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This paper proposes a novel system for the simultaneous identification and characterization of the three types

of Macular Edema (ME) in Optical Coherence Tomography (OCT). These MEs are clinically defined, by the
reference classification of the field, as: Serous Retinal Detachment (SRD), Diffuse Retinal Thickening (DRT)
and Cystoid Macular Edema (CME). Our system uses multilevel image thresholding approaches to identify
the SRD and CME cases and a learning approach for the DRT identification. The system provided promising
results with F-Measures of 83.35% and 81.95% for the DRT and CME detections, respectively. It was also
efficient in detecting all the SRD cases included in the testing image dataset. The system was able to identify
individually the different types of ME on the OCT images but it was also capable to detect simultaneously the
existence of the three ME cases when they appeared merged in the lower retinal layers.

1 INTRODUCTION

According to the World Health Organization, 9.6%
of the European citizens are affected by blindness
diseases, situation that is even worse in developing
countries. As reference, in Sub-Saharan Africa, it
can reach until 50% of the population. For the last
ten years, cataracts have remained as the main cause
of visual impairment, followed by macular disorders
(WHO, 2012). One of the most relevant of them is the
Macular Edema (ME), defined as intraretinal fluid ac-
cumulation that affects the central retinal vision, suf-
fering morphological alterations in the retinal struc-
tures (Trichonas and Kaiser, 2014).

To diagnose these retinal diseases, ophthalmologists
normally support their clinical evaluations in the anal-
ysis of different types of eye fundus images. One
of the most widely used in this field is the OCT im-
age modality. This technique allows a non-invasive
and contactless evaluation of the in vivo histopathol-
ogy (Helmy and Allah, 2013). Based on this image
modality, in (Otani et al., 1999), a clinical classifica-
tion was established for the different types of ME that

can be identified. This classification is the reference
of the field, being clinically used worldwide by spe-
cialists. Intraretinal fluid accumulation was defined
in three types based on clinical characteristics of the
images, mainly properties as retinal thickness, reflec-
tivity or area of the abnormalities. These three types
are: Serous Retinal Detachment (SRD), Diffuse Reti-
nal Thickening (DRT) and Cystoid Macular Edema
(CME). Posteriorly, in the work of (Panozzo et al.,
2004), they also characterized each type by the defini-
tion of 5 parameters: retinal thickness, diffusion, vol-
ume, morphology and epiretinal traction (Baamonde
etal., 2017).

Figure 1 illustrates the presence of the three types of
MEs, where the SRD and the CME cases are hypore-
flective fluid regions with a specific swollen shape
within the retinal layers, as described by the authors.
Usually, the SRD edemas appear as a dome-shape in
the outer retina while the CME typically appears as
a circular shape in the inner retina, (Joussen et al.,
2010). In the case of the DRT edemas, they are typ-
ically characterized by a "sponge-like" swelling ap-



pearance that results from the spread of fluid in the
outer retina.

To diagnose these types of diseases, in the recent
years, computational systems have been broadly used
by ophthalmologists as useful tools that allow the di-
agnosis (even in early stages), treatment and monitor-
ing of the evolution of the patients. In this field, some
works based on the OCT image analysis are taking
initial approaches to help and support the clinical de-
cisions in the analysis of the ME. Therefore, some
efforts have been applied in order to detect the in-
traretinal fluid on the OCT images, where particular
characteristics are used as intensity, morphology, rel-
ative position and central and parafoveal retinal thick-
ness (Willoughby et al., 2017; Montuoro et al., 2017).
At the moment, none of the published works faced
the three types of ME that appear in the macular re-
gion. As reference, in the work of (Sidibé et al.,
2017), the authors proposed a method based on the
Gaussian Mixture Model (GMM) to classify the OCT
scans as normal and abnormal patients. Following a
similar strategy, others (Montuoro et al., 2017) iden-
tified abnormal OCT images. In this case, they per-
form a simultaneous 3D segmentation of the retinal
layers with the identification of two fluid regions as
intraretinal fluid and Sub Retinal Fluid (SRF) using
a graph-theoretic approach. The method of (Alsaih
et al., 2017) used learning strategies in OCT retinal
images in order to identify normal volumes versus
volumes with ME presence. This analysis was based
on the evaluation of the retinal thickening, hard exu-
dates, intraretinal cystoid space formation, and sub-
retinal fluid. In the case of (Gonzilez et al., 2013), a
method is proposed to detect the presence of cysts. A
Watershed algorithm is applied within the retinal tis-
sue in order to find all the possible regions in the im-
age which might conform cystoid structures. Finally,
in order to discard false positives, a learning strategy
is applied to reduce the false positive set. The au-
thors from (de Moura et al., 2017) proposed a method
to identify the intraretinal cystoid regions, as regions
of the OCT images that contain cysts. Hence, they
defined a window size to analyze and extracts a set
of image characteristics to determine the presence of
cysts inside those regions.

In this paper, we propose a novel system to detect and
characterize the intraretinal fluid as SRD, DRT and
CME types, based on the clinical classification of ref-
erence in the field, the Otani classification. As indi-
cated, to date, no other work faced completely the au-
tomatic identification of all the types of ME. To find
the 3 types of ME, we firstly delimited the retinal area
in the OCT images, where the intraretinal fluid forms
the swollen regions. Following the Otani ME clini-

cal characterization, we identify the presence of each
type inside this region of interest.

The system will provide help in the standardization of
the identification of the different types of ME, reduc-
ing the subjectivity of the ophthalmologists. More-
over, given the complexity of extraction of some ME
cases, the proposed system will facilitate the doctor’s
work, allowing the early diagnosis and consequently
the procedure with more adjusted treatments, improv-
ing the life quality of the patients.

2 METHODOLOGY

The proposed system receives, as input, an OCT reti-
nal image centered in the macula. Firstly, the sys-
tem segments automatically the retinal layers to de-
limit the region of interest (ROI) where the MEs are
present. Inside this region, different strategies were
applied to detect the 3 types of ME: SRD, DRT and
CME, as illustrated in the diagram of Fig. 2.

The system was subdivided in three main steps for
each ME search. Regarding SRD detection, a multi
level adaptive image thresholding was used in order
to find candidates with the lower intensity profiles. To
discard the false positives detections, different rules
based on the clinical knowledge were implemented.
Hence, the candidates should have the specific rela-
tive position inside the retinal layers as well as a par-
ticular morphological shape (dome-shape). A similar
strategy was used to detect the CME cases, as they
also present a defined ovoid shape with a contrast with
the retinal layers. An image thresholding method was
used to identify CME candidates, followed by a filter-
ing process of several morphological conditions as a
way of increasing the efficiency of the proposed sys-
tem. Finally, DRT edemas do not present well-defined
boundaries and sufficient contrast with the surround-
ing tissue. In this way, a learning strategy was used to
distinguish the "sponge-like" regions from the normal
regions.

2.1 Retinal Layer Segmentation

Given the noisy characteristics of the input OCT im-
ages, a median filter was applied as a pre-processing
step, clearing the image and preserving, simultane-
ously, the properties of the retinal layers in order to
facilitate the posterior identifications.

In this work, 4 retinal layers were identified as they
provide the correct delimitation of the regions where
the different types of ME typically appear. The iden-
tified retinal layers are: Inner Limiting Membrane
(ILM), Outer Plexiform Layer (OPL), the junction of
Inner and Outer Segments (ISOS) of the photorecep-
tors layers and the Retinal Pigment Epithelium (RPE).
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Figure 1: Example of OCT retinal image with 3 types of MEs: SRD (+), CME (*) and DRT (- -).
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Figure 2: Main methodology steps for the ME identification
and characterization in SRD, DRT and CME types.

g ILM

Figure 3: Example of OCT retinal image with N seeds ran-
domly generated, near the ISOS layer.

We used an approach based on the work of (Chiu
et al., 2010) to identify the indicated retinal layers.
In particular, this automatic approach uses graph the-
ory and dynamic programming to represent each OCT
image as a graph of nodes, connecting optimum paths
from both sides of the image. Firstly, the algorithm
calculates dark-to-light gradient images, identifying
adjacent layers and generating weights for the layer
segmentations. The progressive identification of the
main layers of the retina was found by the minimum
weighted paths using the (Dijkstra, 1959) algorithm.
This approach detects eight different layers in normal
and healthy OCT retinal images. However, for this
purpose, we adapted the method to identify 3 specific
layers: ILM, ISOS and RPE.

Regarding the OPL layer, we followed a different
strategy given the deteriorated conditions of the reti-
nal layers that presents the used images of this work.
In order to solve this issue, the previous identification
of the ISOS layer was used as reference for the ap-
plication of region growing (Zhu and Yuille, 1996).
Therefore, over this layer N initial points as seeds
were randomly generated, as shown in Fig. 3. The
number of seeds corresponds to a 5% of the input im-
age width. Hence, we use, as baseline, the ISOS layer
to extract the region immediately over it that corre-

sponds to the OPL layer. Using a significant number
of seeds along the image we guarantee the OPL ex-
traction even in significantly deteriorated conditions
that present ME cases in advance stages.

2.2 Division in ILM/OPL and
OPL/RPE Regions

As enunciated before, ME consists of the accumula-
tion of fluid within the retinal area. However, each
type of edema typically appears in particular regions
inside the retinal layers that are delimited by the ILM
and RPE retinal layers, as shown in Fig. 4.
According to the Otani classification, SRD and DRT
edemas usually appear in the outer retina whereas
CME edemas normally start manifesting in the in-
ner retina, but they can proliferate to the outer retina
in more severe pathological stages, merging with the
DRT cases (Gelfand et al., 2012). Therefore, based
on the previous ROI segmentation that delimits the
retinal tissue, 2 sub-regions were identified: one cor-
responding to the inner retinal and other for the outer
retina. The inner retina is comprehended between the
ILM and the OPL layers, while the outer retina is
delimited between the OPL and the RPE layers, as
shown in Fig. 5. Thus, the detection of each type
of intraretinal fluid is simplified, as the region to find
each ME type is reduced.

2.3 SRD Detection

SRD edemas are typically defined as hiporeflective
fluid accumulation presenting a dome-shape, with a
characteristic relative position inside the retinal tis-
sue. Therefore, the proposed system was inspired
in these heuristics to automatically identify the SRD
presence.

Firstly, a multi level thresholding, based on the
method of (Otsu, 1979), was applied only in the outer
retina. With this thresholding, we identify the regions
with the lower intensity profiles as candidates for be-



Figure 4: Example of OCT retinal image. (a) OCT image
with the presence of CME edemas. (b) Binary image mask
with the delimitation of the ROI between the ILM and the

RPE retinal layers.
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Figure 5: Inner and Outer regions of interest. (a) Entire
ROIL. (b) Inner retina between the ILM and the OPL retinal
layers. (c) Outer retina between the OPL and RPE retinal
layers.

ing SRD edema. For that, the optimal threshold was
determined with the value that maximizes the sepa-
rability between the intraretinal fluid regions and the
retinal layers (Noma et al., 2011; Gupta et al., 2013).
Next, the objective is the removal of those candidates
that do not fulfill the medical restrictions that charac-
terize SRD edemas. Following this medical restric-
tions, several conditions were implemented ensuring
that the system detects efficiently the SRD edemas.
These conditions are:

e Relative position. This type of edemas should
stay near the photoreceptors layer, (Carmona and
Hernandez, 2015);

e Area size, bigger than 200um?®. We selected, as
reference, the area of the microcystic macular
edema (Gelfand et al., 2012; Wolff et al., 2014);

e Fusiform morphology. The width that should be
within an empirical range, [200 - 980]um equiv-
alent to [51 - 250] pixels, the typical lengths that
they normally present;

e Constriction of the photoreceptors region. The
SRD leads to a decrease of the region thickness
delimited between the ISOS and the RPE layers
in the parafoveal zone (Ooto et al., 2010). There-
fore, near the fovea, we compared the mean thick-
ness of the empirical window size and the global
mean thickness of the ISOS/RPE region. The re-

Figure 6: Example of OCT with the final ROI where was
removed the region of the SRD edema (+) and the photore-
ceptor layer (- -).

sult should be less than 1 to consider the presence
of candidates for being SRD edemas;

e The intensity of the area above SRD edema.
This region should have a higher intensity pro-
file when compared with the fluid region, (Ooto
et al., 2010). This occurs because of part of the
photoreceptors layer usually stays above the SRD
edemas, as a brighter region. Hence, the mean
intensity of the candidate is compared with the
mean intensity of the photoreceptors layer, using
the same empirical window size.

As SRD edema, if present, only appears one per im-
age, if two or more candidates fulfill all these condi-
tions, the system will preserve the candidate that is
more centered, near the fovea.

Finally, using the SRD detection as seed, a region
growing is employed to obtain the SRD segmentation
as more precise as possible. This precise extraction is
useful in posterior stages of the method. An example
of the SRD segmentation is presented in Fig. 6.

2.4 DRT Detection

DRT or "sponge-like" edema is defined by the special-
ists as a retinal swelling of the macula with reduced
intraretinal reflectivity. Also, this edema is typically
located in the inner retina, being usually above the
photoreceptor layer. Therefore, to find this type of
intraretinal fluid accumulation, the proposed system
searches for the DRT appearance in the OPL/RPE re-
gion, but removing the photoreceptors region and the
SRD edema, when it is detected. The precise extrac-
tion of the SRD edema in the previous stage facilitates
the SRD removal to calculate the new region of in-
terest. Hence, the correction of the OPL/RPE region
can be achieved accurately, resulting in a new region
equivalent to the OPL/ISOS, decreasing the detection
of false candidates with a more precise and restricted
region to detect the DRT presence.

As this type of edema does not have a well-defined
morphological shape and contour, simple methods
based on image processing techniques are not suf-
ficient to produce acceptable results. Therefore, in
this step, a learning strategy was implemented using
the Naive Bayes classifier, extracting features per col-
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Figure 7: Example of OCT image with the new baseline on
the OPL/ISOS region. The Naive Bayes classifier is trained
by the feature extraction from each "esponge-like" columns.

umn from the OPL/RPE region and identifying the
DRT presence, as illustrated in the diagram of Fig. 7.
We used Naive Bayes as a frequently used classifier
in medical imaging approaches. The extracted fea-
tures were based mainly on intensity and texture fea-
tures. Moreover, another relevant property is the reti-
nal thickness, as MEs normally produce the fluid ac-
cumulation inside the retinal layers and, therefore, the
increment of their thickness (Goebel and Kretzchmar-
Gross, 2002). We used this property also as an indi-
cator of the disease presence.

Table 1 details the 18 features that were implemented
to identify the DRT presence. A Sequential Forward
Selection (SFS) method was applied to the feature set
to reduce the array dimensionality and preserve those
with the highest discriminative power.

Table 1: List of the 18 features to identify the DRT pres-
ence.

N© of Features | Feature
- Intensity Image Analysis:
1-6 Maximum, Minimum,

Mean, Median,
Standard-deviation and Variance
- Histogram Image Analysis:
Obliquity, Kurtosis,

Energy and Entropy

- Mask Height Analysis:

Height of OPL/RPE region,
Height of mask ILM/RPE

The ratio between the heights of
OPL/RPE and the ILM/RPE re-
gions

- Texture Analysis:

GLCM method: Contrast,
Correlation, Energy and
Homogeneity

11-14

15 -18

2.5 CME Detection

Cysts typically present a low intensity profile with a
significant contrast with the ILM/OPL region, where
they frequently appear. A multilevel thresholding,
based on the Otsu’s algorithm, was also imple-
mented in this stage, due to the contrast between the
ILM/OPL region and the CMEs, identifying all the
candidates for being cysts. Due to the relative high

RPE

Figure 8: Example of OCT image with the presence of
CMEs. (a) Input OCT retinal image. (b) CMEs represented
as (*) in the ILM/OPL region. (c) CMEs (*) in OPL/RPE
region with lower contrast compared to the surrounded reti-
nal layer.

number of detected false positives, a post processing
stage was implemented to preserve the real existing
ones. As we can retrieve partial segmentations (even
several candidates for the same cyst), we completed
the segmentations using Watershed. This way, we ob-
tain more defined reliable regions for the candidates
that facilitate the posterior analysis and the false pos-
itive reduction. Hence, using as reference the clini-
cal properties that the specialists follow to identify the
cysts, we implemented a list of conditions to preserve
the real CMEs from the list of candidates (Wolff et al.,
2014; Joussen et al., 2010; Helmy and Allah, 2013).
These conditions are listed below:

o Area size, bigger than 1um?. To discard noisy and
tissue artifacts;

e Eccentricity, should be smaller than 0.98 to re-
spect the ovoid shape. This parameter is the ra-
tio of the distance between the central point of the
ellipse and its major axis length;

e Retinal thickness, the ROI (ILM/RPE) thickness
should be bigger than 250um equivalent to 64 pix-
els. This value corresponds to the normal size of
the parafoveal region, (Goebel and Kretzchmar-
Gross, 2002);

e The width of the candidate area should be inside
a range of sizes [40 - 530]um equivalent to [10 -
135] pixels. This way, the range ensures that the
area of the candidates should be able to remove
small artifacts and regions with a length that is ap-
proximately twice the normal of the retinal thick-
ness.

Basically, the restrictions are based in terms of area,
eccentricity, retinal layer thickness as well as the



thickness between the specific retinal layers. As in-
dicated before, the presence of CMEs leads to an in-
crease of the retinal layers where the fluid is accumu-
lated, and consequently, produce a global increment
of the retinal tissue (ILM/RPE region).

As Fig. 8 shows, it is possible to conclude that the
large majority of CMEs are within the ILM/OPL re-
gion. However, in more advanced pathological stages,
they can also proliferate to the OPL/RPE region. In
the outer region the contrast is lower, which makes
the identification of the existing CMEs a more com-
plex issue. In this case, we followed the same strategy
as before, but adapting the parameters to the new con-
ditions.

3 RESULTS AND DISCUSSION

As presented, the proposed system includes three dif-
ferent strategies to identify each ME type. All the
strategies were tested using an image dataset that is
composed by 50 OCT retinal images, centered in the
macula, with a resolution of 2032 x 596 pixels. This
dataset was acquired with a Spectralis® OCT confo-
cal scanning laser ophthalmoscope from Heidelberg
Engineering.

To ensure the efficiency of the system all the images
were labeled by an expert clinician, identifying the lo-
cation of the 3 types of MEs inside each scan. Based
on this ground-truth, we constructed the training and
testing sets for the DRT identification approach as
well as validated the performance of SRD and CME
identification approaches.

Precision, Recall and F-Measure were the used met-
rics for the validation of the proposed system, as indi-
cated in Egs.1, 2 and 3, respectively. The F-Measure
is defined as a combination of both precision and re-
call metrics in a global measurement.

o TP
Precision = ——— (1)
TP+FP
TP
Recall = ——— 2
LT TPLFEN @
Precisi R
F — Measure — 2 + recision * Recall 3)

Precision + Recall

where TP are the True Positives, FP the False Posi-
tives and FN the False Negatives.

Regarding the defined parameters, we used values that
were empirically calculated, as it was previously men-
tioned in the methodology.

The efficiency of the proposed method for ME in OCT
retinal images was evaluated according to quantita-
tive metrics. As gold standard, for the SRD and CME
cases, we measured if the central point of each de-
tected edema was successfully identified, based on

the specialist segmentation. Regarding the DRT case,
we analyzed if each column was correctly identified
when compared with the specialist opinion.
Regarding the case of SRD edemas, they are not
as common as the others, affecting only a reduced
groups of patients, as presented in (Otani et al., 1999).
Moreover, when it is present, only one SRD patholog-
ical structure can be identified in each OCT scan. For
that reason, the employed image dataset only contains
4 SRD edemas. The 4 cases were correctly identified
by the proposed system.

For the DRT detection, the Naive Bayes classifier was
trained using the proposed dataset with a 10 fold cross
validation. Per each OCT image in the dataset, 80
samples were randomly selected, representing equally
both DRT and non-DRT cases, resulting in a total of
4000 extracted samples.

Regarding the selected features using the SFS
method, 4 of them were taken from the initial set:
mean intensity, kurtosis, energy and energy from the
GLCM matrix, as they include a high discriminant
power to differentiate common retinal tissue patterns
with respect to the DRT presence.

Using the selected features, the Naive Bayes classi-
fier was trained and tested satisfactorily providing the
presented metrics resulting in Table 2.

Table 2: Performance of the DRT detection approach.

Recall
80.79%

F-Measure
83.35%

Precision
84.04%

With this strategy, we were able to detect the 83.35%
of the total regions of DRTs. The introduced mis-
takes are mainly derived from shadows that are pro-
duced by the presence of vessels but also from dif-
ferent pathological structures (hard-exudates). These
shadows change the typical characteristics of the DRT
edemas. Therefore, these artifacts lead to a miss-
classification of the "sponge-region”, decreasing the
metric.

Regarding the CME case, it can be found in both re-
gions (inner and outer retina), simultaneously. There-
fore, the efficiency of the system with this ME type
was tested in 2 phases, as listed in Table 3. In the
first phase, the system was tested in the inner retina
where the results were better. The F-Measure reaches
a value of 87.48% in this case. The errors are mainly
derived from missing CMEs with specific morpholo-
gies, as fusiform shapes and the presence of Micro-
cystic Macular Edemas (MME). In the first case, cysts
exhibit an unusual elongated shape, in the horizontal
axis. Whereas, as a second case, the MMEs have a
small area with a not well defined boundaries.

In the second phase, the method was tested in the
outer retina where lower results were obtained given



Figure 9: Example of OCT retinal image with undetected
MME:s (x) and correct detections of CMEs (*).

Figure 10: Example of the OCT retinal non detected CMEs
(- -), due to the fusiform shape.

the higher complexity of the identification in this re-
gion. This decrease of the metrics is, as commented
before, due to the fact that the almost absent contrast
between the CME and the retina tissue. In a more
complex scenario, the method is also able to detect
efficiently the CMEs in the OPL/RPE region.

Figure 11 presents an illustrative result where the pro-
posed system detects and characterizes the three types
of ME even when they are simultaneously present on
the same OCT image.

Table 3: Results of the quantitative metrics Precision, Re-
call and F-Measure for the CME detection.

Region Precision | Recall | F-Measure
ILM/OPL | 96.84% | 78.34% 87.48%
OPL/RPE | 88.26% | 78.19% 74.40%

Both 89.98% | 80.34% 81.95%

4 CONCLUSION

In this paper, we propose a novel automatic system
that detects and characterizes the intraretinal fluid in
the different types of ME using OCT retinal images.
Using clinical criterions inspired in the Otani classi-
fication, the system automatically identifies and char-
acterizes the ME in three types: SRD, DRT and CME.
To do that, we analyzed intensity, texture, morpholog-
ical and position properties of them retinal tissue to
detect all the cases of each ME type. Regarding SRD
and CME edemas, different approaches were imple-
mented based on adaptive thresholding in specific re-
gions of the retinal layers, as they usually present
identifiable boundaries and a significant contrast with
the retinal tissue. Then, to remove FPs, clinical con-
ditions were applied based on the typical morphology
of each type of ME. In the case of the DRT detection,
a Naive Bayes classifier was trained to identify the re-
gions where it is present using a list of 18 features as
intensity, texture and domain knowledge properties.

(b)

Figure 11: Example of an OCT retinal image with the de-
tection of the three types of macular edema: SRD illustrated
as (+), CME as (*) and DRT the selected columns.

Then SFS is applied in order to select the ones with
higher power of discrimination.

Experimental results show that the proposed system
achieved promising results for the ME identification
and characterization, even when they appear com-
bined on the same retinal region. In particular, our
system achieves a F-Measure of 83.35% for the DRT
and 81.95% in the CME detection. While, in the de-
tection of the SRD, the system detects all edemas that
were present in the used dataset. Therefore, this sys-
tem can be an important tool in clinical fields help-
ing in the detection and characterization of retinal dis-
eases.

As future works, the proposed system could have a
larger dataset in order to reinforce the conclusions
that were achieved in this work. Moreover, we aim
the identification of more complex cases of the CME
edemas. We also want to detect microcystic macular
edema. For doing that, specific approaches can be de-
signed with that purpose. Using the identified MEs,
different statistic metrics can be derived as a way to
provide valuable information to specialists and facili-
tate their diagnostic process. Therefore, it will be pos-
sible to motorize the disease evolution and increase
the life quality of the patients.
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