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Abstract. Optical Coherence Tomography (OCT) is a common imaging
technique for the detection and analysis of optical diseases, since it is a
non invasive method that generates in vivo a cross-sectional visualization
of the retinal tissues. These characteristics contributed to the use of OCT
imaging in the analysis of pathologies as, for instance, vitreomacular
traction, age-related macular degeneration or hypertension. Among its
applications, OCT imaging can be used in the detection of any present
epiretinal membrane section in the retina, a critical issue to prevent
further complications caused by this pathology.
This work analyzed the main characteristics of the epiretinal membrane
to define a complete and heterogeneous set of intensity and texture-based
features. Those features were studied using representative selectors, as
Correlation Feature Selection (CFS) and Relief-F, to identify the optimal
subsets that offer the higher discriminative power. K-Nearest Neighbor
(kNN), Naive Bayes and Random Forest were finally tested in a method
for the automatic detection of the epiretinal membrane in OCT images.
Previous works do not focus on automatic procedures and, on the con-
trary, depend on manual markers or supervised detections, while our
method improves significantly this task by automating the search of the
region of interest and the classification of the pixels belonging to that
area.
The methodology was tested using a dataset of 129 OCT images. 120
samples were equally obtained from those scans, featuring both zones
with and without epiretinal membrane. The best results were provided
by the Random Forest classifier that, using a window size of 15 pixels, a
quantity of 13 histogram bins and 28 features, achieved an accuracy of
93.89%.

Keywords: computer-aided diagnosis, retinal imaging, Optical Coher-
ence Tomography, epiretinal membrane, feature selection, classification

? This work is supported by the Instituto de Salud Carlos III, Government of Spain and
FEDER funds of the European Union through the PI14/02161 and the DTS15/00153
research projects and by the Ministerio de Economı́a y Competitividad, Government
of Spain through the DPI2015-69948-R research project.



2 S. Baamonde, J. de Moura, J. Novo, J. Rouco, M. Ortega

1 Introduction

Retinal image analysis is an important issue for the diagnosis of various optical
diseases. To this end, it is necessary to identify precisely the pertinent structures
of the eye fundus as, for instance, the optic disc [13] and the arterio-venular tree
[12]. With this information, a characterization of cardiovascular complications
[7] or pathologies such as diabetes [17] can be achieved.

Macular pucker, more commonly known as epiretinal membrane (ERM), is
a fibrocellular tissue that can cause metamorphopsia, central vision decrease
or blurred vision [1,10]. Moreover, epiretinal membranes are associated with
different types of cysts (macular, paravascular, lamellar macular) [11], further
contributing to the eyesight distortion or reduction.

Idiopathic ERMs are the most common, but retinal vascular diseases or
changes in the vitreous humor [4] can induce a response from the immune sys-
tem to protect the retina. This response causes, sometimes, that the retinal cells
converge on the macular region, creating a transparent layer. This layer, that is
scar tissue, causes tension on the retina by contraction, further increasing the
chances of secondary ERMs to appear.

Optical Coherence Tomography (OCT) imaging [3] is frequently used to an-
alyze the retinal morphology and detect the presence of ERM. ERM appears as
a thin reflective layer on the retina [2], fact that can be used for its detection on
OCT images. Irregularities on the retinal surface or retinal thickening can also
indicate the presence of ERM on the patient.

The asymptomatic nature of this pathology makes necessary a reliable and
accurate detection system. With an appropriate method, ERM can be early
detected and treated before further complications appear. Those methods are
usually based in the manual detection of the ERM by a specialist [14]. Simi-
larly, the method of Wilkins et al. [16] uses real-time OCT images and, after an
specialist establish manual markers on the image, ERM is detected by the use
of information about the reflectivity and thickness of the retina on the selected
points.

In this work, we aimed for the automation of the process by developing an
algorithm that selects autonomously the region of interest (ROI) where the ERM
can be present. We analyzed the main characteristics of the ERM and designed
a complete and heterogeneous set of features that helped to characterize the re-
gions where the ERM is present. Optimal subsets of those features were selected
and used to train representative classifiers. We use those trained classifiers to
identify automatically the points belonging to the region of interest and pin-
point the presence or absence of ERM in the selected area. This method aims to
improve the general error tolerance of the process by avoiding the use of man-
ual markers for ROI initialization and making them non-dependent of human
interaction.
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2 Methodology

The proposed system tries to identify automatically the Inner Limiting Mem-
brane (ILM), which is the boundary between the retina and the vitreous body,
area where the ERM can appear if the pathology is present on the patient. Then,
using these identifications, we analyze all the points belonging to the ILM, gen-
erating a rectangular-shaped window for each point and calculating the relevant
features of the constructed window. Finally, every feature vector is used to clas-
sify its associated point and obtain information about the presence of ERM in
the ILM retinal layer.

2.1 Identification of the region of interest

In this work, we employed a new method based on the use of an active contour
model (Snake) [8], which adjusts its shape to the ILM contour. A predefined
number of points are initialized on the uppermost part of the OCT scan. These
points adapt its contour to the shape of the ILM by using information about
the intensity of this layer in contrast to the rest of the layers. We designed an
adapted version of the Snake, since we restrict its movement to the vertical
axis, allowing only downwards movement. All the points of the Snake are moved
progressively, approaching to the ILM layer. Finally, if a point does not modify
its energy after an iteration, that point is fixed and is not processed again. With
this method, the Snake behaves like a cascade of points instead of a contracting
closed shape.

The Snake finally reaches the ROI (defined by the ILM position) to identify
the ERM presence. In order to obtain relevant information from the ROI, a large
set of heterogeneous features is obtained from each point of the Snake. These
features are measured in the surrounding area of each point of interest. This
area is defined as a rectangular window where Wsize is the width in pixels of
the window and the height is 5 ×Wsize (Fig. 1), offering enough information of
the layer tissue with respect to its surrounding area.

2.2 Feature definition

Using the properties of the ILM with and without ERM presence, we selected
a complete set of intensity and texture-based features of the windows obtained
around the points of interest to be able to separate precisely the points with
ERM from the normal ILM tissue.

The number of features varies between 223 and 263. This variability is caused
by the use of the input parameter Nbins of the window features, depicted below.
The used features can be classified in the following groups:

Window features Each window obtained from the Snake is divided in five
different square-shaped windows. Then, we calculate the histogram for each
sub-window. The number of bins was empirically selected, so the resulting
number of features obtained oscillates between 35 and 85, depending on the
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(a) (b)

Fig. 1: Example of Region of Interest definition. (a): Snake situated on top of the
ILM and window around a point of the ROI. (b): Zoom on the feature window

value of Nbins. This parameter is used to determine the number of bins for
the histograms associated to each window. We tested configurations from
7 to 17 bins (in increments of 2). For each point we have 5 different sub-
windows with an associated histogram, so the total number of features range
from 5 × 7 = 35 to 5 × 17 = 85.

Intensity features 13 features are obtained with all the intensity informa-
tion of the window: maximum, minimum, mean, median, standard deviation,
variance, first quartile, third quartile, skewness and maximum likelihood es-
timate (for a normal distribution).

Gray-level Intensity Histogram (GLIH) The histogram of the full window
is calculated. From it, we obtain the following metrics: obliquity, kurtosis,
energy and entropy.

Gray-level Co-ocurrence Matrix (GLCM) These features provide informa-
tion about the spatial relationship of the pixels [15]. We use a distance of 2
pixels and 4 directions as proposed by Haralick et al. [6], for a total of 16
features.

Histogram of Oriented Gradients (HOG) Gradient orientation can be an
useful feature, since it can contribute to the detection of the different patterns
of gradients when the epiretinal membrane is found in contrast to its absence.
Besides, HOG features are suitable to recognize gradient patterns in the ROI
since they are invariant to scale, rotation or translation modifications. We
used 9 HOG windows with 9 bins, obtaining a total of 81 features.

Local Binary Patterns (LBP) Local Binary Patterns also help to detect pat-
terns of intensity changes in the selected window. Another advantage is their
low sensitivity to intensity changes, since variation in illumination is usual
in OCT images. We use a total of 64 features that will give a extended range
of information.
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2.3 Feature selection and classification

Once the feature set was specified, we proceeded with the analysis and selec-
tion of those most relevant features that contain meaningful data and provide
the highest discriminative power. This way, we can optimize the classification
process and obtain better results by avoiding the introduction of unneeded and
redundant information to the classifiers.

Feature selection was performed using representative strategies. Correlation
Feature Selection (CFS) algorithm [5], which works by selecting features corre-
lated or predictive of the class that, otherwise, are irrelevant. Relief-F algorithm
[9] is also used, consisting on the repeatedly sampling of a random instance and
checking the distance to the nearest instances of the same or different class.

Finally, representative classifiers with proven utility in medical imaging ap-
plications were trained and tested using the selected feature subsets: K-Nearest
Neighbor (kNN), Naive Bayes and Random Forest classifiers. For each classi-
fier, we test three window sizes and six different number of bins for the window
features mentioned beforehand.

3 Results and Discussion

The validation of the method was done by the use of a set of 129 OCT images.
These scans were obtained with a tomograph CIRRUSTM HD-OCT Zeiss, with
Spectral Domain Technology. The resolution of the scans was 490×500 pixels
without any preprocessing stage.

The scans were labeled by an expert clinician, identifying the areas where
ERM is present and absent, respectively. With this groundtruth, we selected a
set of 120 samples, divided in 60 samples with ERM presence and 60 with ERM
absence. Furthermore, each group of samples can also be split in the following
classes (Fig. 2):

1. Membrane class. Points with ERM presence on top of the ILM.
2. Floating membrane class. Points with ERM presence on the background.
3. Non-membrane class. Points situated on the first layer of the retina but

without ERM presence.
4. Background class. Points not situated on the ILM layer, but on the back-

ground.

This way, we have labeled datasets for two and four class approximations. We
performed experiments facing both approximations to test the capabilities of the
designed method. To evaluate the results, we use the accuracy of the classifiers
as our control metric. Table 1a and Table 1b present the results obtained using
the two-class approximation. Results are very similar across all configurations,
only obtaining a slight improvement with Wsize = 17 for the Random Forest
classifier.

Table 2a and Table 2b show the results for the 4 class approximation. In
this case, the improvement in the performance is more accentuated when using
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Fig. 2: Example of the different types of classes to be identified

Table 1: 2-class classification accuracy results

(a) CFS algorithm

kNN Naive Bayes Random Forest
Wsize Wsize Wsize

Nbins 13 15 17 13 15 17 13 15 17

7 81.80% 88.68% 87.44% 81.58% 89.71% 86.75% 83.79% 89.46% 90.45%

9 82.80% 87.46% 87.24% 80.85% 88.74% 87.26% 83.58% 89.22% 89.99%

11 84.22% 85.98% 88.95% 81.09% 88.73% 85.78% 83.81% 89.93% 89.73%

13 81.56% 86.19% 87.46% 80.61% 89.23% 85.29% 83.57% 88.72% 90.48%

15 81.29% 87.41% 85.48% 81.09% 89.70% 86.05% 82.10% 88.47% 90.23%

17 84.51% 88.19% 86.67% 80.61% 88.74% 85.54% 82.10% 90.21% 90.22%

(b) Relief algorithm

kNN Naive Bayes Random Forest
Wsize Wsize Wsize

Nbins 13 15 17 13 15 17 13 15 17

7 81.14% 82.30% 85.73% 83.10% 82.34% 85.49% 81.88% 84.74% 86.00%

9 81.60% 82.04% 89.22% 84.30% 82.08% 86.29% 82.82% 82.54% 86.02%

11 81.65% 81.05% 87.48% 84.55% 82.08% 86.24% 82.64% 84.00% 86.53%

13 81.42% 85.76% 88.23% 83.84% 84.81% 87.01% 84.57% 85.51% 86.77%

15 83.32% 84.79% 84.29% 84.33% 82.85% 84.54% 84.80% 85.77% 83.83%

17 85.82% 85.78% 88.48% 85.53% 84.34% 87.04% 84.84% 85.54% 85.07%

CFS algorithm, both with kNN and Random Forest classifiers for Wsize = 15.
Generally, the best accuracy is found for Wsize = 15, while Nbins is a parameter
with more discrepancy. Normally, extreme values on this parameter decrease the
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overall accuracy of the classifier. The best results are obtained for the 4 class
approach, both with kNN and Random Forest classifiers, reaching an accuracy
of 93.89% when using CFS algorithm for feature selection and Random For-
est. Random Forest algorithm obtains a slightly higher accuracy than the kNN
method. 28 features were selected for this configuration.

Table 2: 4-class classification accuracy results

(a) CFS algorithm

kNN Naive Bayes Random Forest
Wsize Wsize Wsize

Nbins 13 15 17 13 15 17 13 15 17

7 83.85% 89.77% 88.08% 86.60% 86.08% 88.77% 88.53% 92.47% 88.55%

9 85.34% 91.20% 88.32% 86.84% 89.23% 90.75% 85.86% 93.67% 87.57%

11 85.33% 92.17% 88.79% 88.11% 88.04% 90.23% 86.85% 91.96% 89.48%

13 85.37% 89.24% 88.05% 85.93% 88.05% 89.53% 88.09% 93.89% 89.25%

15 88.31% 91.45% 88.08% 85.64% 87.51% 88.02% 87.34% 91.71% 89.00%

17 86.14% 91.34% 88.28% 86.61% 87.55% 89.98% 86.63% 91.94% 89.24%

(b) Relief algorithm

kNN Naive Bayes Random Forest
Wsize Wsize Wsize

Nbins 13 15 17 13 15 17 13 15 17

7 88.29% 86.54% 87.04% 86.58% 85.11% 83.88% 92.19% 90.43% 89.22%

9 87.55% 86.55% 86.09% 85.61% 83.38% 82.68% 90.24% 88.49% 88.74%

11 87.56% 87.81% 87.06% 87.04% 83.66% 83.17% 88.78% 87.29% 88.73%

13 90.98% 87.54% 88.32% 85.87% 84.65% 82.45% 89.97% 88.02% 89.48%

15 89.02% 87.03% 87.28% 87.80% 84.88% 83.16% 90.21% 88.97% 87.29%

17 88.79% 85.83% 85.86% 86.57% 84.15% 84.13% 89.48% 88.73% 89.97%

Regarding feature selection, we present the results using the 4-class approxi-
mation. The analysis and conclusions are analogous to the other 2-class approx-
imation. About the selected features, Fig. 3 shows the ones provided by each
selector in their best configuration, for a total of 28, grouped by type. The most
relevant features that were provided by both strategies belong to the window fea-
tures. More precisely, information about the first bins on the third sub-window
(this is, the central sub-window, which is the one where the ERM should be
located) were included in the first positions. As we can observe, these features
are selected because the core of the class differentiation is done by the use of
information of the center of the window (luminosity values indicate presence or
absence of ERM). In a lower degree, it is also relevant the information about the
fourth sub-window (the second from the bottom) and the fifth sub-window (the
bottom one). This is congruent with the theory that the information under the
central sub-window contributes to the differentiation between floating membrane
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and membrane classes, the first having lower intensity values on those windows
than the membrane class. The rest of the selected features are mostly HOG
values and a few features from the LBP group with the CFS selection, as they
provide higher information about intensity and patterns on the ROI and con-
tribute to improve the discrimination between the ERM presence or absence. On
the contrary, this information is better represented by mainly GLCM features
using the Relief-F selected subset.

Window Intensity GLIH GLCM HOG LBP
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Fig. 3: Number of selected features, of a total of 28, for each feature selector
method

Figure 4 shows the accuracy of the classification stage with the most accurate
configuration (Random Forest with Wsize = 15 and Wsize = 13) when using
progressive larger subsets of features with both selector strategies. In almost all
situations, CFS selector performs better than the Relief-F selector.

Figure 5 presents a representative classification result of an OCT image using
the most accurate configuration. As we can see, most of the points are classified
correctly and the ERM presence is detected in almost all the ILM surface. Dif-
ferentiation between the ERM with or without separation from the ILM is also
done correctly.

In contrast, Fig. 6 show a common incorrect classification on the right points
of the image. In this case, the Snake algorithm cannot be locally adjusted to the
lower zone of the retina, being penalized the final adjustment and the points get
detected at background positions.



Feature definition and selection for ERM characterization in OCT images 9

1 5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of features

A
cc

u
ra

cy

CFS

Relief-F

Fig. 4: Evolution of accuracy using Random Forest classifier and progressive
larger feature subsets with the analyzed feature selectors

Fig. 5: Example of 4-class classification of an OCT image. Bright points represent
the ERM on the ILM layer. Medium-intensity points symbolize ERM separated
from the retina. Dark points show absence of epiretinal membrane

4 Conclusions

The accurate identification of the presence of the ERM is an important issue
in the retinal analysis as its early detection improves the chances of success of
ERM removal surgery, avoiding the complications that its presence derive.
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Fig. 6: Example of a region incorrectly identified and classified. Medium-intensity
points on the right side symbolize background points, not contributing to the
task at hand

In this work, we proposed an automatic method to detect the ERM in OCT
images. The method is fully automatic, instead of the few previous approaches
that are based on manual detections by the specialist. Furthermore, we have
achieved a higher level of tolerance to errors by using a deformable model to de-
tect the ROI compared to the detection of this region based on manual markers.

The method firstly uses a deformable model (Snake) to initially identify the
ILM retinal layer, ROI where the ERM is originated. Then, a complete and
heterogeneous set of features were measured, based on the properties of the
ERM. Representative feature selectors as CFS and Relief-F were used with the
entire feature set to identify those that provide the highest discriminative power.

We defined a set of 223-263 features that were then filtered by a process of
feature selection, obtaining 28 features with the method that provided the most
accuracy afterwards (CFS). Different suitable classifiers were tested, for a total of
216 different configurations. For testing, we used a set of 120 samples, distributed
equally between the different classes in both two and four class approximations.

The results were highly successful, obtaining an accuracy of 93.89% for the
CFS algorithm, with a Random Forest classifier with Wsize of 15 and a Nbins
of 13.

For further works, an increase in the number of samples for training is planned
in order to improve even further the accuracy of the classifiers. Furthermore,
wrapper-based feature selection methods will be tested as well as a larger vari-
ability of classifiers.
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