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Abstract: A basic feature of modern and smart cities is their energetic sustainability, using clean and
renewable energies and, therefore, reducing the carbon emissions, especially in large cities. Solar
energy is one of the most important renewable energy sources, being more significant in sunny
climate areas such as the South of Europe. However, the installation of solar panels should be carried
out carefully, being necessary to collect information about building roofs, regarding its surface and
orientation. This paper proposes a methodology aiming to automatically parametrize building roofs
employing point cloud data from an Aerial Laser Scanner (ALS) source. This parametrization consists
of extracting not only the area and orientation of the roofs in an urban environment, but also of
studying the shading of the roofs, given a date and time of the day. This methodology has been
validated using 3D point cloud data of the city of Santiago de Compostela (Spain), achieving roof
area measurement errors in the range of +3%, showing that even low-density ALS data can be useful
in order to carry out further analysis with energetic perspective.

Keywords: Aerial Laser Scanner; point cloud processing; segmentation; roof parametrization;
roof shading

1. Introduction

Nowadays, buildings are responsible of the 36% of CO, emissions and 40% of the energy
consumption in the European Union (EU), according to the European Commission. To improve
the efficiency and sustainability of the energy consumed within buildings is important not only for
reducing the carbon footprint but also for generating economic and social benefits related with the
wellbeing of the building inhabitants and reducing the energy poverty. That is why the Energy
Performance of Buildings Directive [1] is aiming at nearly zero-energy standards, requiring all public
buildings to satisfy this energetic efficiency by 2018 and all buildings by the end of 2020. Specifically,
photovoltaic solar energy is widely used in urban environments, as it is a clean and silent source
of energy, and it accounted for a 11.6% of the total quantity of electricity generated from renewable
energy sources in the EU—that is, 28 countries in 2016 [2]. Generally, there are three steps that are
taken to estimate the solar potential: (1) Collection of input data (cartography, Light Detection and
Ranging (LiDAR), or photogrammetry among others), (2) Development of a solar radiation model,
and (3) Definition of an interface for the interaction with the end user [3]. This work is entirely focused
on the first step and its connection with the second, as identifying which areas are suitable for the use
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of solar energy is essential for the determination of the solar potential [4], meaning that it is necessary
to measure position, size, inclination and azimuth of the areas of installation of solar panels, which,
in an urban environment, are typically the roofs of the buildings.

As it has been mentioned, there are different sources for the input data that can be used for
energy applications. For instance, Nex and Ramondino [5] generate DSM models from aerial images
in order to reconstruct roof outlines. Similarly, Ahmadi et al. [6] extract building boundaries also using
imagery, being their research based on a model of active contours. The literature, however, has been
more focused on employing data from ALS sources, which allow to collect accurate and dense 3D
representations of the environment. Laser scanner data has been widely used in the last decade for a
huge variety of applications. On one side, Terrestrial Laser Scanners (TLS) are typically employed for
the detection and classification of objects at street level [7-9], and for road and railway infrastructure
analysis [10-12]. Although TLS data is much denser than ALS and therefore the potential of this
data source to capture small features with high resolution is higher, a terrestrial scan cannot collect
geometric information about the building roofs as they will be always occluded. Therefore, Aerial data
has to be employed, whose densities typically vary between 1-30 points per m? to higher densities
such as the ALS dataset presented in [13], which averages 200 points per m? by maximizing data
coverage on building facades, flying at a low altitude and orientating flight paths at 45° with the major
axes of the city streets, making possible a precise segmentation of building facades and roofs [14,15].
Other applications of ALS data are the extraction of the road network centerlines [16,17] or terrain
recognition [18,19]. Regarding the extraction of building roofs with ALS data, there also exist several
related works that should be remarked. Yan et al. [20] present a roof segmentation method based
on a global plane fitting approach that achieves great accuracy results for point densities between
1.5 and 4 points per m2. Vosselman et al. [21] propose a point cloud classification framework that
integrates a set of segmentation approaches based on segments and context, selecting features based
on local analysis for the classification. With an energetic perspective, Luka¢ et al. [22] present a
photovoltaic estimation of building roofs, considering all the necessary parameters of a photovoltaic
module and, on data collected with aerial LiDAR data. Finally, Lingfors et al. [23] compare the
performance of low-resolution and high-resolution airborne LiDAR data in order to automatically
create a 2.5D building model of a neighborhood, while categorizing the buildings to perform a solar
resource assessment.

The main contribution of this work is twofold: First, it presents a fully automatic methodology
that segments ALS point clouds in order to extract building roofs and accurately measure several of
their geometric features, all of them related with the determination of the solar potential. Furthermore,
a shading analysis is proposed where the usable area of those roofs with the most suitable orientation
for the installation of solar panels can be computed given any date and time of the day. The novelty of
the work is also twofold: On one side, the methodological approach as a whole (although employing
already existing techniques in some of its stages, such as triangulation). On the other side, this approach
was developed with a focus on the case of the Spanish National Plan of Aerial Ortophotography, which
provides aerial point clouds of the Spanish territory with known specifications.

This paper is structured as follows. The proposed methodology is depicted in Section 2. The case
study data employed for the validation of the methodology is shown in Section 3. Then, Section 4
shows and discuss the results that have been obtained after the application of the methodology on the
case study data. Finally, Section 5 outlines the conclusions of this work.

2. Methodology

The presented methodological approach consists of a number of sequential processing blocks as
depicted in Figure 1. It inputs urban point cloud data acquired from an aerial laser scanner, and aims
for the automatic characterization of the roofs with an energetic perspective, extracting information
regarding the orientation, surface and shadows on the extracted roofs. These processing blocks have
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been defined as (1) Data preprocessing, (2) Point cloud classification, (3) Roof parametrization, and (4)
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2.2. Point Cloud Classification

Once the point cloud has been preprocessed and facade points have been filtered out, there are
two principal elements on the remaining point cloud P,s, namely ground points and roof points.
This step implements a classification process that aims for the definition of one class of points for each
of the aforementioned elements. Due to the low density of the point cloud (details are described in
Section 3) this process can be carried out using triangulation methods that would be unfeasible in a
denser point cloud (e.g., a TLS or MLS acquired point cloud). Here, a Delaunay Triangulation [25] Tpys
is computed on Py, (Figure 3a). Generalizing, a Delaunay Triangulation 7p outputs a N-by-3 array
(being N the number of points in P) where each row contains the point indices of a triangle such that
its circumcircle does not contain any other point in its interior.

Considering that facade points have been removed in a previous step, a number of triangles
in 7pys will represent connections between roofs and ground. Detecting those triangles is the first
step of the classification. For that purpose, the normal vector to the plane defined by each triangle is
computed in first place. The normal vector of a triangle that connects roof and ground should have an
inclination & with respect to the z-axis close to 90 degrees, so a soft threshold f = 55 degrees is defined
to select a group of potential triangles where &« > B. Another parameter that allows the identification
of connections is the height of the triangle, so a threshold & = 3 m is defined such that only triangles
higher than / are considered. Then, for each triangle that complies with both thresholds, the point
with highest z is labeled as a roof point, and the point with lowest z as ground point, leaving unlabeled
the third point of the triangle (Figure 3b).

These labeled points will be used as seeds for a region growing algorithm aiming to assign labels
to the whole point cloud. First, the triangles that were identified as connections are removed from
Tpns- Then, in order to avoid spurious triangles due to the presence of noisy, isolated points or in
the limits of the point cloud, an area filter is applied such that triangles whose area is more than
1.5 m? are also removed (let Tr be the triangulation resulting after the removal). This ensures the
correct performance of the aforementioned region growing, which consists of the following two steps:
(1) Define regions of points which are connected by triangles in 7; by searching the point indices of
the neighboring triangles in the region and iterating this operation as long as new points are added to
it. (2) For each region of points, check if there are labeled points within the region and assign that label
to the whole region. As the triangles that connect ground and roofs had been removed, the case of a
region containing both labels should not be possible (Figure 3c).

Finally, a label refinement process is carried out. Three considerations are made at this point:
There may exist points without label (point regions with no seeds remain unlabeled after the region
growing), and there may be mislabeled points both in the ground segment (due to small objects such
as the upper part of vehicles or vegetation) and in the roof segment (which are unlikely but may
appear in large roofs with different heights). Assuming that the vast majority of the points have been
correctly classified, a nearest neighbor algorithm is applied, selecting as neighborhood of each point
a sphere of r = 8 m. Regarding unlabeled points, they are assigned the most common label within
their neighborhood. Subsequently, an iterative process is defined for detecting or correcting points
erroneously labeled as roofs. In the first iteration, the neighborhood of each roof point is checked,
and the label is corrected if there are more ground points than roof points within it. This process
repeats, gradually reducing the radius r to avoid the contact with actual roofs, until there are no more
mislabeled points found. This iterative process was found necessary to correct relatively large objects
that should be considered within the ground segment in the context of this work (e.g., upper part of a
large truck). Finally, points erroneously labeled as ground are corrected following the same process,
but performing only a single iteration, which was found enough for ensuring a correct performance
(Figure 3d).

After this process, each point in Py has a label indicating whether it belongs to the ground (point
indices i) or a roof (point indices i,), so the point cloud can be segmented in roofs, P, = S(Pys, ir)
and ground Py = S(Pys, ig).
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information, a  Euclidean clustering algorithm driven by the orientation index is applied. A cluster of
points C; = {x,y,z}; will contain a number of points such that its orientation index is the same, the
closest Euclidean distance between any pair of points of the cluster is less than a predefined threshold,
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In order to know the shading of a roof surface at a given time, it is necessary to obtain the
azimuth (4y,,) and elevation (Eg,,) of the Sun. Given the latitude (¢) and the longitude (1), as well
as the day of the year (d, which stands for the number of days since the beginning of the year) and
time (H, hour of the day expressed as a decimal value), these parameters are computed as:
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In order to know the shading of a roof surface at a given time, it is necessary to obtain the azimuth
(Asun) and elevation (Esyy ) of the Sun. Given the latitude (¢) and the longitude (1), as well as the day
of the year (d, which stands for the number of days since the beginning of the year) and time (H, hour
of the day expressed as a decimal value), these parameters are computed as:

Asun = arcsin(sin(¢) sin(6) + cos(¢) cos(d) cos(w)) 3)

sin(¢) sin(A) — sin(d)
cos(¢) cos(A)

Esun = arccos( )sign(w) 4)

where ¢ is the declination angle, computed as shown in Equation (5), being the angle b obtained as
shown in Equation (6):

5 = 23.45°-sin(b) (5)
,d—81
b= 360" "5 =~ (6)

and w is the hour angle (Equation (7)), which depends on the Time-Corrected Equation of Time (EoTrc)
(Equation (8)):
w = 150~(EOTTC — 12) (7)

EoTrc = H 4+ 4(A — Atimezone) + 9.87 sin(2b) — 7.53 cos(b) — 1.5sin(b) (8)
Once the azimuth and elevation of the Sun are known for a specific date and time, the shading of
each roof in C,,fs can be computed. As solar panels are installed oriented to the South in the North

Hemisphere, only the cluster subset Cs = {Csw, Csg } is considered for this analysis.
The process that has been followed can be thought of as a visibility analysis where, for each

point p; = (x;,¥i,zi) € Cs, an occlusion search is performed in the direction of a vector with
azimuth and elevation (Asyu, Esun), which can be represented in Cartesian coordinates as a unit
vector vg = (vsx, Usy, vsz). First, the parametric equations of a line that goes through p; with the
direction of vg are defined:
X = x,' + t‘vsx (9)
Y =Yi+tosy (10)

Then, a sliding sphere of radius 0.5 m is defined and slides through the line by setting a number
of equally spaced positions for its center varying the parameter t from Equation (9). For each position
of the sphere, the presence of points of P, within it is checked. Whenever any point is found, it will be
considered that there is an occlusion, which implies the point is shaded.

Finally, for each cluster of points, the surface free of shading is computed following the approach
of Section 2.2. If an array with different times of the day is defined, the daily evolution of the shading
and the usable surface of a roof can be visualized (Figure 5).

All the parameters that have been computed for each roof can be put together as an object of a
class specifically defined to store the results of the process. Therefore, each roof in C;y, f5 is represented
by its point cloud, orientation index, elevation, total surface, and usable surface at a time (or array of
times) of a given day.
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Table 2. Results for the Historic Centre data sample.

Roof Measured  Ground Truth Error

ID  Area(m?)  Area (m?) mz) ~ Eror ()
1 537.62 552.43 ~14.81 —2.68

2 483.66 552.52 ~68.86 ~12.46
3 430.9 415.45 15.45 3.72

4 411.08 4244 ~13.32 -3.14

5 388.80 342.39 46.41 13.55
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Table 2. Results for the Historic Centre data sample.

11 0f 14

Roof ID Measured Area (m?2) Ground Truth Area (m?) Error (m?) Error (%)
1 537.62 552.43 —14.81 —2.68
2 483.66 552.52 —68.86 —12.46
3 430.9 415.45 15.45 3.72
4 411.08 4244 —13.32 —-3.14
5 388.80 342.39 46.41 13.55
6 341 348.59 —-7.59 —2.18
7 323.54 297.56 25.98 8.73
8 303.38 369.08 —65.7 —17.80
9 265.06 272.62 —7.56 —-2.77
10 246.24 247.4 —-1.16 —0.47
> 3731.28 3822.44 —91.16 —2.38

Table 3. Results for the First Expansion data sample.

Roof ID Measured Area (m?) Ground Truth Area (m?) Error (m2) Error (%)
1 862.68 978.42 —115.74 —11.83
2 861.87 869.96 1.91 0.22
3 640.54 592.32 48.22 8.14
4 667.22 562.69 104.53 18.58
5 596.72 555.89 40.83 7.34
6 208.34 176.18 32.16 18.25
7 515.12 508.66 6.46 1.27
8 305.80 326.07 —-20.27 —6.22
9 315.33 308.44 6.89 2.23

10 305.73 341.65 —35.92 —-10.51
> 5279.35 5210.28 69.07 1.33
Table 4. Results for the Second Expansion data sample.

Roof ID Measured Area (m?) Ground Truth Area (m?) Error (m?) Error (%)
1 699.07 709.69 —10.62 —-1.50
2 678.20 684.17 —-5.97 —0.87
3 673.06 692.16 —-19.10 -2.76
4 680.98 700.12 —-19.14 -2.73
5 672.89 652.19 20.70 3.17
6 660.02 650.81 9.21 1.42
7 646.12 687.6 —41.48 —6.03
8 629.96 665.91 —35.95 —5.40
9 617.81 633.77 —15.96 —2.52

10 611.46 612.54 —1.08 —0.18
Y 6569.57 6688.96 —-119.39 -1.78

4.2. Roof Classification and Shading Analysis

The proposed methodology has been applied to the whole case study data, which, as stated in
Section 3, comprises approximately 4.5 million points of the city of Santiago de Compostela. In order to
process these data, the point cloud is divided in a number of point cells, and each of them is processed
individually. Figure 8 shows the results obtained after this processing. Qualitatively, it is proven that
the algorithms work consistently across different types of buildings and urban distributions. Table 5
shows some relevant results such as the total area covered by roofs and the area covered on each
orientation, as well as the non-shaded area on 16th May at 3 p.m. Note that the non-shaded area

corresponds only to those roofs that are oriented to the South.
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5. Conclusions
5. Conclusions

In this paper, a methodology for the automatic classification and parametrization of bu1ld1n% roofs
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for the Vahdatlon of the rnethodology Three 1fferent samples, representing well dlfferentlate zones
of the city, were extracted in order to quantify the performance of the roof area measurement. It was
found that the error is on the +3% range, which is an interesting result having into account the small
point density of the point cloud data. The main conclusion that can be extracted from these results is
that aerial point cloud data is totally suitable for carrying out further analysis which can be focused on
the adequacy of the buildings to have solar panels installed, not only because the area orientated to the
South (considering the analysis on the North Hemisphere) is known, but also because the shading of
the roof can be calculated, and therefore the energy loss due to the shading can also be known.
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As future work, regarding the presented methodology it would be interesting to compare the
results obtained with those that would come from the application of a supervised learning algorithm,
as roof classification can be reduced to a binary classification problem. It would also be interesting to
apply different state-of-the-art algorithms with data from the PNOA dataset to get a better insight of
the performance of this method with respect different approaches that were not designed specifically
for this national database. Furthermore, an energy-focused analysis should be carried out in the
future, taking the outputs of this work in order to compute the usable surface, loss due to inclination,
orientation and shading, and potential installed power of solar panels installed in the roof of a given
location. These proposals of future work may be necessary to improve the Technology Readiness Level
of the presented methodology to a point where it should be able to be employed at a National level.
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