
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS

with r =
√
x2

1 + x2
2 and u(x) = u(r, x3) to reduce the curl-curl operator to the vector Laplacian;

at the same time we consider an isometric isomorphism between D1,2(R3,R3) and H1(S3,R3)
to recover compactness.
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In this work, we are interested in studying the behavior of an incompressible viscous fluid
moving between two closely spaced surfaces, also in motion.

We consider a three-dimensional thin domain, Ωε
t , filled by a fluid, that varies with time

t ∈ [0, T ], given by

Ωε
t =

{
(xε1, x

ε
2, x

ε
3) ∈ R3 :

xi(ξ1, ξ2, t) ≤ xεi ≤ xi(ξ1, ξ2, t) + hε(ξ1, ξ2, t)Ni(ξ1, ξ2, t),

(i = 1, 2, 3), (ξ1, ξ2) ∈ D ⊂ R2
}

(1)

where ~X(ξ1, ξ2, t) is the lower bound surface parametrization, ~N(ξ1, ξ2, t) is the unit normal
vector and hε(ξ1, ξ2, t) is the gap between the two surfaces in motion assumed to be small with
regard to the dimension of the bound surfaces. We take into account that the fluid film between
the surfaces is thin by introducing a small non-dimensional parameter ε, and setting that

hε(ξ1, ξ2, t) = εh(ξ1, ξ2, t) (2)

We assume that the fluid motion is governed by Navier-Stokes equations and using the
asymptotic development technique, the following lubrication model in a thin domain with
curved mean surface has been obtained:

1√
A0

div
(

(hε)3

√
A0

M∇p−2,ε

)
= 12µ

∂hε

∂t
+ 12µ

hεA1

A0

(
∂ ~X

∂t
· ~N

)
− 6µ∇hε · ( ~W 0 − ~V 0) +

6µhε√
A0

div(
√
A0( ~W 0 + ~V 0)) (3)

It is a new generalized Reynolds equation where the pressure, pε, is approximated by p−2,ε =
ε−2p−2. The fluid velocities inside the domain are subsequently approximated from the pressure
using the equations

u0
1 =

h2(ξ2
3 − ξ3)

2µA0

(
G
∂p−2

∂ξ1

− F ∂p
−2

∂ξ2

)
+ ξ3(W 0

1 − V 0
1 ) + V 0

1 (4)

u0
2 =

h2(ξ2
3 − ξ3)

2µA0

(
E
∂p−2

∂ξ2

− F ∂p
−2

∂ξ1

)
+ ξ3(W 0

2 − V 0
2 ) + V 0

2 (5)

u0
3 =

∂ ~X

∂t
· ~N (6)

where the velocity on the lower surface, ~V 0, and on the upper surface, ~W 0, are known. We
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denote by

A0 = EG− F 2 (7)
A1 = −eG− gE + 2fF (8)

M =

(
G −F
−F E

)
(9)

where E, F , G and e, f , g are the coefficients of the first and the second (respectively) funda-
mental forms of the surface parametrized by ~X .

We have observed that, depending on the boundary conditions, other models can be ob-
tained. We derive a shallow water model changing the boundary conditions that we had im-
posed: instead of assuming that we know the velocities on the upper and lower boundaries of
the domain, we assume that we know the tractions on these upper and lower boundaries. We
yield:

∂V 0
i

∂t
+

2∑
l=1

(
V 0
l − C0

l

) ∂V 0
i

∂ξl
+

2∑
k=1

(
R0
ik +

2∑
l=1

H0
ilkV

0
l

)
V 0
k

= − 1

ρ0

(
α0
i

∂π0
0

∂ξ1

+ β0
i

∂π0
0

∂ξ2

)
+ ν

{
2∑

m=1

2∑
l=1

∂2V 0
i

∂ξm∂ξl
J0
lm +

2∑
k=1

2∑
l=1

∂V 0
k

∂ξl
(L0

kli + ψ(h)0
ikl)

+
2∑

k=1

V 0
k (S0

ik + χ(h)0
ik) + κ̂(h)0

i

}
+ F 0

i (h)−Q0
i3

(
∂ ~X

∂t
· ~N

)
(i = 1, 2) (10)

∂h

∂t
+

h√
A0

div
(√

A0~V 0
)

+
hA1

A0

(
∂ ~X

∂t
· ~N

)
= 0 (11)

where α0
i , β

0
i , C0

l , H0
ilk, J

0
lm, L0

kli, Q
0
i3, R0

ik, S0
ik depend only on the parametrization ~X and

F 0
i (h), ψ(h)0

ikl, χ(h)0
ik, κ(h)0

i depend on the parametrization ~X and on the gap h. The exact
definition of these coefficients can be found in [5], where the complete derivation of both models
is presented.

Once V 0
1 , V 0

2 and π0
0 (the approximation of the pressure on the lower bound) are calculated

we have the following approximation of the velocities and the pressure

u0
i = W 0

i = V 0
i i = 1, 2 (12)

u0
3 =

∂ ~X

∂t
· ~N (13)

p0 =
2µ

h

∂h

∂t
+ π0

0 (14)

These models can not be found in the literature, as far as we know. We reach the conclusion
that the magnitude of the pressure differences at the lateral boundary of the domain is key when
deciding which of the two models best describes the fluid behavior.

Boundary conditions tell us which of the two models should be used when simulating the
flow of a thin fluid layer between two surfaces: if the fluid pressure is dominant (that is, it is
of order O(ε−2)), and the fluid velocity is known on the upper and lower surfaces, we must use
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the lubrication model; if the fluid pressure is not dominant (that is, it is of order O(1)), and the
tractions are known on the upper and lower surfaces, we must use the shallow water model. In
the first case we will say that the fluid is “driven by the pressure” and in the second that it is
“driven by the velocity”.
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Method of energy estimates for studying of singular boundary regimes in
quasilinear parabolic equations
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In the cylindrical domain Q = (0, T ) × Ω, 0 < T < ∞, where Ω ⊂ Rn is a bounded domain
such that ∂Ω ∈ C2, the following problem is considered:

(|u|q−1u)t −∆pu = 0, p > q > 0,

u(0, x) = u0 in Ω, u0 ∈ Lq+1(Ω),

u(t, x)
∣∣∣
∂Ω

= f(t, x),

(1)

where f generates boundary regime with singular peaking, namely,

f(t, x)→∞ as t→ T, ∀x ∈ K ⊂ ∂Ω, K 6= ∅. (2)

Function f is called a localized boundary regime (S-regime) if

Ω \ Ω0 6= ∅, where Ω0 :=

{
x ∈ Ω : sup

t→T
u(t, x) =∞

}
for an arbitrary weak solution u of problem (1). Sharp conditions of localization of boundary
regime were obtained by some version of local energy estimates (see [1] and references therein).
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