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Abstract. In the field of ophthalmology, different imaging modalities
are commonly used to carry out different clinical diagnostic procedures.
Currently, both optical coherence tomography (OCT) and optical coher-
ence tomography angiography (OCT-A) have made great advances in the
study of the posterior pole of the eye and are essential for the diagnosis
and monitoring of the treatment of different ocular and systemic diseases.
On the other hand, the development of clinical decision support systems
is an emerging field, in which clinical and technological advances are al-
lowing clinical specialists to diagnose various pathologies with greater
precision, which translates into more appropriate treatment and, conse-
quently, an improvement in the quality of life of patients. This paper
presents a clinical decision support tool for the identification of different
pathological structures associated with age-related macular degeneration
using OCT and OCT-A images. The system provides a useful tool that
facilitates clinical decision-making in the diagnosis and treatment of this
relevant disease.
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1 Introduction

Age-related macular degeneration (AMD) represents one of the leading causes
of vision loss in older adults. This relevant eye disease is an age-related condi-
tion that results from a gradual deterioration of light-sensitive cells in the tissue
at the back of the eye. Specifically, AMD mainly affects peripheral blood ves-
sels, causing different signs of systemic and retinal vascular deterioration. New
emerging ophthalmic imaging technologies, such as optical coherence tomog-
raphy (OCT) and optical coherence tomography angiography (OCT-A), have
great potential to support early diagnosis of this relevant eye disease. On the
one hand, OCT is a non-invasive imaging technique that uses low-coherence light
to capture two-dimensional and three-dimensional micro-resolution scans of the
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retina, allowing a more precise evaluation of its main morphological structures.
On the other hand, OCT-A is a more recent technique for the capture of high-
resolution images of the choroidal and retinal circulations without the need for
dye injections. In particular, OCT-A detects the blood movement using intrin-
sic signals to capture the precise location of the blood vessels. Consequently,
this ophthalmological test has great potential to improve the understanding of
the pathophysiology of the eye fundus, providing relevant information for the
diagnosis and monitoring of the AMD treatment.

Given the great relevance of this topic, several authors have addressed the
development of intelligent systems for the identification, segmentation and char-
acterisation of different regions of clinical interest using OCT and OCT-A im-
ages. As reference, in the field of OCT imaging, we can find different proposals
for the precise identification of different morphological structures, such as retinal
layers [6, 5] or retinal vessels [11, 10]. We can also find different proposals for the
segmentation of regions with the presence of pathological fluid or the presence
of the epiretinal membrane [2, 1]. On the other hand, in the field of OCT-A
imaging, different methodologies have been proposed for the identification of
structures of clinical interest [9, 3] or the calculation of different computational
biomarkers [12, 4]. Despite the considerable efforts that were made to develop
automated methods to support clinical diagnosis, there is still no platform that
integrates OCT and OCT-A images for the diagnosis of AMD, so this problem
is only partially addressed.

Taking this into account, in this work, we present a clinical decision support
tool for the identification of different pathological structures associated with
AMD using OCT and OCT-A, two widely used imaging modalities with great
diagnostic potential. For this purpose, we have designed a fully automatic so-
lution based on deep learning strategies, which is initially composed of three
complementary modules. A first module that automatically distinguishes be-
tween OCT and OCT-A images; it is useful to differentiate the type of image for
a more accurate and efficient diagnosis. The second module is able to differenti-
ate healthy patients from those with the following pathologies on OCT images:
choroidal neovascularization (CNV), diabetic macular edema (DME) and drusen.
The third module is able to automatically classify the OCT-A images as retinal
vein occlusion (RVO) or healthy. Finally, these modules were integrated into a
web platform, offering different functionalities, such as patient management or
the intuitive visualisation of results through clinical reports, facilitating the work
of ophthalmologists.

2 Materials and methods

2.1 Dataset

OCT dataset. This dataset consists of 84,484 OCT images, corresponding
to 26,315 healthy patients, 37,205 patients diagnosed with CNV, 11,348 pa-
tients diagnosed with DME and 8,616 patients with the presence of drusen de-
posits. Therefore, this dataset contains 4 classes (NORMAL, CNV, DME and
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DRUSEN). All OCT images were selected from retrospective cohorts of adult
patients from the Shiley Eye Institute at the University of California San Diego,
the California Retinal Research Foundation, Medical Center Ophthalmology As-
sociates, and the Beijing Tongren Eye Center. This dataset is publicly available
to the scientific community [8].

OCT-A dataset. This dataset consists of 1,551 images obtained by an OCT-
A capture device (Topcon DRI OCT Triton Plus swept source), where 870 are
images of patients diagnosed with RVO and 681 are images without the pres-
ence of RVO. Therefore, two classes (RVO and NON-RVO) are analysed in this
work. Specifically, these images were obtained at the Complejo Hospitalario Uni-
versitario de Santiago (CHUS) from different patients in accordance with the
Declaration of Helsinki.

Fig. 1: Schematic representation of 3 computational modules to support the di-
agnosis of different ocular diseases.

2.2 Methodology

Figure 1 shows a schematic representation of the different computational mod-
ules that were developed for pathological screening. Each of these modules is
explained in more detail below.

Module of classification according to device type. For the design of a
clinical decision support tool based on the integration of different smart modules,
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it is very useful to differentiate the type of image we are working with. As a
consequence, we can obtain more accurate, reliable and repeatable results. With
this in mind, we have designed a fully automatic module for image classification
between OCT and OCT-A classes.

Module of OCT pathological screening. This smart module is able to dif-
ferentiate automatically healthy patients from those diagnosed with the patholo-
gies present in the OCT dataset. Specifically, OCT images will be classified into
CNV for patients with choroidal neovascularisation, DME for patients with di-
abetic macular edema, DRUSEN for patients with presence of drusen deposits
and NORMAL for healthy patients.

Module of OCT-A pathological screening. In this smart module, the sys-
tem is able to automatically classify the OCT-A images between patients diag-
nosed with retinal vein occlusion (RVO) or healthy patients (NON-RVO).

2.3 Training details

In this work, we exploit the potential of the DenseNet-161 [7] architecture pre-
trained on the ImageNet dataset. For the training process, we have divided the
datasets into mutually exclusive subsets for training (60%), validation (20%) and
testing (20%). In addition, a cross-entropy loss function was used to adjust the
weights of the models during the training stage. Regarding the optimisation of
the model, Stochastic Gradient Descent was used with a learning ratio constant
of 0.01, a mini-batch size of 16 and a first order momentum of 0.9. Finally, in
order to achieve consistent results, the training step was repeated 5 times with
random samples, which allows to calculate the averages of the results obtained
and thus to evaluate the overall performance of all the proposed smart modules.

2.4 Clinical Decision Support Tool

All the smart modules, developed in this work, were integrated into a clinical
decision support tool, facilitating clinical decision making in the diagnosis and
treatment of AMD using OCT and OCT-A images. In addition, this web-based
platform offers different functionalities, such as patient management or the in-
tuitive visualization of results through different clinical reports that can be ex-
ported to PDF format or sent automatically by e-mail. This tool is fully scalable,
allowing easy integration of new smart modules to support the diagnosis of new
diseases or other types of medical imaging.

3 Results and Discussion

In this section, we present the experimental results of the proposed computa-
tional modules for the automatic identification of different pathological struc-
tures related to AMD using OCT and OCT-A images. For the validation of each



Clinical decision support tool for the identification of AMD 5

smart module, the following metrics are calculated: Accuracy, Precision, Recall
and F1-score.

1st Analysis: Classification according to device type. In this first analysis,
we studied the performance of the proposed system to classify the input images
according to 2 types of devices: (OCT and OCT-A). As expected, the system
was able to adequately classify all images contained in the analyzed dataset,
since it is a simple classification problem. In this sense, the obtained results
demonstrate the powerful learning capability of deep neural networks to extract
discriminative features for medical image analysis.

2nd Analysis: OCT pathological screening. In this second analysis, we
studied the performance of the proposed system to classify OCT images accord-
ing to 4 classes: (NORMAL, CNV, DME and DRUSEN). Figure 2a shows the
progression of the accuracy and Figure 2b the progression of the loss, both for
the training and for the validation stages, considering 5 independent repetitions.
As we can see, the training process has been completed after model stabilization
before 40 epochs, obtaining accuracy values close to 1 for training and 0.975 for
validation.

(a) (b)

Fig. 2: Results of the second analysis after 5 independent repetitions, in terms
of mean ± standard deviation. (a) Representation of the evolution of accuracy
in training and validation. (b) Representation of the evolution of loss in training
and validation.

Complementarily, Table 1 shows the performance measures obtained in the
test stage. As we can see, satisfactory results were obtained for each category,
reaching a mean accuracy value of 0.9718 ± 0.0011. In particular, we can ob-
serve that the highest value obtained for the F-score is 0,9826 ± 0,0018 for the
NORMAL class. On the contrary, the lowest value obtained for the F-score is
0,9103 ± 0,0041 for the DRUSEN class.
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Class Recall Precision F1-score

NORMAL 0,9838 ± 0,0013 0,9814 ± 0,0037 0,9826 ± 0,0018

CNV 0,9807 ± 0,0020 0,9808 ± 0,0024 0,9808 ± 0,0019

DME 0,9598 ± 0,0059 0,9680 ± 0,0029 0,9639 ± 0,0034

DRUSEN 0,9122 ± 0,0059 0,9085 ± 0,0069 0,9103 ± 0,0041

Table 1: Recall, Precision and F1-score for each class of the module of OCT
pathological screening using the test dataset.

3rd Analysis: OCT-A pathological screening. In this third analysis, we
studied the performance of the proposed system to classify OCT-A images ac-
cording to 4 classes: (RVO and NON-RVO). Once again, Figure 2a illustrates
the progression of the accuracy, as well as Figure 2b the progression of the loss,
for both training and validation stages, considering 5 independent repetitions.
As we can see, in this case, the training process has been completed after the
stabilization of the model before 75 epochs, both for training and validation
stages. As for the loss, we can see a very large variation in the initial epochs,
but as accuracy stabilises, the loss decreases considerably, reaching values close
to 0.

(a) (b)

Fig. 3: Results of the third analysis after 5 independent repetitions, in terms of
mean ± standard deviation. (a) Representation of the evolution of accuracy in
training and validation. (b) Representation of the evolution of loss in training
and validation.

Additionally, we present the Table 2 with the values obtained for each class
and represented by the Recall, Precision and F1-score metrics. In general, the
results that were obtained by the proposed system with the test dataset are
satisfactory, since it achieves a mean accuracy value of 0.8695 ± 0.0414. As we
can see, the obtained results demonstrate the suitability of the model for the
identification of different pathological structures related to AMD using OCT-A
imaging.
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Class Recall Precision F1-score

RVO 0,8757 ± 0,0239 0,8890 ± 0,0519 0,8823 ± 0,0360

NON-RVO 0,8615 ± 0,0681 0,8455 ± 0,0323 0,8534 ± 0,0486

Table 2: Recall, Precision and F1-score for each class of the module of OCT-A
pathological screening using the test dataset.

4 Conclusions

In this work, we propose a clinical decision support tool for the identification
of different pathological structures associated with AMD using OCT and OCT-
A images. For this purpose, we have designed a fully automatic solution based
on deep learning, which is initially composed of 3 smart modules. A first mod-
ule that automatically distinguishes between OCT and OCT-A images. The
second module is able to differentiate healthy patients from those with the fol-
lowing pathologies on OCT images: CNV, DME and drusen deposits. The third
module is able to automatically classify the OCT-A images as RVO or healthy
patients. Finally, these modules were integrated into a web platform, offering dif-
ferent functionalities, such as patient management or the intuitive visualisation
of results through clinical reports, facilitating the work of the ophthalmologists.
Two representative datasets have been used for the validation of this work. The
first dataset is composed of 84,484 OCT images differentiated into four classes:
(NORMAL, CNV, DME and DRUSEN). The second dataset is composed of
1,551 OCTA images differentiated into two classes: (RVO and NON-RVO). The
proposed system provided accurate results in all the designed smart modules,
demonstrating a significative potential in the early diagnosis, treatment and
monitoring of AMD.
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