘][𝐴𝑘]𝑡{𝑢𝑘ℎ} = {𝑣ℎ}𝑡
(

∑

𝑘
[𝐴𝑘]𝑡[𝑀𝑘][𝐴𝑘]

)

{𝑢ℎ}.

Defining the global mass matrix, [𝑀], as

[𝑀] =
∑

𝑘
[𝐴𝑘]𝑡[𝑀𝑘][𝐴𝑘] ∈ 𝑛𝑔𝑑𝑓×𝑛𝑔𝑑𝑓 ,

we can rewrite from (35) and (37)

∫𝛺
𝒖ℎ ⋅ 𝒗ℎ 𝑑𝒙 = {𝑣ℎ}𝑡[𝑀]{𝑢ℎ}.

Note also that the assembling matrix for element 𝑘 can be built by blocks,

[𝐴𝑘] =

⎡

⎢

⎢

⎢

⎣

𝐴𝑘𝑆
𝐴𝑘𝐻
𝐴𝑘𝜓

⎤

⎥

⎥

⎥

⎦

,

where the matrices [𝐴𝑘𝐿], 𝐿 ∈ {𝑆,𝐻} belong to 6×𝑛𝑔𝑑𝑓 and [𝐴𝑘𝜓 ] ∈ 24×𝑛𝑔𝑑𝑓 , so, thanks to (39), one can assemble the blocks of
the elementary matrices separately as

[𝑀] =
∑

𝑘

∑

𝐿,𝑀
[𝐴𝑘𝐿]

𝑡[𝑁𝑘
𝐿]
𝑡[𝑁𝑘

𝑀 ][𝐴𝑘𝑀 ] ∈ 𝑛𝑔𝑑𝑓×𝑛𝑔𝑑𝑓 , 𝑇
𝑘 ∈ ℎ, 𝐿,𝑀 ∈ {𝑆,𝐻,𝜓}.

The stiffness matrix can be computed in a similar way from the elementary stiffness matrices and the assembling matrix.
For the practical implementation point of view, there are two key tools when defining the matrix components:

• The adjacency node-element operator [𝐶ℎℎ], defined on Section 4, giving for each element the set of nodes belonging to this
element with their numbering on ℎ.

• The transforming index functions 𝗉, 𝗉𝐻 and 𝗉𝜓 , assigning to each elementary degree of freedom a position on the global
ordering. Such ordering is a programmer’s choice. We consider the following ones:

𝗉(𝑠, 𝐼ℎ) =𝑠 + (𝐼ℎ − 1)2, 𝗉𝐻 (𝑠, 𝐼𝐻 ) =
{

𝑠 + (𝐼𝐻 − 1 + 𝑛ℎ𝑛)2 if 𝐼𝐻 > 0,
0 if 𝐼𝐻 = 0,

while

𝗉𝜓 (𝑠, 𝑙, 𝐼𝜓 ) = 𝑠+ 2(𝑙 − 1 + 4(𝐼𝜓 − 1) + 𝑛ℎ𝑛 + 𝑛𝐻𝑛)

if 𝐼𝜓 > 0 and 𝗉𝜓 (𝑠, 𝑙, 𝐼𝜓 ) = 0 otherwise. In these expressions 1 ≤ 𝑠 ≤ 2 relates to the component, 𝑙 ∈ {1,… , 4} relates to
the function 𝛹𝑙 and 1 ≤ 𝐼ℎ ≤ 𝑛ℎ𝑛, 1 ≤ 𝐼𝐻 ≤ 𝑛𝐻𝑛, 1 ≤ 𝐼𝜓 ≤ 𝑛𝜓𝑛 are the global numbering of the node in ℎ, 𝐻 and 𝜓 ,
respectively. Therefore, for example, 𝗉(𝑠, 𝐼) gives the global numbering of the standard degree of freedom associated to the
𝑠th component of the 𝐼th node on the mesh and 𝗉𝜓 (𝑠, 𝑙, 𝐼𝜓 ) gives the global numbering of the degree of freedom associated to
the 𝑠th component of the 𝛹𝑙 function of the 𝐼𝜓 -th node on 𝜓 .

he composition of these functions will define the assembling matrix components. Since the standard degrees of freedom will occupy
he first 2𝑛ℎ𝑛 positions, the global numbering of the Heaviside degrees of freedom has to start with 2𝑛ℎ𝑛 + 1 which corresponds to
𝐻 (1, 1), and the 𝜓 ordering will start with 2(𝑛ℎ𝑛 + 𝑛𝐻𝑛) + 1, corresponding to 𝗉𝜓 (1, 1, 1).

Now, given an index 𝑗 in the local ordering of the element 𝑇 𝑘, 1 ≤ 𝑗 ≤ 𝑛𝑒𝑑𝑓 , we need to recover the component, 𝑠(𝑗), local node,
(𝑗), global node, 𝐼(𝑖(𝑗)), and 𝛹𝑙 function, 𝑙(𝑗) (if that is the case), to which the 𝑗th elementary degree of freedom is associated to.
n order to do that, we use the floor function 𝐸[𝑎] and the modulo operator [𝑎]𝑚 defined as

𝐸[𝑎] = max{𝑧 ∈ Z; 𝑧 ≤ 𝑎}, [𝑎]𝑚 = 𝑎 − 𝑚𝐸
[ 𝑎
𝑚

]

, 𝑎 ∈ R, 𝑚 ∈ N.

Considering the local ordering of the elementary degrees of freedom established on (25) we know that

𝑠(𝑗) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐸
[

𝑗−1
3

]

+ 1 1 ≤ 𝑗 ≤ 𝑗⋆,

𝐸
[

𝑗−1−𝑗⋆
3

]

+ 1 𝑗⋆ + 1 ≤ 𝑗 ≤ 2𝑗⋆,

𝐸
[

𝑗−1−2𝑗⋆
12

]

+ 1 2𝑗⋆ + 1 ≤ 𝑗 ≤ 𝑛𝑒𝑑𝑓 ,

(41)

with 𝑗⋆ = 6, gives the displacement component associated to which the 𝑗th elementary degree of freedom contributes, while

𝑖(𝑗) =

⎧

⎪

⎨

⎪

[𝑗 − 1]3 + 1 1 ≤ 𝑗 ≤ 2𝑗⋆,
[

𝐸
[

𝑗−1−2𝑗⋆
4

]]

3
+ 1 2𝑗⋆ + 1 ≤ 𝑗 ≤ 𝑛𝑒𝑑𝑓 ,

(42)
280

⎩
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a

gives the local number of the node (vertex) at the element 𝑘,

𝐼(𝑗, 𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[𝐶ℎℎ]𝑖(𝑗)𝑘 1 ≤ 𝑗 ≤ 𝑗⋆,

𝑛−1𝐻 ([𝐶ℎℎ]𝑖(𝑗)𝑘) 𝑗⋆ + 1 ≤ 𝑗 ≤ 2𝑗⋆,

𝑛−1𝜓 ([𝐶ℎℎ]𝑖(𝑗)𝑘) 2𝑗⋆ + 1 ≤ 𝑗 ≤ 𝑛𝑒𝑑𝑓 ,
(43)

gives the number of the global node in the mesh ℎ, and

𝑙(𝑗) =

⎧

⎪

⎨

⎪

⎩

0 1 ≤ 𝑗 ≤ 2𝑗⋆,
[

𝑗 − 1 − 2𝑗⋆
]

4 + 1 2𝑗⋆ + 1 ≤ 𝑗 ≤ 𝑛𝑒𝑑𝑓 ,
(44)

gives the 𝛹𝑙 function involved.
So, the assembling matrix is defined as:

[𝐴𝑘𝑀 ]𝑗𝑞 = 𝛿𝑞𝜉𝑘𝑀 (𝑗),𝑀 ∈ {𝑆,𝐻,𝜓},

being

𝜉𝑘𝑆 (𝑗)=𝗉 (𝑠(𝑗), 𝐼(𝑗, 𝑘)) , 𝜉𝑘𝐻 (𝑗)=𝗉𝐻
(

𝑠(𝑗 + 𝑗⋆), 𝐼(𝑗 + 𝑗⋆, 𝑘)
)

, 1 ≤ 𝑗 ≤ 𝑗⋆,

𝜉𝑘𝜓 (𝑗)=𝗉𝜓
(

𝑠(𝑗+2𝑗⋆), 𝑙(𝑗 + 2𝑗⋆), 𝐼(𝑗 + 2𝑗⋆, 𝑘)
)

, 1 ≤ 𝑗 ≤ 4𝑗⋆. (45)

Note that the position of the non-null element on the 𝑗th row of [𝐴𝑘𝑀 ] is given by 𝜉𝑘𝑀 (𝑗), so the implementation can be done by
using the vectors 𝜉𝑘𝑀 without actually building the assembling matrices.

The null positions on [𝐴𝑘𝑀 ], 𝑀 ∈ {𝐻,𝜓} will indicate which rows and/or columns from the elementary mass and stiffness
matrices will not be assembled, since they correspond with non-enriched nodes on elements in 𝐻 and 𝜓 .

8.3. Jump operator on the interface

Now, considering the iterative algorithm described in Section 3.1 for solving the nonlinearity arising by the contact between the
lips of the crack, we will see the implementation of the integral term on the interface at each iteration:

1
𝜖 ∫𝑐𝑗−1

𝐵(𝒖𝑗ℎ)𝐵(𝒗ℎ) 𝑑𝛤 ,

rising in variational formulation (11). It deals with the contact condition between the crack faces, being 𝑐𝑗−1 the subset of edges
in ℎ where effective contact happens at iteration 𝑗 − 1 of the iterative algorithm.

Let us recall the expression in (27) that gives the displacement of a point 𝒙 ∈ 𝑇𝑘 ∈ ℎ. If a point 𝒙0 ∈ 𝑇 𝑘 was to be on the crack,
𝐻 would not be defined in 𝒙0, nor would be 𝛹1(𝒙0) =

√

𝑟(𝒙0) sin(±𝜋∕2), since both are discontinuous on 𝜃 = ±𝜋 (see (16). Therefore,
the XFEM discretization of the jump 𝐵(𝒖ℎ) = [𝒖ℎ ⋅ 𝒏] at a point 𝒙0 ∈ 𝑇 𝑘 ∩ ℎ on the crack becomes

[𝒖ℎ(𝒙0) ⋅ 𝒏] =
3
∑

𝑖=1
2𝑁𝑉 𝑘𝑖

(𝒙0)𝒏 ⋅
(

𝒄𝑉 𝑘𝑖 +
√

𝑟(𝒙0)𝒃1𝑉 𝑘𝑖

)

.

In order to obtain the global operator [𝑆] such that for every 𝒙 ∈ ℎ

[𝒖ℎ(𝒙) ⋅ 𝒏] = [𝑆](𝒙){𝑢ℎ}, (46)

for each edge 𝑒𝑚 ∈ ℎ, and at each point 𝒙 ∈ 𝑒𝑚, we consider the elementary matrix, [𝑆𝑚](𝒙) ∈ 1×6, given by the following vectors:

[𝑆𝑚](𝒙) =
[

[𝑁𝐷(𝑚)
𝑆 ](𝒙)𝑛1 [𝑁𝐷(𝑚)

𝑆 ](𝒙)𝑛2
]

,

being 𝒙 an interior point of the 𝑚th edge, 𝑒𝑚, 𝒏+ = (𝑛1, 𝑛2) and 𝐷 the application defined in Section 4.4 that assigns to the 𝑚th
interface edge, the corresponding mesh element, 𝑇 𝑘, 𝑘 = 𝐷(𝑚), to which 𝑒𝑚 belongs to, according to the diagram in Fig. 6. Therefore,
for 𝑚 = 1,… , 𝑛ℎ𝑓 we get

[𝒖ℎ(𝒙) ⋅ 𝒏]|𝑒𝑚 = 2[𝑆𝑚](𝒙)({𝒄𝐷(𝑚)} +
√

𝑟(𝒙){𝒃1,𝐷(𝑚)}),

for every 𝑒𝑚 ∈ ℎ being

{𝒄𝐷(𝑚)} =

⎧

⎪

⎨

⎪

⎩

{𝑐𝐷(𝑚)
1 }

{𝑐𝐷(𝑚)
2 }

⎫

⎪

⎬

⎪

⎭

and {𝒃1,𝐷(𝑚)} =

⎧

⎪

⎨

⎪

⎩

{𝑏1,𝐷(𝑚)
1 }

{𝑏1,𝐷(𝑚)
2 }

⎫

⎪

⎬

⎪

⎭

,

the vectors analogous to those defined in (25), whose components are the local degrees of freedom associated to the 𝐻 and 𝛹1
enrichment functions for the nodes of the element, 𝐷(𝑚), to which 𝑒𝑚 belongs to. Notice that the components of the vector {𝒄𝐷(𝑚)}

−1 1,𝐷(𝑚)
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correspond to the components with indices 𝗉𝐻 (∶, 𝑛𝐻 (𝐶ℎℎ(∶, 𝐷(𝑚)))) of the global nodal vector 𝒖ℎ. Besides, the components of {𝒃 }
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correspond to the components with indices 𝗉𝜓 (∶, 1, 𝑛−1𝜓 (𝐶ℎℎ(∶, 𝐷(𝑚)))) of the global nodal vector 𝒖ℎ. From now on, in order to simplify
the notation, we will omit the dependence on 𝒙.

Let

𝜁𝑚𝑗 =
{

𝗉𝐻 (𝑠(𝑗), 𝑛−1𝐻 ([𝐶ℎℎ]𝑖(𝑗),𝐷(𝑚))), if 𝑆−1
𝐻𝐻 (𝑚) ≠ 0,

𝗉𝜓 (𝑠(𝑗), 1, 𝑛−1𝜓 ([𝐶ℎℎ]𝑖(𝑗),𝐷(𝑚))), if 𝑆−1
𝜓𝜓 (𝑚) ≠ 0,

with 𝑗 = 1,… , 6 and 𝑆𝐻𝐻 , 𝑆𝜓𝜓 the adjacency operators defined in Section 4.5. Then, the global jump matrix [𝐒] ∈ 𝑛ℎ𝑓×𝑛𝑔𝑑𝑓 has
as components

[𝑆]𝑚𝜁𝑚𝑗 =

{

[𝑆𝑚]𝑗 , if 𝑆−1
𝐻𝐻 (𝑚) ≠ 0,

√

𝑟(𝒙)[𝑆𝑚]𝑗 , if 𝑆−1
𝜓𝜓 (𝑚) ≠ 0,

for every 𝑗 = 1,… , 6.

Iterative algorithm and interface integral computation. Let us briefly recall the main steps of the iterative algorithm used to compute
(𝒖ℎ,𝝈ℎ) at time 𝑡. A detailed explanation of such algorithm can be found in [28].

• Given (𝒖𝑗−1ℎ ,𝝈𝑗−1ℎ ) and 𝑐𝑗−1, compute (𝒖𝑗ℎ,𝝈
𝑗
ℎ) verifying (11) for all 𝒗ℎ ∈ 𝑉 𝑋

ℎ .
• Known (𝒖𝑗ℎ,𝝈

𝑗
ℎ), compute 𝐵(𝒖𝑗ℎ) defined by (37).

• Compute 𝑐𝑗 , the subset of edges in ℎ where effective contact happens at iteration 𝑗, by using the condition 𝐵(𝒖𝑗ℎ) ≥ 0.

Since the integral term

∫𝑐𝑗−1
𝐵(𝒖𝑗ℎ)𝐵(𝒗ℎ) 𝑑𝛤

might be computed on a different subset of edges at each iteration and not necessarily on the whole linearized interface ℎ, in
practice we do not use the whole global jump matrix [𝑆]. Instead, on each iteration we only use some rows [𝑆]𝑚 ∈ 1×𝑛𝑔𝑑𝑓 ,
𝑚 ∈ 𝐸𝑗−1 = {𝑚∕𝑒𝑚 ∈ 𝑐𝑗−1}, so that the integral term on the interface can be computed as

∫𝑐𝑗−1
𝐵(𝒖𝑗ℎ)𝐵(𝒗ℎ) 𝑑𝛤 =

∑

𝑚∈𝐸𝑗−1
∫𝑒𝑚

𝐵(𝒖𝑗ℎ)𝐵(𝒗ℎ) 𝑑𝛤 =
∑

𝑚∈𝐸𝑗−1
∫𝑒𝑚

{𝑣ℎ}𝑡[𝑆]𝑡𝑚[𝑆]𝑚{𝑢
𝑗
ℎ} 𝑑𝛤 .

Remark 9. The integration on the interface has been exemplified with a term involving jumps of the displacement. Of course,
the same can be done if we need to integrate other discontinuous fields, like pressure, or gradient terms on the interface. The
particularities of the global jump operator [𝑆] will depend on the enrichment functions considered and their derivatives (whether
they are continuous across the interface or not). For example, taking the practical use case as a model, and using the discrete
representation of the gradient given in (32), a similar global operator for the jump of a gradient field can be obtained.

9. Numerical results

In this section we will provide some numerical results obtained for the practical use case and compare them with its resolution
with FEM. Also, there will be a section devoted to compare computational times for the implementation of both methods with
several meshes and geometries.

9.1. Simulation of Rayleigh waves propagation problem

In this section we show some numerical results obtained with the XFEM, as well as a comparison with the results obtained by
using classical FEM to solve the same problem. In order to solve with FEM, the mesh needs to be adapted to the crack, so the
elements crossed by the crack have to be divided, but except for those elements, the meshes used with both methods match. The
same splitting technique used for the integration in XFEM is used to compute these new elements needed to adapt the mesh to the
interface for the FEM simulations. In Fig. 7 an example of both meshes is shown.

A comparison of the performance for both methods by using academic tests can be seen at [27], where solutions obtained for
fractures Mode I (opening) and Mode II (in-plane shear) are shown. We will focus here on the contact problem that arises when a
Rayleigh wave propagates on the surface of a plate.

Therefore, we will compare the solutions obtained for problem (1)–(8) solved by using XFEM and FEM. In both cases the time
discretization is performed by using an implicit method from the Newmark’s family (see [28] or [42]), taking 𝛽 = 1

4 and 𝛾 = 1
2 ,

for which the method is implicit and unconditionally stable. We consider a domain 𝛺 = [0.7854, 0.8114] × [−0.02, 0]m2 with a crack
given by the segment {0.7942} × [−0.0025, 0]m. The material parameters considered are 𝜌 = 2700 kg∕m3, 𝐸 = 7.4100E + 10N∕m2 and
𝜈 = 0.3302. The Rayleigh wave has velocity 3.𝑒 + 3m∕s and wavelength 3.𝑒 − 3m. The characteristic mesh size is considered small
enough so that more than ten elements fit on a wavelength. In particular, we are considering meshes whose characteristic size is in
the order of 2.𝑒 − 5m2. Finally, the time step considered is 𝛥𝑡 = 1.𝑒 − 8 s.

Two graphs corresponding to the displacements experienced by the surface of the plate in two different instants are presented in
282

Figs. 8 and 9, before the wave reaches the crack and once it has been overcome it. In each graph, three lines are shown, corresponding
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Fig. 7. Zoom of the meshes for geometry 1 for XFEM computations and adapted mesh for FEM.

Fig. 8. Displacements on the plate surface at time 𝑡 = 1.6E−6 s computed with XFEM and FEM.

Fig. 9. Displacements on the plate surface at time 𝑡 = 6.E−6 s computed with XFEM and FEM.

to the displacements calculated with XFEM, FEM, and those corresponding to the theoretical expression of the Rayleigh wave
obtained in [28]. The displacement associated with a theoretical Rayleigh wave always vibrating in a plate without a crack is
represented in dashed–dotted blue line, while in dashed red line the wave calculated by the XFEM method is shown and in solid green
line the wave calculated by the FEM method. As can be seen, both approximations are practically equal, so the XFEM methodology
to perform the approximation is validated.

Fig. 10 shows the difference, in absolute value, between the Von Mises norm for stresses computed with XFEM and FEM, for
each integration point of the mesh, in two time instants, before and after the wave reaches the crack. Indeed, the figure on the left
corresponds with 𝑡 = 1.6E−6 s and the one on the right with 𝑡 = 6.E−6 s. It can be seen that the greatest difference in stress occurs
near the tip, as expected, as it is the area of influence of the functions of enrichment.

For the stress measurement we take four particular points on the plate: one very close to the crack tip, 𝑋1 = (0.79417,−0.00245),
a remote point located after the crack, 𝑋2 = (0.8091,−0.004728) and two remote points, located before the crack, 𝑋3 =
(0.7888,−0.004569) and 𝑋4 = (0.7869,−0.000484), the latter also near the surface of the plate.

As can be seen on the left graph on Fig. 11, at 𝑋1, which is the closest to the crack tip, is where there are greater differences
between the stresses computed with XFEM and the stresses computed with FEM. However, at 𝑋4 (right graph on Fig. 12), which is
a point near the surface, where the predominant tensions are those of the Rayleigh wave, the results are practically identical with
both methods.
283



Mathematics and Computers in Simulation 218 (2024) 266–291M.T. Cao-Rial et al.
Fig. 10. Difference between Von Mises norm for stress computed with XFEM and FEM at time 𝑡 = 1.6E−6 s and 𝑡 = 6.E−6 s.

Fig. 11. Von Mises norm for stress at 𝑋1 and 𝑋2 computed with XFEM and FEM.

Fig. 12. Von Mises norm for stress at 𝑋3 and 𝑋4 computed with XFEM and FEM.

Fig. 13. Coarse mesh for geometry 2.

9.2. Computational times comparison

Regarding computational times, we will show next several tables displaying the times needed for several steps of the XFEM and
FEM computations. In particular, we focus on the selection of enriched nodes and elements (bounding box time), the computation of
quadrature nodes and weights for enriched elements (including the automatic computation of partition matrices), and the assembling
of the system matrices and vectors.

For this study we consider two geometries for the domain and the interface. The first one, showed in Fig. 7 is a rectangle with
a straight interface used for the previous simulations, and the second one, showed in Fig. 13, is a rectangle minus a circle on a
284
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Table 1
Mesh description and computational times for Geometry 1.
Mesh Geometry 1

1 2 3 4 5

N. Nodes XFEM (𝑛ℎ𝑛) 234 860 3358 20 811 83 305
N. Nodes FEM 247 901 3445 20 902 83 487
N. Elts. XFEM 418 1625 6528 41 146 165 666
N. Elts. FEM 431 1683 6652 41 216 165 796
Bounding Box [s] 3.1035 3.8192 3.3177 8.2405 22.5336
Quadrature XFEM [s] 0.2138 0.2609 0.3646 1.8210 7.1894
[𝑀], [𝐾] Assembly XFEM [s] 2.0190 2.08 2.5902 15.4181 628.3408
[𝑆] Assembly XFEM [s] 0.0055 0.0124 0.0129 0.0145 0.0231
[𝑀], [𝐾] Assembly FEM [s] 0.1397 0.1721 0.7145 15.3611 586.5261

Table 2
Mesh description and computational times for Geometry 2.
Mesh Geometry 2

1 2 3 4 5

N. Nodes XFEM (𝑛ℎ𝑛) 323 1332 7950 31 497 125 718
N. Nodes FEM 366 1421 8177 31 948 126 621
N. Elts. XFEM 592 2556 15 648 62 496 250 436
N. Elts. FEM 635 2645 15 875 62 947 251 339
Bounding Box [s] 6.6718 7.3037 7.5514 8.6688 12.0418
Quadrature XFEM [s] 0.1025 0.3005 0.8314 2.6685 10.1301
[𝑀], [𝐾] Assembly XFEM [s] 2.0776 2.2252 4.4396 38.0478 1839.0314
[𝑆] Assembly XFEM [s] 0.0145 0.0142 0.0179 0.0212 0.0377
[𝑀], [𝐾] Assembly FEM [s] 0.1577 0.2989 2.4857 44.8116 2101.6107

corner, and a curved interface. For both geometries five meshes will be considered and the computational times will be shown for
all of them.

We can see in Tables 1 and 2 that the computational time for the selection of enriched nodes and elements (bounding box) is
f the same order than the assembling time for very coarse meshes, but when we pass to very refined meshes, it is much faster
y several orders of magnitude. Also notice the computational times for the computation of the quadrature points and weights on
nriched elements, which includes the automatic partition of enriched elements, and it is in all cases at least one order of magnitude
aster than the assembling.

Notice also the really small time that the assembling of the jump matrix, [𝑆], takes in any case. Since this matrix only involves
nriched degrees of freedom, its assembling is really fast, and also gives an idea of the time that would take to modify the enriched
art of the mass and stiffness matrices, [𝑀] and [𝐾], were the interface to evolve and the sets of enriched nodes and elements
ere to change from one time step to another. This is where one can see the computational advantages that XFEM provides, since

nstead of remeshing and recalculating and assembling again all the system matrices, with XFEM one only needs to recalculate the
ounding box and assembling just the blocks involving enriched nodes. Let us take for example mesh 5 for Geometry 2, and let us
hink of an evolving interface. With FEM, on each time step one would need to not only reassemble matrices [𝑀] and [𝐾] on each
ime step 𝑂(103), but also remesh the domain. With XFEM, one just needs to recompute the bounding box 𝑂(10) and modify the
nriched blocks of [𝑀] and [𝐾] which one can assume will be the same order of assembling [𝑆], let us say, 𝑂(10−1) for all three
atrices together. On each time step, XFEM would be two orders of magnitude faster than FEM, even disregarding remeshing time

or the latter.

0. Conclusions

We presented here a mathematical perspective on XFEM implementation methodology that can be applied to any model and
ny programming language with minor changes even those models involving jump terms on the interface. In addition, the proposed
ethodology is generalizable independently of the numerical discretization and very efficient regarding computational times, which

s extremely important above all when there are terms appearing inside iterative algorithms that require their repeated computation.
Such analysis has been vertebrated with a series of mathematical tools (sets, functions, embeddings, etc.) that define and relate

he key features of the XFEM, like the enriched elements, its nodes, and corresponding degrees of freedom in a way that allows
eneralization to any model, even with different particularities. This complete procedure for the implementation of the XFEM for
roblems involving contributions on interfaces has been analysed in detail using as framework a mathematical model corresponding
o Rayleigh waves propagation on a damaged two dimensional plate, considering Signorini contact conditions between the sides of
285

he crack. Besides, suitable approximation spaces and discrete variational formulation of the problem have been proposed.
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The necessary enrichment functions to replicate discontinuous displacement and singular stress are reviewed as well as the
ifferent types of nodes and elements that arise from such enrichment. Several embeddings relating these sets with each other
re introduced. These embeddings play a key role in the rigorous exposition of the implementation methodology as well as in its
ystematization to be easily generalizable to other contexts.

The discrete expression of the displacements, their jump across the linearized interface, and the associated strain vector are
etailed in terms of the global degrees of freedom vector. These are the key points where the novelties with respect to FEM
mplementation arise, since the XFEM involves several kinds of degrees of freedom (and shape functions) that FEM does not consider.

The computation of the necessary elementary matrices and their efficient assembling have been studied, by means of several
ocal-to-global mappings. Special emphasis was made on the treatment of the interface integral term, showing that only some degrees
f freedom associated with the enrichment functions are involved in the computation of the jump.

A comparison between the results of the numerical simulation using XFEM and FEM for the same problem was presented. It
howed that both methods provide very similar results on displacements (which was expected) and they allow to detect defects by
omparing the results with those of a non-damaged plate. Nevertheless, the results for stress were very similar for points away from
he crack tip but quite different in its neighbourhood. In this case, the XFEM results approximate better the singularity of the stress
n the crack tip, which FEM does not capture. Therefore, the use of XFEM is crucial for the calculation of the associated energy in
his area, and then to assess adequately whether the crack will continue to grow or not.

Also, for the sake of completeness, a methodology of automatic element partition and integration over enriched elements is
riefly reviewed.

The example case that has served as a guide in this paper to present the complete procedure includes the terms that usually appear
n the different algorithms presented in the literature to discretize using XFEM problems that involve some kind of discontinuity
n the interface, that need the calculation of integrals on it, or that present singularities in some area of its domain. Therefore, the
roposed implementation procedure is useful in all of them and avoids not only the particular cases in the partition of an element
rossed by the interface, but also the loss of precision in the numerical integration formulas used either on elements crossed by the
nterface, or on the interface itself.

We can summarize then the advantages of XFEM in two fronts: the first one, accuracy. To get the same accuracy one will need a
uch finer mesh for FEM than for XFEM. The second one, computational cost. Should the interface be to evolve from one step to the
ext, the need for remeshing and reassembling of FEM is much more expensive than the re-computation of the bounding box and
odification of enriched blocks of the matrices in XFEM case. Therefore, if the re-computation of the bounding box and modification

f enriched blocks of the matrices is well optimized, XFEM will be not only more accurate but also more computationally efficient
hat FEM. In this work we provide the reader the tools to systematize many aspects of the implementation, differentiating initial
omputations from iterative ones, as well as avoiding unnecessary decision loops, which leads to a more structured and efficient
ode, whatever programming language is used.
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nnexe A. List of notations

Given the amount of notations and indices on this paper, in order to make the reading easier we present in Tables A.3 and
.4 a compilation of the most used notations. In both tables, the index , 𝐿 ∈ {𝐻,𝑆, 𝜓} or in the case of adjacency matrices

𝐿,𝑀 ∈ {ℎ, 𝑆,𝐻, 𝛹}.
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Table A.3
Table of notations 1.

Symb. Meaning

⋅𝑒 relative to a subelement in an element
⋅𝑗 elementary degrees of freedom index
⋅𝑝 quadrature index
⋅𝑠 components index 1 ≤ 𝑠 ≤ 2
𝒂𝑘𝑖𝑟 characteristic points on 𝑇 𝑘 on edge 𝑖𝑟
𝑒𝑖 𝑖−th edge in ℎ
𝒇 , 𝒈 volume and surface forces
𝑓 smoothing of a general function 𝑓 over an element
𝑖𝑟 edge in 𝑇 𝑘 with vertices 𝑉 𝑘

𝑖 and 𝑉 𝑘
𝑟

𝒏 normal vector
𝒕𝑘 crack ending point in 𝑇 𝑘

𝑛𝑒𝑑𝑓 (𝑔𝑑𝑓 ) number of elementary (global) degrees of freedom
𝑛𝐿𝑒(𝑛) number of 𝐿−elements (nodes)
𝑛ℎ𝑒 , (𝑛ℎ𝑛) number of mesh elements (nodes)
𝑛ℎ𝑓 number of edges of the linearized interface
𝑛𝐿 , 𝒏𝐿 scalar and vector embeddings between node sets
𝑛𝑘 number of subtriangles in a partition of 𝑇 𝑘
𝑛𝑞 number of quadrature points
𝑟(𝑐) radial distance to the crack tip
𝒖 displacement field
𝒖𝐷 , 𝒖0 , 𝒗0 Dirichlet and initial conditions resp.
𝒖𝐼ℎ , 𝒄𝐼𝐻 , 𝒃𝐼𝛹 vectors of degrees of freedom
𝐵 jump operator
[𝐶𝐿𝑀 ] adjacency matrix
𝐶𝐿𝑀 adjacency operators element-nodes
𝐷, 𝐷𝐻𝐻 , 𝐷𝛹𝛹 adjacency operators edge-element
𝗉, 𝗉𝐻 , 𝗉𝜓 local-to-global index functions
𝐻 discontinuous Heaviside-type function
𝐼 node and its global index 1 ≤ 𝐼 ≤ 𝑛ℎ𝑛

Fig. 14. Mesh example.

nnexe B. Mesh sets, operators and matrices on a simple example

In order to illustrate the definitions for node, element and edge sets, mappings and adjacency operators defined in Section 4 and
ssembling matrix defined in Section 8.2 we will use the following simple example. Let us consider the mesh shown in Fig. 14.

ode sets
Its nodes subsets and their respective images through the mappings 𝑛𝐿, 𝐿 ∈ {𝑆,𝐻,𝜓} are:

ℎ = {1ℎ, 2ℎ, 3ℎ, 4ℎ, 5ℎ, 6ℎ, 7ℎ, 8ℎ, 9ℎ, 10ℎ, 11ℎ}, 𝑛ℎ𝑛 = 11,

𝑆 = {1𝑆 , 2𝑆 , 3𝑆 , 4𝑆}, 𝑛𝑆 (𝑆 ) = {1ℎ, 2ℎ, 3ℎ, 4ℎ}, 𝑛𝑆𝑛 = 4,

𝐻 = {1𝐻 , 2𝐻 , 3𝐻 , 4𝐻}, 𝑛𝐻 (𝐻 ) = {8ℎ, 9ℎ, 10ℎ, 11ℎ}, 𝑛𝐻𝑛 = 4,
287

𝜓 = {1𝜓 , 2𝜓 , 3𝜓}, 𝑛𝜓 (𝜓 ) = {5ℎ, 6ℎ, 7ℎ} 𝑛𝜓𝑛 = 3, .
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Table A.4
Table of notations 2.

Symb. Meaning

𝐼𝐿 node index in the corresponding set
𝐽 𝑒 Jacobian of the affine map  𝑒

𝐽 𝑘 Jacobian of the affine transformation from the ref. element
𝑁𝐼 , 𝐼 ∈ ℎ standard shape functions
[𝐴𝑘] assembling matrix.
[𝑀𝑘], [𝐾𝑘] elementary mass and stiffness matrices
[𝑁𝑘

𝑆 ], [𝑁𝑒
𝑆 ] standard shape functions matrix for 𝑇 𝑘 and 𝑇 𝑒 resp.

[ 𝑒] partition matrices
[𝑁𝑛𝑞 ] matrix of baryc. coordinates of int. points on the ref. element
𝑃 𝑒 coordinates of integration points on subelement 𝑇 𝑒
ℎ set of mesh nodes
𝐿 set of 𝐿−nodes
 , ℎ interface and linearized interface
𝐿 sets of standard, 𝐻−, and 𝜓−elements respect.
ℎ mesh
𝑄𝑛𝑞 quadrature rule on the reference element
𝑇 𝑘 mesh element, 1 ≤ 𝑘 ≤ 𝑛ℎ𝑒
𝑇 𝑘± mesh element intersection with 𝛺±

𝑇 𝑒 subelement in 𝛯𝑘

𝑆𝑐𝑗 subset of interface in effective contact at algorithm iteration 𝑗
𝑉 𝑋
ℎ enriched approximation space
𝑉 𝑘
𝑖 , 𝑉

𝑒
𝑖 element 𝑇 𝑘 (resp. 𝑇 𝑒) vertices

[𝑉 𝑘] matrix of coordinates of element 𝑇 𝑘 vertices
𝛼𝑖𝑟𝛿 barycentric coordinates of characteristic points
𝛽𝑘𝑖 barycentric coordinates of crack ending point
𝜙,𝜑 level set functions
𝜺 linearized strain tensor
(𝜂𝑝 , 𝜉𝑝) quadrature points
𝛤𝐷 Dirichlet boundary
𝛤𝑁 Neumann boundary
𝛤𝐹 fictitious boundary with transmission conditions
𝛹 singular enrichment functions set
𝛹𝑙 𝛹−function with index 1 ≤ 𝑙 ≤ 4
𝛺 domain
𝛺± domain division according to 𝐻 sign
𝜔𝑝, 𝜔𝑒𝑝 quadrature weights
𝝈 stress tensor
𝛯𝑘 partition of mesh element 𝑇 𝑘

Inverse mappings
Given the previous definitions, the left inverse mappings applied to each node on ℎ give,

𝑛−1𝐻 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝐼ℎ ∈ {1ℎ, 2ℎ, 3ℎ, 4ℎ, 5ℎ, 6ℎ, 7ℎ},
1𝐻 if 𝐼ℎ = 8ℎ,
2𝐻 if 𝐼ℎ = 9ℎ,
3𝐻 if 𝐼ℎ = 10ℎ,
4𝐻 if 𝐼ℎ = 11ℎ,

𝑛−1𝜓 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝐼ℎ ∈ {1ℎ, 2ℎ, 3ℎ, 4ℎ, 8ℎ, 9ℎ, 10ℎ, 11ℎ},
1𝜓 if 𝐼ℎ = 5ℎ,
2𝜓 if 𝐼ℎ = 6ℎ,
3𝜓 if 𝐼ℎ = 7ℎ.

lement sets
Now, the element sets and their respective images through the inclusions 𝑇𝐿, 𝐿 ∈ {𝐻,𝑆, 𝜓} are:

ℎ = {
▵
1ℎ,

▵
2ℎ,

▵
3ℎ,

▵
4ℎ,

▵
5ℎ,

▵
6ℎ,

▵
7ℎ,

▵
8ℎ,

▵
9ℎ,

▵
10ℎ}, 𝑛ℎ𝑒 = 10, 𝑛𝑆𝑒 = 2, 𝑛𝐻𝑒 = 2,

𝑆 = {
▵
1𝑆 ,

▵
2𝑆}, 𝑇𝑆 (𝑆 ) = {

▵
1ℎ,

▵
2ℎ}, 𝐻 = {

▵
1𝐻 ,

▵
2𝐻}, 𝑇𝐻 (𝐻 ) = {

▵
9ℎ,

▵
10ℎ},

▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵ ▵
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𝜓 = {1𝜓 , 2𝜓 , 3𝜓 , 4𝜓 , 5𝜓 , 6𝜓}, 𝑇𝜓 (𝜓 ) = {3ℎ, 4ℎ, 6ℎ, 7ℎ, 8ℎ, 5ℎ}, 𝑛𝜓𝑒 = 6.
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Adjacency operators
Next, we will see how the adjacency operators are defined in this case. The adjacency matrices [𝐶ℎℎ], [𝐶𝐻𝐻 ], [𝐶𝜓𝐻 ] and [𝐶𝜓𝜓 ]

ill be given by

[𝐶ℎℎ] =
⎡

⎢

⎢

⎣

1ℎ 1ℎ 3ℎ 4ℎ 6ℎ 6ℎ 7ℎ 7ℎ 8ℎ 8ℎ
2ℎ 3ℎ 6ℎ 6ℎ 7ℎ 8ℎ 9ℎ 8ℎ 10ℎ 11ℎ
3ℎ 4ℎ 4ℎ 5ℎ 5ℎ 7ℎ 5ℎ 9ℎ 9ℎ 10ℎ

⎤

⎥

⎥

⎦

, [𝐶𝐻𝐻 ] =
⎡

⎢

⎢

⎣

1𝐻 1𝐻
3𝐻 4𝐻
2𝐻 3𝐻

⎤

⎥

⎥

⎦

,

[𝐶𝜓𝐻 ] =
⎡

⎢

⎢

⎣

0 0 0 0 0 0
0 0 1𝐻 2𝐻 1𝐻 0
0 0 0 0 2𝐻 0

⎤

⎥

⎥

⎦

, [𝐶𝜓𝜓 ] =
⎡

⎢

⎢

⎣

0 0 2𝜓 3𝜓 3𝜓 2𝜓
2𝜓 2𝜓 0 0 0 3𝜓
0 1𝜓 3𝜓 1𝜓 0 1𝜓

⎤

⎥

⎥

⎦

.

ssembling matrix
Finally, we will see how to build the assembling matrix for this example mesh.
The particular parameters in this case are: 𝑛𝑔𝑑𝑓 = 2(11 + 4 + 4 × 3) = 54, 𝑛𝑒𝑑𝑓 = 36. The global degrees of freedom are:

{𝑢ℎ} =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

{𝒖1}
⋮

{𝒖11}
{𝒄1}
⋮

{𝒄4}
{𝒃1}
⋮

{𝒃3}

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

. (47)

e focus now on the sixth element on ℎ, which is the third element on 𝜓 , this is, 𝑇𝜓
(▵
3𝜓

)

=
▵
6ℎ. The set 𝜓 consists of the nodes

5ℎ, 6ℎ, 7ℎ} and the vertices of element
▵
6ℎ are {6ℎ, 8ℎ, 7ℎ}. Then,

[𝐶ℎℎ]∶6 =
⎛

⎜

⎜

⎝

6ℎ
8ℎ
7ℎ

⎞

⎟

⎟

⎠

, [𝐶𝜓𝜓 ]∶3 =
⎛

⎜

⎜

⎝

2𝜓
0
3𝜓

⎞

⎟

⎟

⎠

, [𝐶𝜓𝐻 ]∶3 =
⎛

⎜

⎜

⎝

0
1𝐻
0

⎞

⎟

⎟

⎠

.

Now if we consider the third elementary degree of freedom (first component associated to the standard shape function of the
hird vertex of the element

▵
6ℎ, see (25)), 𝑗 = 3, we get from (41)–(45):

𝑠(𝑗)=1, 𝑖(𝑗)=3, 𝑙(𝑗)=0, 𝐼(𝑗,
▵
6ℎ)= [𝐶ℎℎ]3,6=7ℎ, 𝜉

▵
6ℎ
𝑆 (𝑗)=𝗉(1, 7) = 13.

ndeed,

𝜉
▵
6ℎ
𝑆 = (11, 15, 13, 12, 16, 14)𝑡,

hich corresponds to the contribution that the standard degrees of freedom of this element make to the vector of global degrees of
reedom given in (47). Summarizing, it results the following assembling matrix:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 ⋯ 11 12 13 14 15 16 ⋯ 𝑛𝑔𝑑𝑓
0 ⋯ 1 0 0 0 0 0 ⋯ 0
0 ⋯ 0 0 0 0 1 0 ⋯ 0

[𝐴
▵
6ℎ
𝑆 ] = 0 ⋯ 0 0 1 0 0 0 ⋯ 0

0 ⋯ 0 1 0 0 0 0 ⋯ 0
0 ⋯ 0 0 0 0 0 1 ⋯ 0
0 ⋯ 0 0 0 1 0 0 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In a similar way one can build the matrices [𝐴
▵
6ℎ
𝐻 ] and [𝐴

▵
6ℎ
𝜓 ] by using

𝜉
▵
6ℎ
𝐻 = (0, 23, 0, 0, 24, 0)𝑡,

and

𝜉
▵
6ℎ
𝜓 = (39, 41, 43, 45, 0, 0, 0, 0, 47, 49, 51, 53, 40, 42, 44, 46, 0, 0, 0, 0, 48, 50, 52, 54)𝑡.

For example, in order to compute 𝜉6𝐻 (2) we need 𝑠(8) = 1 and 𝐼(8, 6) = 𝑛−1𝐻 ([𝐶ℎℎ]2,6) = 𝑛−1ℎ (8ℎ) = 1𝐻 , so
6
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𝜉𝐻 (2) = 𝗉𝐻 (𝑠(8), 𝐼(8, 6)) = 𝗉𝐻 (1, 1𝐻 ) = 1 + 2𝑛ℎ𝑛 = 23,
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while

𝜉6𝐻 (4) = 𝗉𝐻 (𝑠(10), 𝐼(10, 6)) = 𝗉𝐻 (2, 0) = 0,

ince 𝑠(10) = 2 and 𝐼(10, 6) = 𝑛−1𝐻 ([𝐶ℎℎ]1,6) = 𝑛−1ℎ (6ℎ) = 0. Also,

𝜉6𝜓 (4) = 𝗉𝜓 (𝑠(16), 𝑙(16), 𝐼(16, 6)) = 𝗉𝜓 (1, 4, 2𝜓 ) = 1 + 2(4 − 1 + 4(2 − 1) + 11 + 4) = 45,

ince 𝑠(16) = 1, 𝑙(16) = 4 and 𝐼(16, 6) = 𝑛−1𝜓 ([𝐶ℎℎ]1,6) = 𝑛−1𝜓 (6ℎ) = 2𝜓 , and

𝜉6𝜓 (5) = 𝗉𝜓 (𝑠(17), 𝑙(17), 𝐼(17, 6)) = 𝗉𝜓 (1, 1, 0) = 0,

ince 𝑠(17) = 1, 𝑙(17) = 1 and 𝐼(17, 6) = 𝑛−1𝜓 ([𝐶ℎℎ]2,6) = 𝑛−1𝜓 (8ℎ) = 0.
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