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Abstract. Optical Coherence Tomography (OCT) imaging has revo-
lutionized the daily clinical practice, especially in the field of ophthal-
mology. Diabetic Macular Edema (DME) is one of the most important
complications of diabetes and a leading cause of preventable blindness in
the developed countries. In this way, a precise identification and analysis
of DME biomarkers allow the clinical specialists to make a more accurate
diagnosis and treatment of this relevant ocular disease.
Thus, in this work, we present a computational system for the auto-
matic identification and extraction of DME biomarkers by the analysis
of OCT scans, following the clinical classification of reference in the oph-
thalmological field. The presented method was validated using a dataset
composed by 40 OCT images that were retrieved from different patients.
Satisfactory results were obtained, providing a consistent and coherent
set of different computational biomarkers that can help the clinical spe-
cialists in their diagnostic procedures.

Keywords: Computer-aided diagnosis, Optical Coherence Tomography, Di-
abetic Macular Edema, biomarkers

1 Introduction

Diabetic Macular Edema (DME) represents a leading cause of visual impairment
and blindness among the working-age individuals in the developed countries [1].
DME is one of the most common eye diseases that is associated with diabetes
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mellitus, affecting the 12% of type 1 and the 28% of type 2 diabetic patients [2].
This relevant disease is characterized by an abnormal retinal thickness produced
by intraretinal fluid accumulations, also called Macular Edemas (MEs), within
the retinal tissues. In this context, the use of Computer-Aided Diagnosis (CAD)
systems is crucial, as it provides useful information for the clinical specialists to
assess the severity of the DME pathology. In particular, in ophthalmology, Op-
tical Coherence Tomography (OCT) has become an important clinical tool that
is commonly used for the analysis and interpretation of many retinal structures
and ocular disorders [3–5].

OCT is a well-established medical imaging technique that is capable of pro-
viding high-resolution cross-sectional tomographic images of biological tissues by
measuring the intensity of the back-scattered light [6]. In this way, these images
are widely used by the clinical specialists in the diagnosis and monitoring of
the DME disease, permitting a complete analysis of the retinal morphology and
their histopathology properties in real time and non-invasively.

Using the OCT image modality as reference, Otani et al. [7] proposed a
clinical classification of the MEs associated with DME into 3 pathological types:
Serous Retinal Detachment (SRD), Cystoid Macular Edema (CME) and Diffuse
Retinal Thickening (DRT). This clinical classification is based on the different
fluid accumulation patterns derived from the DME disease and that can be
differentiated in the OCT images. Figure 1 presents an illustrative example of
an OCT image with the simultaneous presence of the 3 defined types of the DME
disease.

Fig. 1. Example of an OCT image with the simultaneous presence of the 3 defined
types of DME: DRT, SRD and CME.

Posteriorly, Panozzo et al. [8] complemented the Otani classification using the
presence of the Epiretinal Membrane (ERM) to better characterize the DME
disease in the OCT images. Hence, ERM is a relevant disorder of the vitreo-
retinal interface that is also associated with DME disease. In particular, the ERM
presence is defined by a response of the immune system to protect the retina from
changes of the vitreous humour. Consequently, this response provokes that the
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cells of the retina converge on the inner retinal surface, producing a translucent
membrane, which can thicken or contract. Figure 2 shows an illustrative example
of an OCT image with the presence of the ERM membrane.

Fig. 2. Example of an OCT image with the presence of the ERM membrane.

In this context, an automatic system for the identification and analysis of
different computational biomarkers of the DME disease facilitates the work of
the clinical specialists, reducing the costs of medical care and improving the
quality of life of patients.

Given the relevance of this ocular pathology, some computational proposals
were presented focusing their studies in the automatic identification of the pres-
ence of DME cases using the OCT scans as source of information. As reference,
Sidibé et al. [9] employed a Gaussian Mixture Models (GMM) for the identi-
fication of patients with DME using OCT images. In particular, the method
models the appearance of normal OCT images with a GMM model and detects
pathological OCT images as outliers. Quellec et al. [10] proposed a methodol-
ogy using a set of texture features that were extracted to characterize different
retinal tissues. Then, a learning strategy was applied using a k-NN classifier for
the identification of CME edemas in the macular region. Wilkins et al. [11] de-
veloped a method for the identification of the ERM presence through manual
labeling in the OCT images performed by the clinical specialist, which allowed
the computer tool to measure the retinal thickness around the labeled region.
As we can observe, the presented methods only aimed at the partial identifica-
tion of DME cases without addressing the problem of the extraction of relevant
computational biomarkers for their clinical utility in predictive, preventive and
personalized medicine.

Thus, in this work, we present a fully automatic system for the identifica-
tion and extraction of DME biomarkers using OCT scans, following the clinical
classification of reference in the ophthalmological field [7, 8]. To achieve this,
firstly, the system segments the main retinal layers to delimit 3 retinal regions
in the OCT scan. Then, the system identify the presence of ME (SRD, CME
and DRT) and ERM cases within the corresponding retinal region. To do so, the
system combines and exploits different clinical knowledge (position, dimension,
shape and morphology) with image processing and machine learning strategies.
Finally, using these localizations as source of information, the system derives
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different computational biomarkers that can help the clinical specialists in their
diagnostic procedures.

This paper is organized as follows: Section 2 includes the detailed character-
istics of the proposed methodology. Next, the results are presented, explained
and discussed in Section 3. Finally, Section 4 depicts the general conclusions and
the possible future lines of work.

2 Methodology

As illustrated in Fig. 3, the designed methodology is divided into 4 main stages.
Firstly, the system segments the main retinal layers. Posteriorly, the system
delimits 3 retinal regions: ILM/OPL, OPL/ISOS and ISOS/RPE regions. Re-
garding the MEs, the system localizes and extracts the relevant biomarkers of
each ME type within these retinal regions. Regarding the ERM, a complemen-
tary strategy was implemented for the identification and subsequent extraction
of the corresponding computational biomarkers.

Fig. 3. Main structure of the proposed methodology.

2.1 Retinal Layer Segmentation

In this work, 4 main retinal layers were identified, since they provide the correct
delimitation of the retinal regions where the different types of ME and ERM
usually appear. These retinal layers are: the Inner Limiting Membrane (ILM),
the Retinal Pigment Epithelium (RPE), the junction of the Inner and Outer
Segments (ISOS) and the Outer Plexiform Layer (OPL). In particular, to extract
the ILM, RPE and ISOS layers, we follow the work proposed by González-López
et al. [12]. To do that, the method employs an active contour-based model to
segment these retinal boundaries. For the OPL layer, we designed a different
strategy based on a region growing approach to obtain the corresponding region
with similar intensity properties [13]. As result of this strategy, the upper limits
of the extracted region represents the OPL layer. Figure 4 shows a representative
example of OCT image with the segmentation of the aimed retinal layers.
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Fig. 4. Example of an OCT image with the segmentation of the aimed 4 retinal layers:
ILM, OPL, ISOS and RPE.

2.2 Division in ILM/OPL, OPL/ISOS and ISOS/RPE Regions

Using the previous retinal layer identifications, 3 representative regions of inter-
est are identified and extracted: ILM/OPL, OPL/ISOS and ISOS/RPE regions,
as illustrated in Fig. 5. Generally, the SRD edemas appear as a dome-shape
area in the ISOS/RPE region. DRT edemas usually appear in the OPL/ISOS
region whereas CME edemas are frequently present in the ILM/OPL region. In
more severe stages of the DME disease, CME edemas can also proliferate in the
OPL/ISOS region.

Fig. 5. Illustrative example of the division of the regions of interest. (a) Delimitation
of the ILM/OPL region. (b) Delimitation of the OPL/ISOS region. (c) Delimitation of
the ISOS/RPE region.

2.3 ME Biomarker Identification

The proposed methodology includes different strategies to perform a simultane-
ous identification of each type of ME (SRD, CME and DRT) within the corre-
sponding retinal region. To do that, we follow the work proposed by Samagaio et
al. [13], given their adequate results for this issue. For the SRD and CME cases,
we apply an adaptive multilevel thresholding algorithm, whereas for the DRT
case a machine learning strategy was implemented. Then, a list composed of dif-
ferent clinical knowledge (position, dimension, shape and morphology) is used to
reduce the set of possible false identifications. As output, the method provides
a labeled OCT image with the precise identification of each ME type for a bet-
ter characterization of the present DME disease. Finally, the method extracts
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and analyzes different ME biomarkers according to their relative position within
the OCT scans. These ME biomarkers are: number of SRDs, number of CMEs,
number of DRT columns, relative position of SRDs, relative position of CMEs
and relative position of DRTs. As we can see in Fig. 6, these ME biomarkers are
extracted in the foveal region (1.0 mm diameter central circle area), parafoveal
region (ring area between 1.0 and 3.0 mm in diameter) and perifoveal region
(ring area between 3.0 and 6.0 mm in diameter). These regions were established
according to clinical criteria [14].

Fig. 6. Example of an OCT image with the extraction of ME biomarkers where 2 CME
regions were identified in the foveal region.

2.4 ERM Biomarker Identification

Using the previously segmented ILM layer, we perform the precise identification
of the presence or non-presence of ERM cases using the OCT scans. To achieve
this, we based our proposal in the work of Baamonde et al. [15]. Firstly, the sys-
tem extracts a set of relevant features from the search space, including intensity,
texture and domain-related clinical features. Then, a machine learning strategy
is used to train and test the potential of discrimination of the presented method.
Using these identifications, the system derives different ERM biomarkers consid-
ering its relative position within the OCT scans, as seen on Fig 7. In particular,
these ERM biomarkers imply: absolute and relative number of ERM columns
and relative position of ERMs.

3 Experimental Results

The proposed system was validated using a dataset consisting of 40 OCT im-
ages retrieved from different patients, being 20 acquired with a Spectralis OCT
confocal scanning laser ophthalmoscope from Heidelberg Engineering and 20
obtained with a CIRRUS OCT from Carl Zeiss Meditec. Each OCT image was
labeled by an expert clinician, identifying regions with the presence of ME as
well as ERM. To measure the efficiency of the proposed method, we evaluated
the identification of the different DME biomarkers according to their relative lo-
calization within the OCT scans, as show in Table 1. As we can see, the method



Automatic identification of DME biomarkers using OCT scans 7

Fig. 7. Example of an OCT image with the extraction of ERM biomarkers where the
presence of ERM was identified in all regions of the retina.

achieved satisfactory results, returning in a coherent way the values of the DME
identifications for the foveal, parafoveal and parafoveal retinal regions.

Table 1. Performance of the method for the identification of DME biomarkers.

(%) SRDs (%) CMEs (%) DRT columns (%) ERM columns

Foveal 100% 34.28% 22.43% 9.92%

Parafoveal 0% 54.28% 47.77% 28.01%

Perifoveal 0% 11.42% 29.79% 62.05%

4 Discussion and Conclusions

OCT has proven to be a robust medical imaging modality that provides cross-
sectional tomographic scans that are commonly used for clinical specialists in the
analysis and evaluation of DME. This relevant ocular disease is one of the most
common causes of blindness in individuals with diabetes. In this context, we
presented a fully automatic system for the identification and extraction of DME
biomarkers using OCT scans, following the clinical classification of reference in
the ophthalmological field. To do that, the presented method exploits different
image processing and machine learning strategies to identify the presence of
ME (SRD, CME and DRT) and cases of ERM from patients with DME dis-
ease. Subsequently, the system derives different computational biomarkers that
may lead to the early diagnosis and treatment of this relevant ocular disease.
The validation was performed using 40 OCT images from two representative
ophthalmological devices. The presented system achieved satisfactory results,
demonstrating its suitability to be used in real clinical scenarios.
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