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Abstract. Fluid accumulations in between the retinal layers represent
one of the main causes of blindness in developed countries. Currently,
these fluid accumulations are detected by means of a manual inspection
of Optical Coherence Tomography images, prone to subjective and non-
quantifiable diagnostics. For this reason, numerous works aimed for an
automated methodology. Nonetheless, these systems mostly focus on
obtaining a defined segmentation, which is not always possible. For this
reason, we present in this work a fully automatic methodology based in a
fuzzy and confidence-based visualization of a regional analysis, allowing
the clinicians to study the fluid accumulations independently of their
distribution, complications and/or other artifacts that may complicate
the identification process.
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1 Introduction

The retina represents the neurosensory part of the human eye. This structure
comprises both an extension of the nervous and the vascular systems [6], reflecting
changes that may appear in any of them in its sensitive structures. For this
reason, the retina has become the focus of many Computer-aided diagnosis
(CAD) systems, as it allows to obtain information about a wide-range of internal
processes.
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The main way of studying the retina is by the inspection of a medical imaging
technique called Optical Coherence Tomography (OCT). This imaging modality
is capable of providing a cross-sectional representation of the retinal layers in a
non-invasive way. Currently, one of the most common uses for this technique is the
study of intraretinal fluid accumulations. These accumulations, consequence of
pathologies like the Age-Related Macular Degeneration (AMD) and the Diabetic
Retinopathy (RD), are among the main causes of blindness in developed countries.

Frequently, these images are being manually analyzed by the expert oph-
thalmologist, assessing the severity of the pathology and its evolution by using
only its expertise and experience (which may be subject to subjective variables,
inter-expert discrepancy and even inter/intra device variations). For this reason,
several methodologies arose trying to offer an improved alternative to this issue.
These works follow a similar archetype to the one established by Wilkins et al.
[13], mainly based on an image processing to enhance the features of the image,
an initial candidate segmentation and a final false positive (FP) filtering. In
the particular case of Wilkins et al., this image processing is characterized by a
denoising step, candidate segmentation by a fixed thresholding and candidate
filtering by using shape and size rules. As an example of this tendency, Girish et
al. [2] improved this work by using a watershed algorithm to the initial candidate
listing, Chiu et al. [1] changed the classification to a kernel regression strategy
and the FP filtering to a graph theory and dynamic programming strategy and
Wang et al. [12] generated a 3D segmentation using subsequent OCT scans
and a fuzzy C-means algorithm, but still maintaining the posterior FP filtering.
Additionally, some works (like the proposal of Samagaio et al. [9]) have extended
the segmentation approach to a characterization of these fluid accumulations
into the different clinical types of macular edema.

Finally, some works focused on obtaining these segmentations using deep
learning strategies. Most of these works follow an approach derived from the
original (and commonly used in the analysis of medical images for obtaining a
precise segmentation) U-Net architecture proposed by Ronnenberger et al. [8].
As an example of this, we find the works of Lee et al. [3], Venhuizen et al. [10] or
Lu et al. [4] (albeit this last work focused in a multiclass fluid identification).

All these works present satisfactory results in the segmentation domain, but
these fluid accumulations do not appear always with a defined region to segment,
nor one that different experts would agree on. An example of fluid regions with
confusing limits can be seen in Figure 1. As shown, these fluid regions are mixed
with other pathologies, artifacts product of the imaging technique, and with
normal retinal tissue. Such is this variability that establishing a common ground
truth with different experts would also carry an astonishing variability, thus
making it unreliable as accurate baseline.

As an alternative, de Moura et al. [5, 7] established other way of studying
these accumulations. This approach does not look for a precise segmentation nor
a full image classification. Instead, it merges both ideas to perform a regional
analysis. This analysis is centered in classifying individual samples as pathological
or healthy regions. With this strategy as foundation [11], in this work, we present
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Fig. 1. Samples with diffuse fluid accumulations from OCT images that were captured
by a Spectralis device and a Cirrus device.

a visualization that takes advantage of the resilience of this method in the fluid
problematic areas to create intuitive detections to be analyzed by the expert
clinician. Down below we will proceed to further explain each of the steps followed
during this process.

2 Methodology

2.1 Retinal layer segmentation

The first step of the strategy consists in delimiting the region of interest (ROI).
In particular, we focused on two differentiated retinal layers: the Inner Limiting
Membrane (ILM) and the Retinal Pigment Epithelium (RPE), both representing
the innermost and outermost layers of the retina, respectively.

Fig. 2. Different regions considered in an OCT image and three confusing samples from
each one of them. From top to bottom: choroid sample, fluid region inside the ROI and
vitreous humor sample.

Just next to the ILM, we can find the vitreous humor (the fluid inside the eye);
and next to the RPE, the choroid region (the vascular layer that nourishes the
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outermost layers of the retina). In Figure 2, these main regions are shown with
representative samples of each one of them that will illustrate and motivate why
the extraction of the ROI is made. As the reader can see, the sample from the
choroid and the sample from the vitreous humor can perfectly be visually confused
as intraretinal fluid. The vitreous humor, being a liquid region, presents the same
characteristics as the fluid leakages inside the retinal layers. The choroid, on the
other hand, is a vascular network with circular diffuse patterns that perfectly
mimic the ones also present in the fluid leakages. Finally, the fluid sample from
the ROI shows a pattern that could be present in the retina, the vitreous humor
and as well as in the choroid. For this reason, to diminish the pattern load the
classifier has to learn, these regions are omitted in the posterior analysis.

2.2 Image sampling and subsample extraction

After the ROI is extracted, the image is divided in a series of overlapping samples.
To extract these overlapping samples, each axis of the ROI is divided in rows
and columns spaced by Window size - Established overlap pixels. That way, the
points where these rows and columns meet, a sample center is positioned. Finally,
for each one of these points, a window is extracted.

The regional analysis used in this work bases itself in the study of texture
features. These features describe statistically how the pixel gray levels are spatially
organized in a given sample. Nonetheless, the image sampling extracts squared
samples from an irregularly-shaped ROI, resulting in some samples partially
falling outside the ROI and thus containing non-relevant information that must
be discarded.

As this spatial information has to be maintained and the matrices have to
be rectangular, we cannot simply remove the external pixels from a resulting
array. For this reason, we devised an algorithm to find the biggest rectangle
inside a given sample that contains only valid pixels. Additionally, to ensure a
minimum size of this subsample, only those that are centered inside the ROI will
be considered. If a sample does not meet this criteria, it is simply discarded and
not counted towards the final vote.

(a) (b) (c) (d) (e)

Fig. 3. Steps to extract the biggest subsample from the relevant region (in white). Red:
NE, Yellow: NW, Blue: SW, Green: SE, Magenta: S and Light Blue: E

To extract the subsample, we first find all the possible corners these subrect-
angle could have (Figure 3a-b). For this, we use the hit-or-miss transform. This
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morphological operation allows us to find points in an image that match both a
pattern in the background of the image as well as the foreground. More precisely,
we use the masks defined in Equation 1. Each of these masks will return a series
of different points where the ROI pixels (represented in the mask by 1s) and the
non-ROI pixels (represented in the mask by -1s) match those patterns. That way,
the NE mask will signal the north-east facing corners, the NW mask will signal
the north-west facing corners, SE the south-east ones and, finally, the SW will
mark the south-west ones.

NE =

0 −1 −1
1 1 −1
0 1 0

NW =

−1 −1 0
−1 1 1
0 1 0

SE =

0 1 0
1 1 −1
0 −1 −1

SW =

 0 1 0
−1 1 1
−1 −1 0


(1)

After these corners are found, all the possible rectangles formed by any
combination of the opposing corners are studied. That is, NE with SW and
NW with SE (and only if they are facing each other). If the area within a pair
of corners contains any pixel from the non-ROI area, that candidate is also
discarded. Finally, once we have all the valid candidates, the one with the biggest
area is chosen and extracted from the original sample.

In some cases, the optimum rectangle would have corners in a region without
valid paired candidate corner points. That is, for example, it would have an SE
corner but not a corresponding NW (represented in Figure 3 as the bottom right
green corner without a matching NW). For this reason, to the previous set of
detected corners, an additional set is added considering also artifacts that may
create an invisible barrier. To find these candidates, the hit-or-miss transform
is also used, but with the masks shown in Equation 2 (Figure 3c). Additionally,
as these masks would return multiple detections in flat surfaces, only one of
the pixels is considered per orientation and row/column. Also, as some of these
regions are already covered by a previous detected corner, rows and corners with
an existing previous corner will also be ignored.

N =

 0
1
−1

S =

−1
1
0

E =
(
−1 1 0

)
W =

(
0 1 −1

)
(2)

Considering these new invisible walls, the hit-or-miss looks again for candidate
corners (Figure 3d). And, as shown in Figure 3e, that was precisely (in this
example) where the optimum rectangle was located.

2.3 Sample voting and normalization

Finally, each of the resulting samples is classified by a previously trained model
into a pathological or a non-pathological class. To convert these values into a
confidence indicator, we use a voting strategy. The confidence of a given pixel is
determined by the number of windows classified into the pathological class that
in the original image contained that same pixel. Thanks to using this strategy,
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the confidence is calculated not only by one classification, but also using the
information from the neighboring samples that cover an extended region.

Nonetheless, in the ROI areas close to the borders, the number of windows
that overlap the region is sensibly lower than in the internal ones. Additionally,
depending on the ROI shape and size, rounding errors when calculating the
sample centers will cause a lattice pattern to appear (as some pixels, product
of this rounding, will be overlapped by less windows in their frontier zones).
To solve this issue, the number of pixels is divided by the number of windows
that overlapped that pixel. This way, the confidence is stated as the relative
percentage of windows that, overlapping that given pixel, were considered as
pathological. Figure 4 shows a representation of these two issues in a map where
the window overlap density is represented.

Fig. 4. Original healthy OCT image ROI and a representation over it of the vote density
(overlap of 50px between samples).

2.4 Intuitive color mapping

Finally, an intuitive color map is constructed to represent the final detection;
being merged with the original image. The color map presents a cold-hot scale
with several and progressive hue changes. This pattern allows the expert clinician
to assess the severity of a pathology and know, with a quick look, the confidence
metric established by the system. Figure 5 shows a finished confidence map. As
shown, with a simple gaze, a human examiner can quickly assess the confidence
thanks to the proposed color scale.

Fig. 5. Map with the corresponding color scale indicating the relationship between the
color that is shown in the map and the confidence assigned by the system.

3 Results and conclusions

The map generation strategy hereby presented and the resulting visualization
are able to create, from an individual OCT image, a complete and intuitive
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representation of the fluid regions. Moreover, these detections are able to work
even when the fluid accumulations do not present a defined border that can be
segmented due to its diffuse nature.

Fig. 6. Examples of healthy ROI regions without fluid leakages and their corresponding
confidence maps.

Figure 6 shows an example of healthy OCT images without fluid accumulations.
Even confusing artifacts like shadows that are generated by vessels or slight
darkened regions product of the OCT device are explicitly and correctly identified
as non-pathological.

Fig. 7. Examples of ROI regions with complex fluid leakages and their corresponding
confidence color maps.

On the other hand, Figure 7 presents three complex cases of fluid accumula-
tions mixed with other pathologies and healthy tissue. The reader can easily see
how, comparing with Figure 6, an expert clinician that analyzes both images could
easily tell, without much inspection, which patients present relevant leakages and
which ones are healthy. Additionally, this methodology is not limited to fluid
accumulations or even to OCT images. By changing the classifier, the system
could easily be used to detect other pathological complications in this or other
different image modality (in most medical imaging systems, the ROI extraction
phase can be omitted if there is no danger of confusing texture patterns between
structures). Finally, we would like to remark that adapting this method also
does not require a precise ground truth like a segmentation would. This model is
trained by means of a binary classification of square samples, easier to do for a
human expert and more robust than a segmentation-based one. That is, with
vague classifications that tolerate the human margin of error we can create a
coherent, intuitive and defined representation of the pathological regions.
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