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Abstract

Ventricular fibrillation (VF) in acute myocardial infarction (AMI) is the main cause of deaths

occurring in the acute phase of an ischemic event. Although it is known that genetics may

play an important role in this pathology, the possible role of long non-coding RNAs (lncRNA)

has never been studied. Therefore, the aim of this work is to study the expression of 10

lncRNAs in patients with and without VF in AMI. For this purpose, the expression of

CDKN2B-AS1, KCNQ1OT1, LIPCAR, MALAT1, MIAT, NEAT1, SLC16A1-AS1, lnc-TK2-4:2,

TNFRSF14-AS1, and UCA1 were analyzed. After the analysis and Bonferroni correction, the

lncRNA CDKN2B-AS showed a statistical significance lower expression (P values of 2.514 x

10−5). In silico analysis revealed that six proteins could be related to the possible effect of

lncRNA CDKN2B-AS1: AGO3, PLD4, POU4F1, ZNF26, ZNF326 and ZNF431. These in sil-

ico proteins predicted to have a low cardiac expression, although there is no literature indicat-

ing a potential relationship with VF in AMI. Thus, the lncRNA CDKN2B-AS1 shows a

significant lower expression in patients with VF in AMI vs patients without VF in AMI. Litera-

ture data suggest that the role of CDKN2B1-AS is related to the miR-181a/SIRT1 pathway.

Introduction

Ventricular fibrillation (VF) in acute myocardial infarction (AMI) is the main cause of deaths

occurring in the acute phase of an ischemic event and studies have suggested that the fre-

quency of VF in AMI is 3%-12% of all AMI cases; however, the real number is beyond doubt

higher as many are found dead [1,2]. It is important to note that VF in AMI is one of the main

challenges to clinicians, because in more than half of the cases, coronary artery disease in these

patients has not previously been recognized clinically, and VF in AMI or cardiac sudden death

occurs as its first symptom [2,3].
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Although the molecular mechanisms involved in VF in AMI are mainly unknown, the

interaction between genetic and environmental factors [4,5] has been proposed. The weight of

the genetic basis of the disease has been established by the identification of mutations and rare

variants associated with VF in AMI [2].

Recently, elements involved in the epigenetic regulation of genes related to cellular remod-

eling, fibrosis and cardiac conduction that may play a determining role in VF in AMI, have

been studied. One of the main epigenetic components studied is the expression of microRNAs

(miRNA) in VF in AMI. miRNAs are a class of small endogenous RNA molecules between 19

and 22 nucleotides long, single-stranded, non-coding RNAs that act as post-transcriptional

regulators, primarily by inhibiting gene expression [5]. Bostjancic et al [6] identified a

decreased expression of microRNA 133a/b in cardiac tissue in patients with VF in AMI, which

was upheld on days 2–7 post-infarction. Moreover, other studies have related levels of different

microRNAs to diverse outcomes after cardiac arrest [7–9]. For all these reasons, microRNAs

may help to gain insight into the pathophysiology of VF in AMI, improve the prognosis of

these patients and become a pharmacological target for new treatments.

However, other epigenetic components such as long non-coding RNAs (lncRNAs), mole-

cules of 200 nucleotides that are not translated into proteins, have not been studied in patients

with VF in AMI. This fact is noteworthy because there are two types of evidence suggesting

that they may be involved in VF in AMI:

i.) different lncRNAs have been related with AMI [10]: the first AMI-associated lncRNA,

myocardial infarction associated transcript-MIAT, was identified through GWAS in 2006 in

the largest study performed to date, in which, 3435 patients with AMI were included [11]. Sub-

sequently, through microarrays [12] or qPCRs, different lncRNAs associated with AMI were

identified, among which, the following stand out: CDKN2B-AS1 [13,14], KCNQ1OT1 [13],

UCA1 [15,16], LIPCAR [17], MALAT1 [14] and the 3 lncRNAs identified in the study by Zhai

et al [18]: TNFRSF14-AS1, SLC16A1-AS1, and TCONS_00024701. In recent years, novel

lncRNAs have been identified through RNASeq such as NEAT1 [19–21]. Of particular interest

is the study by Zhong et al [22] describing a different lncRNA profile in patients with ST-seg-

ment elevation AMI and patients with non-ST-segment elevation AMI. More recently, Zheng

et al revealed that circulating exosomal lncRNAs ENST00000556899.1 and CAMTA2-AS1 are

raised in patients with AMI [23].

ii.) lncRNAs may play a role in arrhythmias [24]: lncRNAs have been described to partici-

pate in the development of atrial fibrillation [25–27] and long QT syndrome [28]. Moreover,

lncRNAs can contribute to the control of cardiac impulse conduction by regulating intercellu-

lar junctions, as it has been described in different animal models [29].

Therefore, there is evidence that lncRNAs play a role in the development of AMI and also

in the genesis of different arrhythmias. However, there is no study in the literature that

explores the role of lncRNAs in VF in AMI. So, we focused on the expression of 10 lncRNAs

(MIAT, CDKN2B-AS1, MALAT, NEAT1, KCNQ1OT1, UCA1, LIPCAR, TNFRSF14-AS1,

SLC16A1-AS1,lnc-TK2-4:2) in patients with AMI and VF and their differential expression

with respect to patients with AMI without VF. lncRNAs involvement in the physiopathology

of the disease, may conduct to the proposal of new therapeutic targets for the treatment of VF

in AMI.

Materials and methods

Patients and sample

Serum and plasma samples were obtained from patients diagnosed with AMI with elevation of

the ST-segment (STEMI) with and without VF. All of them were treated with a primary
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percutaneous coronary intervention (PPCI) in A Coruña University Hospital (Spain) between

January 2019 to January 2023 (recruitment period). Written informed consent was obtained

from every patient included in the study. The protocol of this study was in accordance with the

principles of the Declaration of Helsinki, and the Galician Research Ethics Committee (ref:

2016/299) had approved it. Blood samples were collected at the time of the hemodynamic pro-

cedure and on the same day the centrifugation to obtain serum was performed. Only samples

with none signs of hemolysis (colorimetric measure) were stored at -80˚C until final analysis.

All the samples were included in the collection C.0002483, 2013/109 of National Biobank Net-

work of “Instituto de Salud Carlos III”.

lncRNA selection

Based on literature search, 10 lncRNA were selected to analyze their association with VF dur-

ing AMI: CDKN2B-AS1 [13,14], KCNQ1OT1 [13], LIPCAR [13,17], MALAT1 [14], MIAT
[30], NEAT1 [19–21], SLC16A1-AS1 [18], lnc-TK2-4:2 [18], TNFRSF14-AS1 [18], and UCA1
[15,16].

Rt-qPCR and expression analysis

Plasma and serum samples were processed with miRNA Serum/Plasma Advanced kit (Qia-

gen), the same day, reverse transcription reaction [31] was performed using the StaRT Reverse

Transcription Kit (Anygenes, Paris, France). After all cDNA samples were obtained a pream-

plification reaction was done with Specific PreAmplification SpeAmp kit (Anygenes, Paris,

France). The equipment used for the qPCR reactions was a Lightcycler 480 Real-Time PCR

system (Roche, Basel, Switzerland) using Perfect Master Mix Syber Gr kit (Anygenes, Paris,

France). Expression levels were normalized using the gene RPLP0 as reference, and a Ct value

of 35 was chosen as cut-off for expression. To calculate the levels of expression and statistical

analysis the program qBase (Biogazelle, Gent, Belgium) was used.

lncRNA interaction analysis

After the differential expression of the lncRNA molecules in the different groups was evalu-

ated, potential interactions with other molecules were assessed using specialized databases.

The databases selected for the search were LncRRIsearch [32] and LncExpDB [33]. Making

use of the name of the statistically significant differentially expressed lncRNA molecules as the

main search term, a list of possible interactions was obtained. Results from each search were

crossed and the interactions which were in both results tables were analyzed.

Statistical analysis

The analysis for the variables: sex, dyslipidemia, hypertension, diabetes, and tobacco, were cal-

culated performing a chi-squared test; for the age and body mass index (BMI) the T-test was

used.

Statistical analysis of the different expression levels was calculated by qBase (Biogazelle,

Gent, Belgium). Data normality was assessed using D’Angostino & Pearson test and, depend-

ing on their distribution, either unpaired t-test or Mann-Whitney were performed. As the

nature of this study is the comparison of expression levels of different lncRNA, a statistical cor-

rection of the P value was needed. Bonferroni correction was performed. As 10 lncRNA were

evaluated in this study, the corrected α value was 0.005.
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Results

Population characteristics

A total of 60 samples were included, 30 patients with AMI with elevation of the ST-segment

(Control) and 30 patients with AMI with elevation of the ST-segment and VF. A description of

the demographic and clinical data of the population is summarized in Table 1. There were not

significant differences between the groups in any of these variables.

lncRNA expression levels

The data obtained showed that all the lncRNAs studied had a slighter lower mean expression

in the VF group compared to Control group (Fig 1). However, the only lncRNA with a statisti-

cal significance lower expression, after Bonferroni correction, was CDKN2B-AS1 (P values of

2.514 x 10−5) (Fig 1 and Table 2).

lncRNA interaction

To assess the potential interactions of the CDKN2B-AS1 with different genes, a search of

CDKN2B-AS1 in two databases (LncRRIsearch [32] and LncExpDB [33]), was performed.

These databases differ in the premise used to highlight the interactions. LncRRIsearch uses

the minimum energy cost that two molecules would need to interact, stating the lower the

energy the most likely are two molecules to interact. Using this database, 100 molecules were

shown and annotated (using the CDKN2B-AS1 transcripts ENSG00000240498 and

ENST00000428597).

As for LncExpDB, the search was performed using the LncRNA symbol: CDKN2B-AS1,

LINC01239. From this database, around 800 molecules were brought up, these molecules were

reported as interactions in the literature or other databases. Crossing these two sets of results,

six genes were shown to be depicted in both searches (Table 3).

Table 1. Demographic and clinical data of the studied population.

With VF

(n = 30)

Without VF

(n = 30)

Age (years) 57.7±10.6 60.9±11.6

Sex (Masculine, %) 80.0 76.6

BMI (kg/m2) 27.6±3.4 27.7±4.1

Dyslipidemia (%) 53.3 46.6

Hypertension (%) 33.3 40.0

Diabetes (%) 13.3 13.3

Tobacco (%) 73.3 70.0

AMI Localization (%) Anterior 56.7 36.7

Septal 0 3.3

Inferior 33.3 53.4

Posterior 3.3 3.3

Lateral 6.7 3.3

Vessels affected (%) 1 53.3 43.3

2 16.7 16.7

3 30.0 40.0

Time of Ischemia (%) <120 min 20.0 16.6

120–360 min 70.0 43.4

>360 min 10.0 40.0

https://doi.org/10.1371/journal.pone.0304041.t001
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Fig 1. Mean expression level of the 10 studied lncRNA. ***: P value under 0.005.

https://doi.org/10.1371/journal.pone.0304041.g001

Table 2. lncRNA expression in AMI patients with and without VF.

Target Groups Mean 95% CI Low 95% CI High Normal distribution Test P value

CDKN2B-AS1 Control 1.407 1.092 1.813 No (P value <0.0001) Mann-Whitney 2.514 x 10−5

VF 0.711 0.564 0.896

MIAT Control 1.099 0.714 1.692 No (P value <0.0001) Mann-Whitney 7.123 x 10−3

VF 0.910 0.791 1.048

LIPCAR Control 1.488 0.879 2.519 Yes (P value 0.189) Unpaired t-test 3.440 x 10−2

VF 0.672 0.393 1.148

KCNQ1OT1 Control 1.594 1.176 2.519 No (P value <0.0001) Mann-Whitney 4.925 x 10−2

VF 0.627 0.279 1.412

NEAT1 Control 1.395 1.029 1.892 No (P value <0.0001) Mann-Whitney 0.056

VF 0.716 0.412 1.249

SLC16A1-AS1 Control 1.396 0.961 2.027 No (P value <0.0001) Mann-Whitney 0.0126

VF 0.717 0.320 1.606

TNFRSF14-AS1 Control 1.537 0.734 3.218 No (P value <0.0001) Mann-Whitney 0.198

VF 0.651 0.275 1.539

lnc-TK2-4:2 Control 1.578 1.143 2.179 No (P value <0.0001) Mann-Whitney 0.249

VF 0.634 0.244 1.645

UCA1 Control 1.461 0.970 2.201 No (P value <0.0001) Mann-Whitney 0.280

VF 0.684 0.353 1.328

MALAT1 Control 1.142 0.817 1.597 No (P value <0.0001) Mann-Whitney 0.387

VF 0.875 0.756 1.013

https://doi.org/10.1371/journal.pone.0304041.t002
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Discussion

In this study, 10 lncRNA has been analyzed in order to assess their differential expression in

patients with or without VF in AMI. CDKN2B-AS1 showed a significant lower expression in

patients with VF in AMI vs patients without VF in AMI. After the evaluation of the candidate

genes that are predicted to interact with CDKN2B-AS1, six genes have been identified: AGO3,

PLD4, POU4F1, ZNF26, ZNF326, and ZNF431.

CDKN2B-AS1, also known as ANRIL, is a 3.8 kb length lncRNA located in chromosome

9p21. CDKN2B-AS1 plays a vital role in cell proliferation, aging, inflammation, apoptosis and

also as a tumor suppressor [34,35]. In the field of cardiovascular disease, CDKN2B-AS1 has

been associated with atherosclerotic vascular disease, coronary artery disease, stroke, aortic

aneurysm, and myocardial infarction [36]. Vausort et al [13] showed that patients with ST-seg-

ment-elevation AMI had significant lower levels of CDKN2B-AS1 than patients with NSTEMI

(P<0.001). It is important to note that our data were obtained from a sub-group of ST-seg-

ment elevation patients, the ones who present VF during AMI, and that those patients present

even lower levels of CDKN2B-AS1 than AMI patients without VF.

In an attempt to search molecules with which CDKN2B-AS1 can interact, a crossing search

in LncRRIsearch and LncExpDB databases and six candidates’ genes have been identified:

AGO3, PLD4, POU4F1, ZNF26, ZNF326, and ZNF431. AGO3, PLD4, and POU4F1 encoded

to the third component of the argonaute RISC catalytic protein, the member 4 of the Phospho-

lipase D Family, and a member of the POU-IV class of neural transcription factors, respec-

tively. These three proteins show a very low expression in the heart [37] and no data associated

these genes to cardiovascular diseases. Regarding to Zinc-finger proteins (ZNFs), ZNF26,

ZNF326, and ZNF431, they present a moderate expression in heart tissue [37]. It is important

to note that ZNFs are one of the most abundant groups of proteins and have a wide range of

molecular functions. They are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and

other proteins and are involved in the regulation of several cellular processes as transcriptional

regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA

repair, and cell migration [38]. In the field of cardiovascular diseases ZNFs, as GATA factors,

are involved in the pathogenesis of congenital heart diseases (CHDs) [39,40]. However, none

of the ZNFs that could bind CDKN2B-AS1 have been associated to cardiovascular diseases.

As we have found no target protein in the in silico approach, we reviewed the literature in

order to understand the potential mechanism of CDKN2B-AS1 in patients with VF in AMI.

The role of CDKN2B-AS1 in AMI has not been clearly stablished but it has been proposed that

Table 3. Molecules that are predicted to interact with CDKN2B-AS1 (results of the crossing search in LncRRIsearch and LncExpDB databases).

Sum of

Energy

Min of

Energy

Transcript ID Transcript

Name

Gene Description Location ID

-690.68 -30.63 ENST00000392593 PLD4-001 PLD4 Phospholipase D family member

4

chr9:21994130-22876986

(+)

ENSG00000166428.13

-543.22 -64.1 ENST00000373191 AGO3-003 AGO3 Argonaute RISC catalytic

component 3

chr9:21994130-22876986

(+)

ENSG00000126070.20

-444.47 -30.63 ENST00000370447 ZNF326-004 ZNF326 Zinc finger protein 326 chr9:21994130-22876986

(+)

ENSG00000162664.17

-403.36 -58.28 ENST00000311048 ZNF431-001 ZNF431 Zinc finger protein 431 chr9:21994130-22876986

(+)

ENSG00000196705.8

-392.16 -58.93 ENST00000328654 ZNF26-001 ZNF26 Zinc finger protein 26 chr9:21994130-22876986

(+)

ENSG00000198393.8

-392.12 -31.88 ENST00000377208 POU4F1-001 POU4F1 POU class 4 homeobox 1 chr9:21994130-22876986

(+)

ENSG00000152192.8

https://doi.org/10.1371/journal.pone.0304041.t003
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CDKN2B-AS1 is mostly expressed by lymphocytes after MI because it is expressed both by

lymphocytes and by monocytes in healthy donors and it is positively associated with lympho-

cyte count in patients with MI. This observation is intriguing and, together with the concept

that lymphocytes play a critical role after MI suggests that ANRIL might be involved in the

response of the heart to ischemic injury [13,41,42]. Moreover, in vitro experiments used to

mimic myocardial ischemia and reperfusion injury related ANRIL downregulation with miR-

181a/SIRT1 regulation [43]. It is important to note that Sirtuin 1, encoded by SIRT1, regulates

cardiac electrical activity by deacetylating the cardiac sodium channel [44]. Thus, a dysregula-

tion of cardiac electrical activity due to miR-181a/SIRT1 may be a possible explanation for the

presence of VF during AMI in patients with lower CDKN2B-AS1.

Limitations

A significant limitation of the study lies in the sample size. However, it is essential to note that

obtaining a significant number of samples is a challenge in this context, as VF occurs in less

than 3%-12% of MI cases [1,2]. Another limitation is that there is not a validation cohort, and

the reason is, again, the low number of samples due to the low incidence of the disease. More

studies will be required to guarantee the generalizability of the findings.

Conclusions

The lncRNA CDKN2B-AS1 present a significant lower expression in patients with VF in AMI

vs patients without VF in AMI.
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