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Abstract. Optical Coherence Tomography (OCT) is, nowadays, one of
the most referred ophthalmological imaging techniques. OCT imaging
offers a window to the eye fundus in a non-invasive way, permitting the
inspection of the retinal layers in a cross sectional visualization. For that
reason, OCT images are frequently used in the analysis of relevant dis-
eases such as hypertension or diabetes. Among other pathological struc-
tures, a correct identification of cystoid regions is a crucial task to achieve
an adequate clinical analysis and characterization, as in the case of the
analysis of the exudative macular disease.

This paper proposes a new methodology for the automatic identification
of intraretinal cystoid fluid regions in OCT images. Firstly, the method
identifies the Inner Limitant Membrane (ILM) and Retinal Pigment Ep-
ithelium (RPE) layers that delimit the region of interest where the in-
traretinal cystoid regions are placed. Inside these limits, the method
analyzes windows of a given size and determine the hypothetical pres-
ence of cysts. For that purpose, a large and heterogeneous set of features
were defined to characterize the analyzed regions including intensity and
texture-based features. These features serve as input for representative
classifiers that were included in the analysis.

The proposed methodology was tested using a set of 50 OCT images. 502
and 539 samples of regions with and without the presence of cysts were
selected from the images, respectively. The best results were provided by
the LDC classifier that, using a window size of 61 × 61 and 40 features,
achieved satisfactory results with an accuracy of 0.9461.

Keywords: Computer-aided diagnosis, retinal imaging, Optical Coherence To-
mography, intraretinal cystoid regions

1 Introduction and previous work

The analysis of the retina is crucial for the diagnosis of different relevant patholo-
gies. For that reason, the identification of the main retinal structures as the optic
disc [1] or the vascular tree [2] can provide evidences for an appropriate charac-
terization of diseases like hypertension or diabetes. Among the different image
modalities, Optical Coherence Tomography (OCT) have spread their use over
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the years as they offer a cross-sectional view of the retina and sub-retinal lay-
ers with microscopic resolution in a non-invasive and contactless way, providing
a more detailed source of information than other modalities such as retinogra-
phies. This more detailed set of information about the retinal layers can help the
specialists to perform more accurate analysis of relevant diseases as age-related
macular degeneration (AMD) or glaucoma [3].

AMD can lead to exudative macular disease, one of the main causes of blind-
ness in developed countries. The intraretinal cystoid fluid is directly related
with exudative macular disease, originated by abnormal vasculature growing
that leaks fluid, deriving in a progressive retinal architecture degeneration and
the corresponding vision loss (Fig. 1). For that reason, an appropriate identifica-
tion and characterization of the cystoid regions is a crucial task as it represents a
measurement of the disease severity, helping clinicians to produce more accurate
diagnosis and treatments [4].

Fig. 1. Example of OCT image with the presence of intraretinal cystoid regions.

In recent years, some works have been proposed facing the issue of cyst ex-
traction. The proposals frequently used an initial denoising stage to minimize
the impact of the typical speckle noise that normally appears in OCT imag-
ing. Most of the approaches addressed directly the problem by the segmentation
of cyst candidates followed by a morphological and intensity analysis and/or a
post-processing stage to reduce the false positive (FP) detections and return the
final results. Following this strategy, Wilkins et al. [5] faced the cystoid macular
edema identification by an initial thresholding of dark structures to identify the
cyst candidate contours. They posteriorly applied a couple of rules to reduce
the FP detections and produce the final identifications. Roychowdhury et al.
[6] also segments dark regions in a bright neighborhood after identifying the 6
main retinal layers. This cyst candidate set is posteriorly analyzed in terms of
solidity, mean and maximum intensities to produce the final cyst identifications.
In the case of Wieclawek et al. [7], a combination of image processing tech-
niques were applied to extract the candidate segmentations. Redundant regions
are posteriorly removed to produce the final cyst extractions. González et al. [8]
used watershed to produce the initial candidates segmentation. The extracted re-
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gions are posteriorly grouped by connectivity and similarity in terms of intensity.
Given the large amount of FPs that this step produces, the method posteriorly
filters the candidates using discarding rules combined with a learning strategy
to reduce the FPs set. Esmaeili et al. [9] used a K-SVD dictionary learning in
curvelet transform to help with the speckle noise reduction and facilitate the
posterior thresholding strategy that the authors proposed. Miss-extractions are
posteriorly removed in a post-processing stage. A combined strategy for cysts
segmentation was proposed by Wang et al. [10], using a fuzzy level set that in-
tegrates fuzzy C-Means and level sets. The method extracts the fluid regions
by intensity, thanks to the fuzzy C-Means, with a adequate contour segmenta-
tion, incorporated by the level set method. The work of Xu et al. [11] defined a
layer-dependent stratified sampling to produce symptomatic exudate-associated
derangements segmentations using voxel classification. In the case of Lang et al.
[12] a pixel classification system was also designed, but limited to the domain of
micro-cystic segmentations.

This strategy, that was followed by most of the approaches, presents as main
limitation the high dependency in the candidate segmentation stage. A poor
segmentation technique may produce initial large candidate sets, hardening the
posterior refinement to remove the detected FPs. Large sets of FPs can pro-
voke the necessity of strong reduction stages that may carry the elimination of
real cysts. Additionally, incorrect cyst candidate segmentations may also alter
the candidate characteristics, deriving in confusions in the posterior morpholog-
ical/intensity analysis, penalizing the final cyst identification results.

(a) (b) (c) (d)

Fig. 2. Examples of cysts with different levels of complexity.

Many times, this segmentation dependency can be overcome as fluid regions
and cyst contours can be acceptably obtained, as illustrated with the examples of
Fig. 2, 1st row. However, many other times, the cyst contours cannot be clearly
identified as there is no enough intensity contrast in the entire cyst region (Fig.
2, second row, (a) & (b)). Other times, cysts appear in nearby groups, making
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extremely complicated the identification and delimitation of all of them, even
for the human eye of the experts (Fig. 2, second row, (c) & (d)).

In this work, we propose a new methodology that faces the issue of cyst iden-
tification with a novel strategy. Instead of classical cyst candidate segmentations
and FPs removal, we identify intraretinal cystoid regions, that is, regions of the
OCT images that contain cysts. The method uses a window size for the analysis,
extracts a set of image characteristics and determines the presence of cysts inside
the analyzed regions.

2 Methodology

The proposed system firstly identify the retinal layer limits that contain the
intraretinal cystoid regions. Then, inside this region of interest, the method
analyze windows of a defined size to identify the cyst presence including: feature
measurement, feature selection and classification.

2.1 Retinal layer segmentation

As cysts appear inside the retinal layers, we can reduce the search space identi-
fying this region of the OCT images. The region of interest is delimited between
the Inner Limitant Membrane (ILM), first intraretinal layer, and the Retinal
Pigment Epithelium (RPE), formed by pigmented cells at the external part of
the retina.

For that purpose, we used a method based on the work of Chiu et al. [13]. This
method uses graph theory to represent each image as a graph of nodes. Then,
the optimum connected paths from both sides of the image are obtained us-
ing dynamic programming. In this case, dark-to-light gradient images are firstly
calculated as these gradients identify the limits of adjacent layers. These gra-
dients are used to generate weights for the layer segmentations. The minimum
weighted paths are found by the Dijkstra’s algorithm [14] to progressively iden-
tify the main layers of the retina. Despite this approach was designed to find
eight different layers, we aimed in this work for the ILM and RPE layers, as they
constitute the limits of the retinal layers, sufficient for the delimitation of the
intraretinal cysts search space. Fig. 3 shows an example of ILM and RPE layer
identification for a particular OCT image.

2.2 Feature measurement

In order to characterize each analyzed region and identify the presence of cysts,
a complete set of 189 features was defined. This feature set includes intensity
and texture-based properties that help to maximize the discrimination power of
cysts identification with respect to other structures and patterns of the retina.

Intensity statistics We measured 13 global characteristics of the analyzed re-
gion, including: maximum, minimum, mean, median, standard deviation, vari-
ance, 25th and 75th percentile, skewness and maximum likelihood estimates for
a normal distribution.
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Fig. 3. Example of ILM and RPE retinal layer segmentation.

Gray-level Intensity Histogram (GLIH) Using the intensity histogram of
the analyzed region, the method derives the following measurements: obliquity,
kurtosis, energy and entropy.

Eigenvalues Eigenvalues can be useful to capture regions with intensity changes
in different directions, as happens with the presence of cysts. We calculated the
eigenvalues of the analyzed region and selected the 4 highest (λmaxi

) and the 2
lowest (λmini) values. Additionally, several ratios among them were also included
in the feature set.

Histogram of Oriented Gradients (HOG) The orientation of the gradients
can be useful in this issue as cysts typically present closed/oval contours. Instead
of that, non-cystoid regions present a more uniform shape, with lower levels of
gradients and, if present, they usually appear with a parallel horizontal pattern
(due to the presence of the retinal layers) or vertical and tubular patterns (due
to the shadows of vessels or other structures). HOG features [15] can help to
capture these patterns, presenting some invariance to scale, rotation or transla-
tion changes, properties also useful in this issue. 9 HOG windows per bound box
and 9 histogram bins were analyzed, adding a total of 81 characteristics.

Local binary patterns (LBP) LBPs [16] can help to identify local patterns
that may appear with and without the presence of cysts. LBPs presents a low
complexity and a low sensitivity to changes in illumination, common conditions
in OCT imaging due to the variability of capture machines and configuration
parameters. A wide range was analyzed, calculating a total of 64 features that
were added to the feature set.

Gray-Level Co-Ocurrence Matrix (GLCM) These second order statistics
measure the simultaneous ocurrence of gray levels in pairs of pixels, separated by
a displacement vector. Based on the proposal of Haralick et al. [17], we performed
the analysis at a distance of 2 pixels and 4 directions: 0◦, 45◦, 90◦ and 135◦,
obtaining a total of 16 features.
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2.3 Feature selection and classification

Next step involves feature selection to avoid irrelevant and redundant charac-
teristics by selecting the most useful ones and, therefore, facilitating the classifi-
cation stage. Sequential forward selection using, as criterion, inter-intra feature
distance was used.

Finally, representative classifiers, frequently used in medical imaging solu-
tions, were trained and tested using the extracted feature set: Linear Discrimi-
nant Analysis (LDA), k−nearest neighbors (kNN) and Support Vector Machines
(SVM) were analyzed. In the case of kNN, 3 configurations were tested using
k = [3, 5, 7] whereas 3 configurations were also defined for the case of the SVM,
using an exponential kernel with values of θ = [1, 2, 3]:

k(x, y) = exp

(
−‖ x− y ‖

θ

)
(1)

The classification stage was done using a constructed dataset that was ran-
domly divided in two smaller datasets with the same size (each one with the 50%
of all the samples). The first dataset is used for the training stage whereas the
second one is reserved for testing the trained classifiers. This process of dataset
random division, training and testing was repeated 50 times, calculating the
mean accuracy in order to obtain a global performance measurement.

3 Results and discussion

The proposed method was validated using a set of 50 OCT histological im-
ages. These images were captured by a confocal scanning laser ophtalmoscope, a
CIRRUSTMHD-OCT–Carl Zeiss Meditec. The images correspond to scans cen-
tered in the macula, from both left and right eyes of different patients, and with
resolutions that vary from 924×616 to 1200×800. Several intensity and contrast
configurations are also present in the image set. No preprocessing was applied
to the images.

The images were labeled by an expert clinician, identifying the location of any
present cyst. Using this information, we constructed a dataset by the selection of
502 and 539 samples of regions with and without the presence of cysts, using a
window size of 61×61. As said, this dataset was randomly divided in two smaller
datasets with the same size, one for training and other for testing, using 50
repetitions for each configuration to obtain, for each case, a global measurement
of its performance.

Regarding the selected features, the majority of them were taken from HOG
and also from LBP feature sets as they include a high potential in the differen-
tiation of common layer patterns and other structures with respect to the cyst
presence. Global intensity statistics, as minimum, were also selected in the first
positions as the cyst presence typically implies a depression in intensity values
and changes in intensity profiles of the analyzed window.

Table 1 presents the accuracy results that were achieved by the different
classifier configurations using progressive larger feature sets. A maximum of 50
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Table 1. Accuracy results that were obtained with the tested classifiers using different
feature set sizes.

N. Features 1 5 10 30 50

LDC 0.7747 0.8721 0.9016 0.9394 0.9456

3-kNN 0.7140 0.8568 0.8870 0.9088 0.9110

5-kNN 0.7348 0.8626 0.8986 0.9099 0.9142

7-kNN 0.7453 0.8617 0.8920 0.9067 0.9049

1-SVM 0.7692 0.8698 0.9043 0.9270 0.9262

2-SVM 0.7742 0.8652 0.9014 0.9196 0.9219

3-SVM 0.7747 0.8638 0.8986 0.9157 0.9165

features was set as no further improvements were obtained from that point,
achieving the best performance of each case with smaller feature sets, as Table 2
details. Generally, the obtained accuracy results in all the cases are significantly
high, being the best results obtained with the LDC classifier and 40 features,
returning a performance of 0.9461. In the case of the SVM, it offers better results
than the kNN, being the lowest value the case of the 7-kNN, with a performance
of 0.9099. The results of the first degree SVM are significantly high, 0.9299, but
at a distance of the LDC classifier.

Table 2. Best accuracy obtained by each tested classifier, indicating the number of
needed features.

Classifier LDC 3-kNN 5-kNN 7-kNN 1-SVM 2-SVM 3-SVM

N. Features 40 42 44 43 44 44 28

Accuracy 0.9461 0.9136 0.9151 0.9099 0.9299 0.9240 0.9202

Fig. 4 shows some examples of cystoid and non-cystoid regions from the
testing dataset that were correctly classified. Regarding non-cystoid regions, the
method is capable to identify the tissue and layer patterns with different levels
of intensity and contrast (Fig. 4(a) & (b)) but also to discard dark patterns that
are derived from shadows of vessels and other artifacts (Fig. 4(a),(c) & (d)). In
the case of the cystoid regions, we can see that the method is capable to detect
the simple cases (Fig. 4(a)) where cyst regions and contours are clearly delimited
but also other complex cases of cysts or groups with low contrast and imperfect
contour definition (Fig. 4(b),(c) & (d)).

Fig. 5 includes some representative incorrect classifications. Many misclassi-
fied cystoid regions are omitted due to extremely poor contrast and too fuzzy
contours (Fig. 5(a) & (b)) being extremely complicated to detect its presence by
the system. The common mistakes in non-cystoid regions are due to the presence
of other structures (Fig. 5(c) & (d)) that create artificial high-to-low intensity
regions that may be confused with the typical patterns that appear with cysts.

We also tested the performance of the system using progressive window sizes.
In the dataset construction, we built the corresponding datasets using the same
central points in all the cases but using progressive lower window sizes. Table
3 details the best performances that were achieved with each window size and
the best configurations of the SVM, KNN and LDC classifiers. As we can see,
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(a) (b) (c) (d)

Fig. 4. Examples of testing samples correctly classified. 1st row, non-cystoid regions.
2nd row, cystoid regions.

the performance is progressively penalized with smaller windows, as they do
not offer the same information to identify the presence of cysts in the samples,
specially in the cases of windows that include large cysts. The final window size
should be selected as a balance between detail in the detections and accuracy in
the performance.

(a) (b) (c) (d)

Fig. 5. Examples of testing samples incorrectly classified. (a) & (b), cystoid regions
classified as non-cystoid. (c) & (d), non-cystoid regions classified as cystoid.

Table 3. Best accuracy obtained by each tested classifier using different window sizes.

Window size 11×11 15×15 21×21 31×31 61×61

LDC 0.8599 0.8906 0.9118 0.9339 0.9461

5-kNN 0.8450 0.8581 0.8872 0.9081 0.9151

1-SVM 0.8654 0.8915 0.9103 0.9247 0.9299
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4 Conclusions

The extraction and analysis of intraretinal cystoid fluid regions is a relevant is-
sue for the diagnosis and treatment of relevant pathologies as can represent the
exudative macular disease, one of the main causes of blindness in developed coun-
tries. Most of the existing approaches faced this issue by an initial segmentation
of cyst candidates, segmentations that are posteriorly analyzed using intensity or
morphological properties to discard wrong detections. These strategies present a
high dependency in the performance of the candidates segmentation stage, given
the complex conditions that are frequently present in OCT images. Imperfect or
wrong segmentations may carry, in many cases, the removal of existing cysts or
the preservation of FPs by the posterior analysis and refinement, penalizing the
performance of any proposed system.

In this work, we propose a novel methodology for the identification of in-
traretinal cystoid fluid regions in OCT images. We face the issue with a different
strategy, by the analysis of regions inside the retinal layers and the determina-
tion of the presence of cysts. Hence, the dependency of the segmentation stage
is omitted, detecting directly the cystoid regions inside the OCT images.

The system defined a set of 189 features, being selected the ones with higher
power of discrimination. A set of representative classifiers were studied, including
3 SVM and 3 kNN configurations as well as the LDC classifier. The method was
validated with a set of 1041 samples, including 502 and 539 samples of cystoid
and non-cystoid regions, respectively. Satisfactory results were obtained, being
the best performance achieved by the LDC classifier that, using 40 features and
a window size of 61× 61, reported an accuracy of 0.9461.

As future work, a further analysis and inclusion of suitable characteristics
should be done as well as the use of wrapped based feature selection methods.
Moreover, a wider range of classifiers, like artificial neural networks, should be
tested in the classification stage.
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