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A B S T R A C T   

This study addresses the capabilities of genetic programming to predict the behaviour of cement-based mixtures 
by focusing on the influence of quaternary binders (incorporating metakaolin, biomass ash and granite powder as 
novel powder materials) on the rheological properties of self-compacting mixtures, including spread diameter in 
mini-cone test and time to flow in mini-funnel test. Using a previous dataset, GP techniques are applied to obtain 
predicted models and to compare them with those developed throughout analysis of variance. The results 
demonstrate that the equations obtained by the GP technique showed the best statistical indices for the analysed 
properties. Afterwards, a parametric analysis was performed to analyse the influence of the composition of 
quaternary binders on the fresh behaviour of mortar mixtures. The parametric analysis indicated that changes in 
the binder composition that increased granite powder content damage the fresh behaviour of the mortars (the 
funnel time increases, and the spread diameter decreases), being this negative effect more significant when the 
water content is low, and especially noteworthy in the Tfunnel time. It is concluded that genetic programming 
and design of experiments are powerful tools that can be used to analyse the influence of new raw materials in 
different mortar properties.   

1. Introduction and objectives 

The cement production industry, and consequently the building in-
dustry, contributes a significant percentage of the greenhouse gases 
emitted into the atmosphere [1–3]. Moreover, the requirement for 
cement is not likely to decrease in the short term as cement demand is 
forecast to reach 6 billion tonnes per year by 2060 [4]. Alternative 
materials are therefore essential to partially replace cement, thus 
contributing to the development of more sustainable and environmen-
tally friendly materials. This is the case of sup. lementary cementitious 
materials (SCMs), such as silica fume (SF), fly ash (FA), and ground 
granulated blast-furnace slag (GGBS), which are widely used. There is 
therefore wide information on both their fresh [5,6] and hardened 
performance [7–9]. Rojo et al. [10] assessed the effect of the solid vol-
ume fraction on both concrete rheology for binary and ternary mixtures 
by replacing cement with metakaolin (MK) and limestone filler (LF) at 
four paste volumes. Solomon et al. [11] analysed the behaviour of FA, SF 

and MK at high temperatures to construct by using fire-resistant con-
crete, thus improving occupant safety in the event of a fire. AL-Radi et al 
[12] also carried out high temperature studies on self-compacting con-
cretes containing SF, including in the analysis the reinforcement of both 
metallic and polypropylene fibres. However, it is important to explore 
new opportunities derived from industrial waste that can provide new 
routes towards a more sustainable building industry [13,14]. 

To select these by-products, a wide knowledge about the material 
and an extensive experimental campaign are required to test their 
suitability, effects and interactions in mixtures in both the short and the 
long term. This is time-consuming and resource-consuming. Jhatial et al. 
[15] reviewed several emerging cementitious materials and concluded 
that the lack of studies on the effects of incorporating SCMs in concrete 
in the short and long term is one of the reasons why SCMs are not used at 
an industrial scale. Therefore, further research studies on mechanical 
and durability properties are required to propose the implementation of 
these emerging SCMs in industrial applications. 

* Corresponding author. 
E-mail addresses: gemma.rojo@udc.es (G. Rojo-López), bfonteboa@udc.es (B. González-Fonteboa), juan.luis.perez@udc.es (J. Luis Pérez-Ordóñez), fmartinez@ 
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Knowledge extraction techniques can be used in construction in-
dustry research to reduce time and resource consumption of extensive 
experimental campaigns. These techniques can range from simple linear 
regression models to sophisticated machine learning (ML) techniques. 
All these methods have their benefits and drawbacks, e.g. regression 
models are simple [16], but a large database is necessary to ensure that 
the confidence of the models is not reduced, so many experimental re-
sults are required. As for ML, different techniques with their advantages 
and disadvantages can be used. 

For example, the artificial neural network (ANN) is a common 
method to assess the mechanical properties of concrete to obtain a 
predictive model [3,4], but the model works as a black box, i.e. solutions 
are obtained, but it is not easy to obtain the model in a mathematical 
expression. 

Another ML method that effectively designs and solves non-linear 
regression problems is the support vector machine (SVM). This 
method has shown strong generalization abilities and is useful to obtain 
better global optimum results [16,17]. The response parameter can also 
be predicted using tree-like structures by using ensemble learning 
techniques, such as decision tree (DT) and random forest (RF) tech-
niques. While RF randomly selects the important parameters and builds 
multiple ensemble learning trees for predictions, DT uses the entire 
dataset with the variables of interest. An accurate estimate is then ob-
tained by estimating the averaged values of these forecasts and by 
setting the result with the majority of votes [18]. Both SVM and RF 
techniques do not provide a straightforward mathematical equation, so 
they are used only as predictors. Researchers therefore forecast more 
accurate outcomes by using the SVM and RF algorithms’ robust struc-
tural designs. 

Likewise, they are increasingly used in different fields. In the field of 
civil engineering and building, using methods that provide mathemat-
ical equations as a result is essential. For this reason, the genetic pro-
gramming (GP) technique is excellent because it provides a prediction 
equation to use in the future on unobserved data. This means that these 
equations can be used for the design of different mixtures or for 
parameter settings without needing the knowledge associated with the 
application of machine learning techniques [19]. In fact, Ma et al. [20] 
in their study of a backbone curve model of reinforced concrete walls 
show that the use of GP provides explicit equations that are easily 
interpretable and easy to use by researchers and engineers. Likewise, the 
GP method provides a mathematical equation to obtain an accurate 
result, thus modelling complex applications in civil engineering in 
recent years [1,20–22]. 

In the literature, various ML techniques have been used in the field of 
civil engineering. Many of them are used to analyse the concrete hard-
ened state [23]. However, with the increasing development of new 
concretes where rheology plays a fundamental role, the employment of 
these techniques in the field of the fresh state has also grown [23–28]. 
Nazar et at. [23] analyse the concrete fresh properties with a database 
obtained from previous studies via decision tree and bagging regressor. 
The same authors predict explicit equations for yield stress and plastic 
viscosity [27]. In both these works, the influence of some mixing pa-
rameters (cement content, water content, sand…) was analysed, being, 
however, the cement type the same in all mixes. Aziminezhad et al. [26] 
analyses the rheological properties for ternary binders using response 
surface method (RSM) to assess the influence of water to cement ratio 
and superplasticiser dosage when salg and silica fume are added to the 
mixtures. Other works [24,25] analyse the presence of blended cements 
(with fly ash, silica fume, and nanoclay) and how the variation in the 
design parameters affect the fresh properties. In these works, however, 
there is no explicit equation that can be used to compare the results. 

This work belongs to a wide research campaign that aims to achieve 
the integral design of sustainable concretes. Within this goal, in this 
work, it was decided to act on concrete mix design introducing the use of 
recycled sup. lementary cementitious materials replacing clinker and 
improving the efficiency of different aspects of the production process 

(cost reduction, shortening of construction timeframes or safety im-
provements). The combination of these aspects led to the design of 
sustainable self-compacting concretes with blended cements. 

Furthermore, properly designed and placed self-compacting concrete 
will show similar properties regarding its hardened state and durability 
as its homologue vibrated concrete but will differ in its behaviour in 
fresh state. Therefore, the main objective of this work is the study and 
prediction of the fresh state behaviour of sustainable self-compacting 
concretes introducing sup. lementary cementitious materials in their 
mix design. 

In fresh behaviour concrete can be considered as a suspension where 
the mortar is the solution, and the coarse aggregates are the suspended 
particles. In this work, mixes have been designed so that the solid vol-
ume fraction (the coarse aggregate) does not vary with the aim of ana-
lysing the influence of the different sup. lementary cementitious 
materials used to replace clinker. In this situation, the fresh behaviour of 
the concretes is going to be controlled by the mortar phase, that is why 
the study is focused on analysing the fresh behaviour of self-compacting 
mortars. 

The main objective of this work is then the assessment of the influ-
ence of various quaternary binders in the fresh state of self-compacting 
mortars. The binders designed in this study are composed of cement and 
three novel SCMs (metakaolin, biomass ash and granite powder) that 
have not been widely used as fillers, which justifies the novelty of 
analysing their effect on the mortar fresh properties using different tools. 
In a previous work a dataset was developed and regression analysis 
using ANOVA was employed [29]. In this work, using the same dataset, 
to better analyse and to predict the influence of the novel sup. lementary 
cementitious materials in the fresh behaviour of the mortar mixes it was 
decided to employ genetic programming technique and compare the 
results with the previous analysis. This technique, on opposition to other 
tools as ANN, has the advantage of providing with explicit equations 
where the influence of the main variables affecting the fresh properties 
can be assessed. These equations can be easily used by the stakeholders, 
which, undoubtedly will promote the employment of the new concretes 
in the construction field. 

The properties studied are as follows: spread diameter in mini-cone 
test and flow time in mini-funnel test. As for mini-cone and mini- 
funnel results, the objective was both to apply GP techniques to the 
dataset and to compare the models obtained with the regression analysis 
[29]. For this purpose, statistical parameters were studied to obtain 
models that improve the predictions. Moreover, a parametric analysis 
was carried out to understand how the different parameters controlling 
the content of the novel sup. lementary cementitious materials affect the 
fresh state properties of the mortars. 

2. Materials and mixes 

Four powder materials were used: Portland cement labelled as CEM I 
52.5 N-SR5 (CEM), biomass ash (BA), granite powder (GP), and meta-
kaolin (MK) as SCMs. Cement and MK are standard commercial mate-
rials from Spanish companies. The BA and GP are wastes that were 
collected directly from the manufacturing plants where they are pro-
duced, a timber board manufacturing plant in the case of BA and a 
granite quarry in the case of GP (both situated in Spain). Fig. 1 includes 
images of these materials under the scanning electron microscope 
(SEM). 

Their physical and chemical properties are included in Table 1, and 
the particle size distribution (PSD) is shown in Fig. 2. MK is a pozzolanic 
material [30] that can be widely used to partially replace cement. GP is 
an industrial waste material obtained by cutting granite rocks, and the 
BA used in this work is also an industrial waste obtained from wood 
industry [29]. 

Table 1 includes the chemical composition obtained by the X-Ray- 
Fluorescence technique and the specific density by helium pycnometry. 
The particle density (NPSD) calculated by using the PDS model described 
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in the literature [31], so it was assumed that particles are spherical in 
shape. 

The values of the dry packing density measured using the method 
described by Wong et al. [32] are also included. Both properties were 
used to understand the fresh behaviour of mixtures. Finally, the 
pozzolanic activity was determined by modified Chappelle test accord-
ing to French standard NF P18-513 [33]. 

Fig. 2 includes the gradation of all the powder materials measured by 

laser diffraction. Moreover, cement and MK showed a similar fineness, 
while GP and BA were finer and coarser, respectively, than the cement. 

To control workability, tap water and a polycarboxylate-based 
superplasticizer were used in the mix design. Finally, a standard sand 
was used in the mortar mixtures according to EN 196-1 [34]. 

Mortar mixtures came from a previous study in which the experi-
mental programme has been defined according to a Central Composite 
Design plan with a complete 24 factorial plan, corresponding to four 
factors and two levels per factor. Furthermore, taking into account that 
the investigated properties were not expected to change linearly within 
the experimental region, axial points (CCi) and centre points (Ci) were 
added to the factorial plan [35]. The following independent variables 
were selected: water to powder volume ratio (VW/VP), water to cement 
weight ratio (w/c), superplasticizer to powder weight ratio (Sp/p), and 
BA to cement weight ratio (ash/c). The effects of these variables were 
evaluated at five different levels by defining the range of variation 
shown in Table 2. Further details on the selection of these ranges can be 
found in [29,35]. Fine aggregate content was constant (1249.25 kg/m3), 
leading to a sand to mortar volume ratio (Vs/Vm) of 0.475. In addition, a 
fixed MK to cement weight ratio was defined (MK/c = 0.20). According 
to these parameters, 25 different mortar mixtures were designed 
(Table 3). 

Fig. 1. SEM images: a) CEM. b) BA. c) GP. d) MK.  

Table 1 
Physical and chemical properties of powder materials.  

% by mass CEM BA GP MK 

SiO2 18.9 40.0 70.4 58.0 
Al2O3 6.3 16.6 15.2 36.8 
Fe2O3 2.7 5.5 2.0 1.2 
CaO 59.9 10.2 1.0 0.075 
K2O 1.9 6.9 5.5 2.1 
Na2O  1.6 3.7  
MgO 1.6 2.8 0.35 0.18 
SO3 3.5 2.4  0.058 
LOI 4.3 2.7 1.0 0.7 
Specific density (g/cm3) 3.04 2.68 2.77 2.55 
Particle density – NPSD [31] 23 19 40 1 
Packing density [32] 0.48 0.45 0.39 0.30 
Pozzolanic activity (mg of Ca(OH)2)[33]  946 48 946  
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3. Testing protocols 

According to EN 196E1, all mortar mixtures were produced in 1.6 l 
batches and mixed in a mixer at a low constant speed (140±5 rpm), 
following the mixing procedure described in Fig. 3. Fig. 4. 

The powder materials and 80% of mixing water were mixed for one 

minute at a low constant speed (140±5 rpm). The mixer was stopped for 
a short time to remove the material adhered to the walls of the container, 
and then the rotation was started for another minute. At the end of this 
period, the superplasticiser and the remaining water were added. The 
mixing continued for another 2 min, the mortar was left to rest for 2 min, 
and finally it was mixed again for an additional period of 2 min using, in 
this case, a high speed (285±10 rpm). More information about the 
mixing protocol can be seen in a previous paper [29]. 

Afterwards, a wide experimental campaign was conducted to mea-
sure the fresh and hardened state of mortars. However, only the results 
from mini-slump (Dflow-mm) and mini-funnel (Tfunnel-s) were used. 
Both tests were performed just after the mixing. The value used in this 
study was the average of both measurements. 

4. Genetic programming (GP) 

The results of the rheological behaviour obtained in the experimental 
programme were analysed using the GP technique. It consisted of a 
subset of solution search techniques based on evolutionary computation. 
An analogy was therefore established between the set of solutions to a 
given problem and the set of individuals in a natural population that 
adapted to the environment (problem) and similarly to biology natural 
selection. The solution to the problem was the best-adapted individual. 
The information of each solution was encoded by means of a tree 
structure. Two types of nodes were distinguished in this coding. The first 
type was the non-terminal nodes or functions where the operators of the 
algorithm (subtraction, addition, etc.) were housed. They were charac-
terised by always having one or more children. The second type was 
terminal nodes or leaves of the tree where the fixed values fixed and the 
variables previously defined were located. These nodes had no children 
[21]. 

In a broader application, GP was useful to elaborate mathematical 
expressions. Its way of encoding allows them to be easily represented, so 
it is widely used in engineering fields. Useful results were obtained, and 
some expressions were achieved, which were better than the existing 
ones [21]. 

A database is required to use GP. In this case, the database was based 
on the results from the rheological and empirical tests conducted with 
the designed mixtures. After obtaining the dataset, it was divided into 
two subsets: one for training, and one for testing. 

Fig. 2. Grading curves of the powder materials.  

Table 2 
Range of the independent variables used in the mortar mix design.  

Independent variables −2 −1 0 −1 −2  

VW/VP  0.75  0.8  0.85  0.9  0.95  
w/c  0.4  0.45  0.50  0.55  0.6  
Sp/p  0.015  0.0155  0.016  0.0165  0.017  
ash/c  0.1  0.15  0.15  0.175  0.2   

Table 3 
Mortar mixes (kg/m3).  

Ref CEM MK BA GP Sp Water  

Ci (i = 1–6)  480.57  96.11  26.88  59.83  13.03  240.29  
F1  516.52  103.30  24.07  55.83  13.00  232.44  
F2  550.61  110.12  25.66  25.10  12.38  247.77  
F3  422.62  84.52  19.70  98.51  12.90  232.44  
F4  450.51  90.10  21.00  70.59  12.28  247.78  
F5  516.40  103.28  24.07  55.81  13.84  232.38  
F6  550.48  110.10  25.66  25.09  13.18  247.71  
F7  422.52  84.50  19.69  98.48  13.73  232.39  
F8  450.40  90.08  20.99  70.57  13.07  247.72  
F9  516.53  103.31  33.70  46.20  12.99  232.44  
F10  550.61  110.12  35.93  14.83  12.37  247.77  
F11  422.62  84.52  27.58  90.63  12.89  232.44  
F12  450.51  90.10  29.40  62.19  12.27  247.78  
F13  516.40  103.28  33.69  46.19  13.82  232.38  
F14  550.48  110.10  35.92  14.83  13.17  247.72  
F15  422.52  84.50  27.57  90.60  13.72  232.39  
F16  450.41  90.08  29.39  62.18  13.06  247.72  
CC1  448.17  89.63  25.07  90.95  13.71  224.09  
CC2  509.66  101.93  28.50  31.89  12.42  254.83  
CC3  600.69  120.14  33.60  4.11  13.16  240.28  
CC4  400.49  80.10  22.40  96.97  12.94  240.29  
CC5  480.69  96.14  26.88  59.84  12.22  240.34  
CC6  480.46  96.09  26.87  59.81  13.84  240.23  
CC7  480.57  96.11  17.92  68.79  13.04  240.29  
CC8  480.57  96.11  35.84  50.87  13.02  240.29  
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4.1. GP application 

Table 4 shows the default parameters used in the runs of the algo-
rithm implementation. These parameters were chosen because they gave 

the best results in the initial tests. The input data to the algorithm were 
not normalised, unlike other techniques such as ANN, to make the 
resulting equations applicable. 

Firstly, GP was used without constraints [36]. After analysing the 
equations from this initial phase, constraints were defined for the 
properties that required them according to the analysis of the statistical 
parameters of the equation obtained. To guide the search process of the 
GP algorithm, it was necessary to define a set of core equations in which 
the GP algorithm was allowed to modify only at specific points, which 
were called branches. Different constraints were established on each 
branch. 

To obtain the equation that predicts the values of mini cone spread 
diameter and time to pass the mini funnel for mortars, a first attempt 
was made under free programming. After analysing the results, one 
improved equation was found for Tfunnel, but no equation improved the 
results from the design of experiments (DOE) analysis, so an equation 
was selected to be used as a guide as follows: 

DflowPG = Branch0 + Branch1
Branch2 + Branch3

Branch4 (1) 

The following restrictions were set for each branch: Branch0, Branch2 
and Branch4 to be a constant, and Branch2 and Branch4 to be a positive 

Fig. 3. Mortar mixing procedure.  

Fig. 4. Algorithm diagram.  

Table 4 
GP in mortar.   

Dflow Tfunnel 

Configuration parameters Default values Default values 
Population size 1000 1000 
Crossover rate 80% 80% 
Non-terminal selection rate 90% 90% 
Mutation probability 20% 20% 
Algorithms Selection: Tournament Selection: Tournament 

Creation: intermediate Creation: intermediate 
Mutation: subtree Mutation: subtree 

Parsimony 0 0.001 
Elitist 1 1 
Initial tree height 6 6 
Maximum tree height 9 9 
Maximum mutation tree height 6 6 
Terminal nodes VW/VP w/c Sp/P ash/c VW/VP w/c Sp/P ash/c 
Non-terminal nodes +, -, *, +, -, *, %,  
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constant with 2 decimal places as maximum. Finally, Branch1 and 
Branch3 could contain any input variable and the operators +, − and * 
up to 5 times for each branch. 

Final models were performed by measuring four statistical in-
dicators, i.e. the square of the Pearson product-moment correlation co-
efficient (R2) Eq. (5), the mean square error (MSE) Eq. (2), the 
coefficient of variation (COV) Eq. (4), and the mean absolute error 
(MAE) Eq. (3). These indices allowed the best equations to be deter-
mined to predict the measured property accurately. The mathematical 
equations for the mentioned statistical indicators are presented in 
Table 5. Moreover, the ratio Vexp/Vpred that represented the relationship 
between the value obtained in the experimental test and the value 
predicted with the adjusted equation was calculated to estimate the 
accuracy of the models. 

4.2. Mortar datasets 

The data used as mortar database were the result of the previous 
experimental campaign. Data, which are included in Table 6, were 
divided into two sets to conduct this study. A total of 27 mixtures were 
used for training, and the remaining 6 for testing. It can be observed that 
Ci mixtures with the same input variables provided different output 
results because of the intrinsic error related to the test itself. 

5. Mortar analysis 

The two measured properties of the mortars, Dflow and Tfunnel, 
were analysed by using the GP technique. The parameters used as input 
variables were VW/VP, w/c, Sp/p, and ash/c. 

5.1. Dflow and Tfunnel results 

The adjustment developed using GP to predict Dflow and Tfunnel 
provided Eq. (6) and Eq. (7), respectively. These equations were ob-
tained by applying the GP techniques as explained in Section 4.1.   

TfunnelPG =
38* w

c

336* Sp
p +

((
Vw
Vp − 1

) )(
w
c + 23

) +
558*SpP +

(
4

ash
c

)

((
Vw
Vp − 1

) )(
Vw
Vp + 16

)
+ 6

+
1

4*
(

ash
c

)2*(6400* Sp
p − 250* w

c)

(7) 

Both equations were analysed by comparing their accuracy with the 
accuracy of the equations obtained in a previous study (Eqs. (8) and (9)) 
[29]. 

Table 5 
Performance indices.  

MSE =
1
n

∑n
i=1

(
xi − yi

)2  Eq. 2 

MAE =
1
n

∑n
i=1

abs
(
xi −yi

) Eq. 3 

COV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)
2

n

√
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• 100  

Eq. 4 

R2 =

⎛
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(
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∑n
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√

⎞

⎟
⎠

2   Eq. 5  

Table 6 
Mortar dataset.   

Code Dflow (mm) T funnel (s) 

Training C1 318.75  17.5 
C2 315.75  23.6 
C3 326.00  20.1 
C4 313.00  21.2 
F1 219.75  43.2 
F2 343.25  12.7 
F3 207.50  61.8 
F4 327.75  16.5 
F5 258.50  33.5 
F6 336.00  12.9 
F7 260.50  39.2 
F8 339.75  13.1 
F9 231.50  45.8 
F10 333.50  12.8 
F11 226.50  51.2 
F12 333.50  14.2 
F13 281.75  31.8 
F14 329.25  14.2 
F15 278.50  37.0 
F16 332.25  15.3 
CC2 364.00  9.2 
CC3 310.00  23.1 
CC4 301.00  22.5 
CC5 305.50  19.2 
CC6 332.50  18.8 
CC7 319.50  23.7 
CC8 330.75  18.3  

Test C 308.50  21.3 
C 325.50  17.1 
C 317.25  19.0 
CC1 315.75  20.3 
CC7 290.25  24.9 
CC8 324.16  18.0  
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DflowDOE = − 12245.407 + 18197.271 •
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•
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1
T funnelDOE

= − 0.375 + 0.499 •
Vw
Vp

(9) 

The two equations predicted by Dflow (the one obtained with GP and 
the one from the literature) presented a “similar appearance”, and were 
the sum of variables operators with linear and quadratic interactions of 
independent variables in both equations. Furthermore, all the inde-
pendent variables were used in both equations, thus suggesting that they 
influenced the flow behaviour of the mixtures analysed. The variable 
VW/VP was one of the most present variables in the equation, as well as 
the w/c ratio. 

Considering the previous analysis and the values of the statistical 
indicators (Table 7), the equation obtained with the GP technique 
showed better statistical indices. In addition, ECM was reduced by 14%. 
That equation was slightly more complicated, but accuracy was 
improved. 

As for Tfunnel, the difference between the two equations was sig-
nificant. In the equation obtained through GP, all the independent 
variables were involved in the equation with linear and quadratic in-
teractions of independent variables. However, the equation obtained 

from the literature only depended on the variable VW/VP. Although it 
was expected that this variable was fundamental in the behaviour, it was 
not the only one that governed the response of the mixtures analysed. 
According to the statistical indicators (Table 7), it can be concluded that 

Table 7 
Statistical indicators.   

Dflow DOE Dflow PG Tfunnel DOE Tfunnel PG 

COV 5.9428 5.5172 14.6961 8.4104 
Vexp/Vpred 0.9883 0.9910 1.0327 1.0004 
Max (exp/pred) 1.0661 1.0554 1.4963 1.2270 
Min (exp/pred) 0.6978 0.7345 0.7705 0.8358 
R2 0.9447 0.9534 0.8367 0.9784 
ECM 178 153 25 3 
EM 8.89 9.07 3.13 1.24 
Demerit – 133 – 123  

Fig. 5. Experimental vs predicted values (Dflow).  

Fig. 6. Experimental vs predicted values (Tfunnel).  

Fig. 7. (VC + VMK)/VP influence on Tfunnel.  

Fig. 8. (VC + VMK)/VP influence on Dflow.  
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the equation obtained through the PG greatly improved statistical in-
dexes, thus reducing ECM by 88% and reaching R2 values greater than 
0.95. 

The relationship between the values obtained experimentally and 
those determined using the adjusted equation is shown in Fig. 5 and 
Fig. 6. Both equations showed R2 greater than 0.94. 

5.2. Parametric analysis 

One of the main advantages of GP is that, after obtaining an equa-
tion, it can be used to analyse the influence of different parameters on 
the measured property throughout the parametric analysis. 

Fig. 7 and Fig. 8 were drawn to analyse the influence of the (VCEM +

VMK)/VP on Tfunnel and the spread diameter by keeping the VBA/VGP 
fixed at 1. Therefore, when active powders increased, unreactive pow-
ders decreased, maintaining the same proportion with the amount of 
granite equal to the amount of ash. 

The quantity of active powders was a significant parameter that 
influenced concrete rheology as it controlled water demand. When the 
quantity of water was high, the increase of (VCEM + VMK)/VP hardly 
affected the spread diameter or Tfunnel. On the contrary, when the 
quantity of water was low, the spread diameter was reduced (around 
30%), as well as Tfunnel (around 25%). 

The spread diameter was a parameter highly affected by the water 
demand of active powders. When the quantity of water was low, the 
increase of the active powder increased water demand and decreased the 
spread diameter. 

On the other hand, although Tfunnel was influenced by water de-
mand, it was also affected by the interaction among particles, with the 
shape and texture of the fine particles being significant properties after 
analysing this parameter. The increase in active powders not just 
affected water demand, but also the quantity of BA and GP introduced in 
the mix. These sup. lementary materials seemed to affect Tfunnel so 
negatively that the negative effect of increasing the water demand was 
being counteracted by the positive effect of the shape of the particles of 
the cement and MK when compared to the shape of the particles of BA or 
GP. When the interaction among particles was the predominant effect 
(low water content), then increasing powder materials with better par-
ticle geometries reduced the Tfunnel time. The following analysis 
showed these results and showed the two powder materials (BA or GP) 
that were affecting Tfunnel so negatively. 

Fig. 7 and Fig. 8 also show that an increase in water content 
increased the spread diameter and decreased Tfunnel. The effect was 
significant (around 85% in both parameters) when the content of the 
active powders was high ((VCEM + VMK)/VP of 0.79). When their content 
was low ((VCEM + VMK)/VP of 0.62), the effect was significant in Tfunnel 
(around 90%), while in the spread diameter was moderated (around 

22%). 
Fig. 9 and Fig. 10 show changes in Tfunnel and Dflow when GP 

content was modified, while the relationship between active powders 
and BA was constant. The spread diameter was slightly affected, 
decreasing its value when the amount of granite power increased. As 
aforementioned, increasing the GP content decreased cement and MK 
volume, so water demand was reduced. However, GP included particles 
with a high irregular shape, and its fineness was higher than the finesses 
of MK cement. Both effects (reduction in water demand and worse 

Fig. 9. VGP/VP influence on Tfunnel.  

Fig. 10. VGP/VP influence on Dflow.  

Fig. 11. VBA/VP influence on Tfunnel.  

Fig. 12. VBA/VP influence on Dflow.  
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particle geometry) counteracted, and finally the spread diameter was 
slightly reduced. 

Tfunnel, however, was highly affected by GP content. When water 
content was low, Tfunnel increased by 70% due to the increase in GP 
content. When water content was high, this percentage was reduced to 
20%, thus indicating that, although there was plenty of water, the 
negative effect of including GP in Tfunnel values was significant. 

Finally, as in the previous analysis, an increase in water content 
increased spread and decreased Tfunnel. The effect was similar 
regardless of GP content, and it was more significant (around 87%) in 
Tfunnel than in the spread diameter (around 51%). 

Fig. 11 and Fig. 12 show the effect of BA content in both the spread 
diameter and Tfunnel when the relationship was constant between 
active powders and GP. 

When the quantity of water was high, the spread diameter was 
hardly affected and remained around 350 mm regardless of the quantity 
of BA. When water content was reduced and BA was increased, the 
spread diameter increased. Likewise, increasing BA reduced the amount 
of cement and MK, so water demand was reduced. The particles of BA 
seemed to not damage the spread diameter so much as the particles of 
GP, so the effect of reducing water demand prevailed, thus increasing 
the spread diameter when the BA increased. 

The same effect was seen by analysing Tfunnel. This parameter 
decreased when the BA increased. If the quantity of water was low, the 
reduction was low (8%), and when water content was high, Tfunnel was 
reduced by 19%. The BA is a filler with a low fineness (its particle size 
distribution, included in Fig. 2, showed that this material was coarser 
than cement, MK or GP). 

The increase in water content increased the spread diameter and 

decreased Tfunnel. The effect on Tfunnel was similar regardless of BA 
content. A percentage of around 87% of decrease in Tfunnel was 
measured when water content increased from a VW/VP of 0.78 to 0.94. 
This change in water increased the spread diameter by 73% when BA 
content was low (VBA/VP of 0.070) and by 33% when BA content was 
high (VBA/VP of 0.126). When BA content was high, water demand by 
the active powder was lower as its volume was also lower, so increasing 
water hardly affected. 

To better analyse the effect of GP in comparison with the effect of BA 
on Tfunnel and the spread diameter, Fig. 13 and Fig. 14 where drawn. 
The quantity of active powder was constant (VCEM + VMK/Vp) at 0.74, 
therefore the amount of GP plus BA was also constant (VBA + VGP/VP =

0.244). However, the relationship between them (VBA/VGP) varied from 
0.2 to 2.3. 

Both parameters were positively affected by the increase in the BA 
(thus decreasing GP content): Tfunnel decreased and Dflow increased. 
As for the effect of increasing BA, when the amount of water was low, 
Tfunnel was reduced to 9.5%. In this case, this parameter was very high 
(around 85 s), and it was not affected by only changing the type of 
powder materials (the relationship VBA/VGP). When water content was 
high, Tfunnel was reduced by 86%, and in this case increasing the 
amount of BA by reducing the amount of GP widely affected Tfunnel 
time (this time was reduced to 44% when VW/VP was 0.94 by increasing 
VBA/VGP from 0.2 to 2.3). 

Spread presented great diameter values (around 357 mm) when 
water content was high. It was difficult to increase more these values 
when only VBA/VGP was being increased. For this reason, the spread 
diameter hardly changed by the ratio VBA/VGP when water content was 
high. On the contrary, when water content was low, the spread diameter 
significantly improved (from 133 mm to 273 mm) when the VBA/VGP 
changed from 0.20 to 2.30. 

6. Conclusions 

This study analysed the possibilities offered by genetic programming 
to predict the fresh state behaviour of quaternary mortar mixtures. 
Models obtained were compared with those developed throughout 
analysis of variance. After comparing both techniques, it was concluded 
that genetic programming provides better accuracy, according to the 
statistical parameters selected as performance indicators. 

The equations adjusted with genetic programming were used to 
conduct a parametric analysis of how the different powder materials 
affected the fresh behaviour of mortar mixes. The following conclusions 
were drawn: 

The influence of metakaolin and cement (VCEM + VMK)/VP on both 
Tfunnel and the spread diameter was studied, with VBA/VGP being 
constant. When the quantity of water was high, increasing the cement 
and metakaolin hardly affected the spread diameter or Tfunnel. On the 
contrary, when the quantity of water was low, that increase reduced the 
spread diameter and, unexpectedly, reduced Tfunnel. 

When granite powder content was modified and the relationship 
between active powders and biomass ash was constant, the spread 
diameter was slightly affected, decreasing its value when the amount of 
granite power increased. However, Tfunnel widely increased. 

The effect of biomass ash content on both the spread diameter and 
Tfunnel was analysed by keeping the relationship between active pow-
ders and granite powder constant. When the biomass ash increased, the 
spread diameter increased and Tfunnel decreased. 

To better analyse the effect of granite powder in comparison with the 
effect of biomass ash, the quantity of active powders was constant, 
varying the ratio VBA/VGP. Both parameters, Tfunnel time and spread 
diameter, were positively affected by the increase in the biomass ash, 
thus reducing granite powder content: Tfunnel decreased and Dflow 
increased. Granite powder is a material with a high fineness and their 
particles are rough and irregular, so its effect on fresh state is negative, 
especially when the interaction among particles is the predominant 

Fig. 13. VBA/VP influence on Tfunnel.  

Fig. 14. VBA/VP/VP influence on Dflow.  
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phenomenon (mixes with low water to binder ratio). 
Finally, genetic programming and design of experiments are 

powerful tools that can be used to analyse the influence of multiple 
parameters in any concrete or mortar property, and their use is recom-
mended in adjusted models that can be employed by the stakeholders to 
predict these properties. 
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[10] G. Rojo-López, B. González-Fonteboa, F. Martínez-Abella, I. González-Taboada, 
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