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Abstract

Diabetic retinopathy is one of the leading causes of vision impairment that is commonly associated to the Macular Edema (ME)
disease. The Diffuse Retinal Thickening (DRT) is a ME type derived from the local intraretinal fluid accumulation in the lower
retinal layers, producing significant morphological alterations in the eye fundus. The presence and properties of these intraretinal
fluids are used by the ophthalmologists as significant indicators of the clinical stage of the ME disease. Given that, the precise
identification and segmentation of the DRT edema type allow the early diagnosis of the ME disease which, therefore, permits a
better adjustment of the treatments, reducing their costs as well as improving the life quality of the patients.

This paper proposes a novel methodology for the automatic identification and segmentation of the DRT edemas using Optical
Coherence Tomography (OCT) images as source of information. Firstly, the method identifies four of the principal retinal layers
that are used as reference to delimit the outer retina, region where the DRT edemas are typically originated. Inside this region,
a large and heterogeneous set of features was defined to recognize the characteristic “sponge-like” patterns of the DRT edema,
using intensity, texture and clinically-defined features. For this analysis, four representative classifiers were employed with the
best subsets of previously selected features. This methodology was tested using 70 OCT images from where 560 samples were
extracted with the presence and absence of DRT edemas. The best results were achieved by the 7-kNN classifier, reaching in the
detection stage an accuracy of 0.9366, whereas in the segmentation stage obtained values of 0.6625 and 0.7899 for the Jaccard and
Dice coefficients, respectively.
c© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.
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1. Introduction

Macular Edema (ME) is characterized as a nonspecific retinal eye disease with painless visual acuity impairment.
It is caused by a leak of fluid derived from the blood of the vascularity within the retinal tissue1. The presence of
this fluid accumulation within the retina leads to significant modifications of the morphology of this tissue (especially
regarding its thickness), producing the main alterations to the lower retinal layers2. Given that the retina constitutes
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(a) (b)

Fig. 1. Example of OCT images. (a) Healthy retinal tissue. (b) Retina with the DRT edema presence (yellow).

the light-sensitive tissue at the back of the eye, and the macula is the part of the retina that is responsible for the sharp,
central and color vision, this fluid accumulation leads to the deterioration of the vision quality and, in more advanced
clinical stages, it could lead to complete blindness. According to the World Health Organization (WHO), the major
global causes of moderate to severe vision impairment are Age-related Macular Degeneration (AMD) and Diabetic
Retinopathy (DR), affecting a 4% and 1%, respectively, of the world population3. In fact, these diseases have as
common denominator for the visual loss perception the ME formation within the retinal tissue4. In particular, one of
the most spread diseases over the world is diabetes, in which the lack of insulin causes a higher presence of glucose
in the circulatory system5. These unhealthy concentrations damage the blood vessels, consequently deteriorating the
retinal microcirculation and producing these fluid accumulations (or edemas), what is clinically defined as Diabetic
Macular Edema (DME)6,7.

To identify the presence of these pathological structures in the retinal tissue, Optical Coherence Tomography (OCT)
imaging is being widely used within the ophthalmological community8. Its great acceptance is given by the favorable
characteristics of this image modality for this analysis, offering an easy visualization of the in vivo histopathology of
the retinal tissue in a contactless and non-invasive capture process. Given that, it is widely recognized as a comfortable
medical examination for both patients and clinicians, showing with detail the inner characteristics of the retinal layers.
This medical image modality offers exhaustive information of the retinal tissue, facilitating the diagnosis of the ME
presence by the identification of significant modifications in the morphology of the retinal layers which are commonly
caused by the intraretinal fluid accumulation9.

According to Otani et al.10, OCT images offer important clinical information that enables the identification and
classification of the ME disease in three different types: Serous Retinal Detachment (SRD), Cystoid Macular Edema
(CME) and Diffuse Retinal Thickening (DRT). Following the same classification, Panozzo et al.11 established five
criterions to better identify and individually characterize each type of ME, being the following: retinal thickness,
diffusion, volume, morphology and presence of the vitreous traction12. These criterions are based on the unique
pathophysiology that each type of ME adopts within the retinal tissue, mainly delimited between the Inner Limiting
Membrane (ILM) and the Retinal Pigment Epithelium (RPE), superior and inferior boundaries, respectively.

Regarding the DRT edemas, they are typically recognized by the specialists as a retinal swelling of the macula with
reduced intraretinal reflectivity. Figure 1 presents a couple of examples of normal and pathological retinal cases with
the DRT edema presence and absence. The absence of a limiting membrane in this ME type allows the fluid spread
over the retina, resulting in a “sponge-like” swelling appearance. As result, the thickness of the lower retina region
increases, which consequently leads to an increment of the entire retinal thickness, modifying significantly the normal
morphology and patterns of the eye fundus tissue13. Moreover, given that this ME type typically appears before CME
and SRD edemas, it is commonly used by ophthalmologists as a relevant biomarker for the early diagnosis of the
ME disease. Based on those premises, a precise detection and segmentation of the DRT edemas is crucial, given
it facilitates the early diagnosis of the disease, allowing a better adjustment of the treatments which consequently
reduces costs and improves the life quality of the patients.

Given this relevance, in the recent years, some works were published using OCT images for the identification
and characterization of the ME disease. As reference, Sun et al.14 proposed an automatic approach to detect and
segment the SRD edemas. Firstly, the authors delimit the abnormal retinal layers by the application of a multi-scale
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Fig. 1. Example of OCT images. (a) Healthy retinal tissue. (b) Retina with the DRT edema presence (yellow).
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the DRT edema presence and absence. The absence of a limiting membrane in this ME type allows the fluid spread
over the retina, resulting in a “sponge-like” swelling appearance. As result, the thickness of the lower retina region
increases, which consequently leads to an increment of the entire retinal thickness, modifying significantly the normal
morphology and patterns of the eye fundus tissue13. Moreover, given that this ME type typically appears before CME
and SRD edemas, it is commonly used by ophthalmologists as a relevant biomarker for the early diagnosis of the
ME disease. Based on those premises, a precise detection and segmentation of the DRT edemas is crucial, given
it facilitates the early diagnosis of the disease, allowing a better adjustment of the treatments which consequently
reduces costs and improves the life quality of the patients.

Given this relevance, in the recent years, some works were published using OCT images for the identification
and characterization of the ME disease. As reference, Sun et al.14 proposed an automatic approach to detect and
segment the SRD edemas. Firstly, the authors delimit the abnormal retinal layers by the application of a multi-scale
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Fig. 2. Main stages of the proposed methodology for the DRT region identification and segmentation.

graph search method. Then, using AdaBoost, the ME region is segmented using a total of 62 features. In the work
proposed by Moura et al.15, the proposed methodology was designed to automatically identify the intraretinal cystoid
fluid regions in OCT images. As a first stage, the authors used a window of a given size to determine the presence
of hypothetical candidates of cystoid regions. Then, learning approaches were applied to extract a set of image
characteristics that determine the presence of cysts inside the analyzed regions. In the work of Schleg et al.16, a
deep learning approach was implemented by performing a neural network comprising two processing components to
classify regions in the retina as normal tissue or macular fluid regions as SRD or CME. Following a similar strategy,
Rashno et al.17 proposed a method using a neutrosophic transformation and a graph-based shortest path to segment
fluid-associated and cystoid regions. Gopinath et al.18 proposed a methodology using a Convolutional Neural Network
(CNN) as a deep learning strategy for the segmentation of CMEs followed by a post-processing step using a clustering
method to refine the previously identified cystoid regions. Regarding the DRT edemas, Samagaio et al. 19 addressed
the automatic detection of the three types of ME in the OCT images. Despite that in the last few years some studies
addressed the automatic identification and segmentation of the intraretinal fluid, mainly for the cystoid case, in OCT
images, to date, no other scientific proposal studied the issue with the DRT edema type.

In this way, we propose in this work a new methodology that faced the automatic identification and segmentation
of the DRT presence in OCT images using as reference the clinical classification in the ophthalmological field10,11.
Firstly, the region where these edemas typically emerge is identified, the outer retina. Then, a learning strategy was
implemented that analyzes windows of a defined size, extracting a complete and heterogeneous set of intensity, texture
and clinically-defined image characteristics to precisely identify and segment the presence of the DRT edema type.
Finally, a post-processing stage was implemented to refine the results and improve the efficiency of the proposed
method.

2. Methodology

The proposed methodology is composed by a set of progressive stages for the identification and segmentation of
DRT edemas, as represented in Fig. 2. Firstly, the system segments the retinal layers to facilitate the search of this ME
type in the Region of Interest (ROI) where they typically appear, the outer retina. Then, a learning strategy is applied
to identify the DRT presence and segment its constituent region. Finally, a post-processing strategy is implemented
to individually refine the impact of the FP and the FN detected regions from the classifier output and improve the
obtained results. In the following subsections these steps are described in detail.

2.1. Identification of the Region of Interest

This stage of the methodology is sub-divided in two main steps: the retinal layer segmentation and its division in
the inner and outer retina, being the latter where the DRT edemas are spread.

2.1.1. Retinal Layer Segmentation
DRT edemas are recognized by the specialists as a drop of the intensities in the outer retina with an undefined

morphological shape and a “sponge-like” appearance. The absence of an enclosing membrane allows the fluid spread
over the lower retinal tissues, the outer retina. As a result of the intraretinal fluid accumulation, the outer retina suffers
a significant thickness increment, which leads consequently to an increase of the entire ROI thickness.

Fig. 3. Example of OCT image with the identification of the aimed four retinal layers: ILM, OPL, ISOS and RPE.

Fig. 4. Example of OCT image with a schematic representation of the OPL layer identification. The arrows (↑) indicate the direction of the applied
region growing algorithm using N seeds (+) over the ISOS layer.

Therefore, the proposed system firstly identifies four retinal layers: the ILM, the Outer Plexiform Layer (OPL),
the Inner Segment/Outer Segments (ISOS) of the photoreceptors layer and the RPE, as illustrated in Fig. 3. These
layers serve to delimit the inner and outer retina which permits, therefore, the restriction of the search space to identify
the DRT presence. To achieve the identification of the ILM, ISOS and the RPE retinal layers, we implemented an
approach based on the work of Chiu et al.20. This approach mainly uses graph theory and dynamic programming,
using the OCT images as a graph of nodes. This strategy connects pixels, forming pathways from both sides of
the image from where the optimal paths provide the aimed layers. The algorithm calculates dark-to-light gradient
images, identifying adjacent layers and generating weights for the layer segmentation. The main layers of the retina
are identified progressively by the minimum weighted paths using the Dijkstra algorithm21. This way, we extract the
ILM, ISOS and RPE retinal layers.

Regarding the OPL layer, we designed a different specific strategy given that the DRT presence leads to a significant
change in the retinal tissue, implying consequently a deterioration of the conditions of this retinal layer, hardening
enormously its extraction. Thus, to solve this issue, the previously identified ISOS layer is used as baseline. Over it,
N initial points are randomly generated and used as seeds with a region growing approach22, process that is illustrated
in Fig. 4. Using as reference the image dimensions, the number of generated seeds is a proportional 10% of the
input image width. This approach enables the pixel aggregation by appending the seed neighborhood of pixels with
similar intensity properties. Therefore, we obtain the entire region over the ISOS layer by intensity similarity. From
the resultant region, the identification of the OPL layer is provided by the upper limit of the extracted region.

2.1.2. Division of the Retinal Region in the Inner and Outer Retina
Its relative position is one of the main characteristics that is used by the specialists to recognize the DRT presence in

the retina. As said, typically, DRT edemas appear in the outer retinal layers, defined as the lower region of the retina.
Therefore, to facilitate the search process, the previously identified retinal ROI is subdivided in two sub-regions: the
inner and the outer retina, as represented in Fig. 5. The inner retina defines the upper region of the ROI which
is comprehended between the ILM and the OPL layers as the superior and inferior limits, respectively. The outer
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Fig. 2. Main stages of the proposed methodology for the DRT region identification and segmentation.

graph search method. Then, using AdaBoost, the ME region is segmented using a total of 62 features. In the work
proposed by Moura et al.15, the proposed methodology was designed to automatically identify the intraretinal cystoid
fluid regions in OCT images. As a first stage, the authors used a window of a given size to determine the presence
of hypothetical candidates of cystoid regions. Then, learning approaches were applied to extract a set of image
characteristics that determine the presence of cysts inside the analyzed regions. In the work of Schleg et al.16, a
deep learning approach was implemented by performing a neural network comprising two processing components to
classify regions in the retina as normal tissue or macular fluid regions as SRD or CME. Following a similar strategy,
Rashno et al.17 proposed a method using a neutrosophic transformation and a graph-based shortest path to segment
fluid-associated and cystoid regions. Gopinath et al.18 proposed a methodology using a Convolutional Neural Network
(CNN) as a deep learning strategy for the segmentation of CMEs followed by a post-processing step using a clustering
method to refine the previously identified cystoid regions. Regarding the DRT edemas, Samagaio et al. 19 addressed
the automatic detection of the three types of ME in the OCT images. Despite that in the last few years some studies
addressed the automatic identification and segmentation of the intraretinal fluid, mainly for the cystoid case, in OCT
images, to date, no other scientific proposal studied the issue with the DRT edema type.

In this way, we propose in this work a new methodology that faced the automatic identification and segmentation
of the DRT presence in OCT images using as reference the clinical classification in the ophthalmological field10,11.
Firstly, the region where these edemas typically emerge is identified, the outer retina. Then, a learning strategy was
implemented that analyzes windows of a defined size, extracting a complete and heterogeneous set of intensity, texture
and clinically-defined image characteristics to precisely identify and segment the presence of the DRT edema type.
Finally, a post-processing stage was implemented to refine the results and improve the efficiency of the proposed
method.

2. Methodology

The proposed methodology is composed by a set of progressive stages for the identification and segmentation of
DRT edemas, as represented in Fig. 2. Firstly, the system segments the retinal layers to facilitate the search of this ME
type in the Region of Interest (ROI) where they typically appear, the outer retina. Then, a learning strategy is applied
to identify the DRT presence and segment its constituent region. Finally, a post-processing strategy is implemented
to individually refine the impact of the FP and the FN detected regions from the classifier output and improve the
obtained results. In the following subsections these steps are described in detail.

2.1. Identification of the Region of Interest

This stage of the methodology is sub-divided in two main steps: the retinal layer segmentation and its division in
the inner and outer retina, being the latter where the DRT edemas are spread.

2.1.1. Retinal Layer Segmentation
DRT edemas are recognized by the specialists as a drop of the intensities in the outer retina with an undefined

morphological shape and a “sponge-like” appearance. The absence of an enclosing membrane allows the fluid spread
over the lower retinal tissues, the outer retina. As a result of the intraretinal fluid accumulation, the outer retina suffers
a significant thickness increment, which leads consequently to an increase of the entire ROI thickness.

Fig. 3. Example of OCT image with the identification of the aimed four retinal layers: ILM, OPL, ISOS and RPE.

Fig. 4. Example of OCT image with a schematic representation of the OPL layer identification. The arrows (↑) indicate the direction of the applied
region growing algorithm using N seeds (+) over the ISOS layer.

Therefore, the proposed system firstly identifies four retinal layers: the ILM, the Outer Plexiform Layer (OPL),
the Inner Segment/Outer Segments (ISOS) of the photoreceptors layer and the RPE, as illustrated in Fig. 3. These
layers serve to delimit the inner and outer retina which permits, therefore, the restriction of the search space to identify
the DRT presence. To achieve the identification of the ILM, ISOS and the RPE retinal layers, we implemented an
approach based on the work of Chiu et al.20. This approach mainly uses graph theory and dynamic programming,
using the OCT images as a graph of nodes. This strategy connects pixels, forming pathways from both sides of
the image from where the optimal paths provide the aimed layers. The algorithm calculates dark-to-light gradient
images, identifying adjacent layers and generating weights for the layer segmentation. The main layers of the retina
are identified progressively by the minimum weighted paths using the Dijkstra algorithm21. This way, we extract the
ILM, ISOS and RPE retinal layers.

Regarding the OPL layer, we designed a different specific strategy given that the DRT presence leads to a significant
change in the retinal tissue, implying consequently a deterioration of the conditions of this retinal layer, hardening
enormously its extraction. Thus, to solve this issue, the previously identified ISOS layer is used as baseline. Over it,
N initial points are randomly generated and used as seeds with a region growing approach22, process that is illustrated
in Fig. 4. Using as reference the image dimensions, the number of generated seeds is a proportional 10% of the
input image width. This approach enables the pixel aggregation by appending the seed neighborhood of pixels with
similar intensity properties. Therefore, we obtain the entire region over the ISOS layer by intensity similarity. From
the resultant region, the identification of the OPL layer is provided by the upper limit of the extracted region.

2.1.2. Division of the Retinal Region in the Inner and Outer Retina
Its relative position is one of the main characteristics that is used by the specialists to recognize the DRT presence in

the retina. As said, typically, DRT edemas appear in the outer retinal layers, defined as the lower region of the retina.
Therefore, to facilitate the search process, the previously identified retinal ROI is subdivided in two sub-regions: the
inner and the outer retina, as represented in Fig. 5. The inner retina defines the upper region of the ROI which
is comprehended between the ILM and the OPL layers as the superior and inferior limits, respectively. The outer
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Fig. 5. Identification of the inner and outer retinal regions. (a) Example of OCT image. (b) Identification of the retinal region limited by the ILM
and RPE layers. (c) The inner retina, between the ILM and OPL layers. (d) The outer retina, between the OPL and ILM layers.

retina is the lower region delimited by the OPL and RPE layers. Therefore, using the previous layer extractions, the
system searches for the DRT presence in the OPL/RPE region, removing the ILM/ISOS region. We also exclude the
ISOS/RPE region to further reduce the search space, given also the absence of DRT edemas at that level of the eye
fundus.

2.2. DRT Segmentation

Using the previously identified outer retina, next, we perform the identification and segmentation of the DRT
edemas in the restricted search space. Given that, we designed a methodology that exploits the image information of
this region with a machine learning strategy, herein described with more detail.

2.2.1. Feature Measurement
In order to characterize each analyzed region as with DRT and non-DRT presence, a total of 307 features were ex-

tracted from the analyzed regions of the outer retina. Given that these edemas neither present well-defined boundaries
nor a characteristic morphological shape, a suitable combination of features were analyzed that are based on intensity,
texture and domain information. More specifically, these edemas are recognized by their typical tissue patterns as well
as the consequent thickness increment of the retinal region. These features are extracted from a window of a variable
height, corresponding to the maximum column height of the region of the outer retina under analysis. The analyzed
features are summarized in Table 1.

2.2.2. Feature Selection and Classification
Given the high dimensionality of the set of features, we applied a feature selector to avoid irrelevant and redundant

characteristics. In particular, the Sequence Forward Selection (SFS)23 was employed to determine the feature subset
that better predicts the DRT presence, facilitating the classification stage. This selector adds features to the subset
by an incremental importance feature order. Then, using the final subset of features, four representative classifiers
were trained and tested, such as: the Naive Bayes, the k-Nearest Neighbors (kNN), the Parzen and the Quadratic
Bayes Normal Classifier (QDC). In the case of the kNN, 3 configurations were tested, using values of k = [3, 5, 7].
To measure the capacity of the classifiers, the dataset was randomly divided in two smaller sets with the same size
(each one with the 50% of all the samples), being processed with a 10-fold cross-validation. The first dataset is used
for the training stage whereas the second one is reserved for testing the trained classifiers. This process of dataset
random division, training and testing was repeated 50 times, calculating the final mean accuracy as result for the

Table 1. List of the defined set of 307 features to identify the DRT presence.

Category Features

Global Intensity-Based Features (GIBS) [1-15] Maximum, minimum, mean, median, std, variance, 25th percentile,
75th percentile, skewness and maximum likelihood estimates for normal distribution.

Gray - Level Co-Ocurrence Matrix (GLCM) [16-31] Contrast, energy, correlation and homogeneity.

Histogram of Oriented Gradients (HOG) [32-112] 9 windows per bound box and 9 histogram bins.

Gabor [113-240] Mean and std. Orientations = 8 and scale =8.

Local Binary Pattern (LBP) [241-304] Mean and std. Number of neighbors = (4, 8, 12, 16) and filter radius: 1-8.

Retinal Thickness Analysis [305-307] Thickness analysis: OPL/ISOS, ILM/RPE and the ratio between the

OPL/ISOS and ILM/ISOS regions.

global performance measurement. As output of this stage, the columns within the outer retina are classified with DRT
or non-DRT presence, being the region of the outer retina of the column extracted for the DRT segmentation.

2.3. Post-Processing

Finally, we implemented a post-processing stage in the outer retinal region using as reference the results from
the classifier that achieved the best performance for the DRT detection. In order to improve the performance of the
proposed method for the segmentation of the DRT region, two independent approaches were designed and analyzed.
The first approach aims the FPs removal, false detections that are introduced by other retinal structures, whereas the
second approach tests the aggregation of non-consecutive DRT regions, with the aim of reducing the rates of FNs.

Firstly, the presence of artifacts and/or pathological and retinal structures as hard exudates or vessels generates
shadows in the retinal layers that may enormously alter the analysis. As shown in Fig. 6(a), these shadows typically
create dark patterns that may be confused with the drop of intensities of the DRT presence, leading to the erroneous
identification and segmentation of these regions as DRT edemas (FPs)24. In this way, we implemented a strategy to
analyze the influence of the FP rates, using two designed parameters: minimum width of each set of DRT columns
and the distance to the subsequent closer DRT region.

Secondly, as illustrated in Fig. 6(b), the presence of CMEs with relatively large dimensions in the outer retina
frequently creates miss-classified regions. These regions are wrongly classified as non-DRT regions, given that the
presence of, for example, hyperreflective membranes of the CMEs create bright patterns with different properties
than the typical DRT regions in the outer retina. Moreover, the presence of bright artifacts in the outer retina could
be also confused with non-DRT edemas, increasing the FN rates. Given that, we implemented a post-processing
approach to analyze the influence of these misclassified regions. To this aim, we implemented an aggregation factor
that connects two consecutive detected DRT regions, if the distance between them is smaller than the defined value of
the aggregation factor. Given that, we assume that both non-consecutive regions belong to the same DRT edema, by
unifying the unconnected detections of the classifier.

Using both strategies, we measured their impact in the global performance of the proposed system for the DRT
segmentation and the corresponding increment of the obtained efficiency.

3. Results and Discussion

The proposed method was validated using a dataset that is composed by 70 OCT images. This dataset was ac-
quired with a Spectralis R© OCT confocal scanning laser ophthalmoscope from Heidelberg Engineering. The scans are
centered in the macula with a resolution that varies from 401×1015 to 481×1521 pixels. The images correspond to
scans from both left and right eyes of different patients that were diagnosed with ME.

In order to test the performance of the proposed work, the images were labeled by an expert clinician, identifying
the regions that presented DRT edemas. Using this information, we constructed a dataset by the extraction of the 307
defined features for 560 samples with non-DRT and DRT edema presence. The constructed dataset was randomly
divided in two subsets with the same size, one for training and other for testing, without the application of any
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Fig. 5. Identification of the inner and outer retinal regions. (a) Example of OCT image. (b) Identification of the retinal region limited by the ILM
and RPE layers. (c) The inner retina, between the ILM and OPL layers. (d) The outer retina, between the OPL and ILM layers.

retina is the lower region delimited by the OPL and RPE layers. Therefore, using the previous layer extractions, the
system searches for the DRT presence in the OPL/RPE region, removing the ILM/ISOS region. We also exclude the
ISOS/RPE region to further reduce the search space, given also the absence of DRT edemas at that level of the eye
fundus.

2.2. DRT Segmentation

Using the previously identified outer retina, next, we perform the identification and segmentation of the DRT
edemas in the restricted search space. Given that, we designed a methodology that exploits the image information of
this region with a machine learning strategy, herein described with more detail.

2.2.1. Feature Measurement
In order to characterize each analyzed region as with DRT and non-DRT presence, a total of 307 features were ex-

tracted from the analyzed regions of the outer retina. Given that these edemas neither present well-defined boundaries
nor a characteristic morphological shape, a suitable combination of features were analyzed that are based on intensity,
texture and domain information. More specifically, these edemas are recognized by their typical tissue patterns as well
as the consequent thickness increment of the retinal region. These features are extracted from a window of a variable
height, corresponding to the maximum column height of the region of the outer retina under analysis. The analyzed
features are summarized in Table 1.

2.2.2. Feature Selection and Classification
Given the high dimensionality of the set of features, we applied a feature selector to avoid irrelevant and redundant

characteristics. In particular, the Sequence Forward Selection (SFS)23 was employed to determine the feature subset
that better predicts the DRT presence, facilitating the classification stage. This selector adds features to the subset
by an incremental importance feature order. Then, using the final subset of features, four representative classifiers
were trained and tested, such as: the Naive Bayes, the k-Nearest Neighbors (kNN), the Parzen and the Quadratic
Bayes Normal Classifier (QDC). In the case of the kNN, 3 configurations were tested, using values of k = [3, 5, 7].
To measure the capacity of the classifiers, the dataset was randomly divided in two smaller sets with the same size
(each one with the 50% of all the samples), being processed with a 10-fold cross-validation. The first dataset is used
for the training stage whereas the second one is reserved for testing the trained classifiers. This process of dataset
random division, training and testing was repeated 50 times, calculating the final mean accuracy as result for the

Table 1. List of the defined set of 307 features to identify the DRT presence.

Category Features

Global Intensity-Based Features (GIBS) [1-15] Maximum, minimum, mean, median, std, variance, 25th percentile,
75th percentile, skewness and maximum likelihood estimates for normal distribution.

Gray - Level Co-Ocurrence Matrix (GLCM) [16-31] Contrast, energy, correlation and homogeneity.

Histogram of Oriented Gradients (HOG) [32-112] 9 windows per bound box and 9 histogram bins.

Gabor [113-240] Mean and std. Orientations = 8 and scale =8.

Local Binary Pattern (LBP) [241-304] Mean and std. Number of neighbors = (4, 8, 12, 16) and filter radius: 1-8.

Retinal Thickness Analysis [305-307] Thickness analysis: OPL/ISOS, ILM/RPE and the ratio between the

OPL/ISOS and ILM/ISOS regions.

global performance measurement. As output of this stage, the columns within the outer retina are classified with DRT
or non-DRT presence, being the region of the outer retina of the column extracted for the DRT segmentation.

2.3. Post-Processing

Finally, we implemented a post-processing stage in the outer retinal region using as reference the results from
the classifier that achieved the best performance for the DRT detection. In order to improve the performance of the
proposed method for the segmentation of the DRT region, two independent approaches were designed and analyzed.
The first approach aims the FPs removal, false detections that are introduced by other retinal structures, whereas the
second approach tests the aggregation of non-consecutive DRT regions, with the aim of reducing the rates of FNs.

Firstly, the presence of artifacts and/or pathological and retinal structures as hard exudates or vessels generates
shadows in the retinal layers that may enormously alter the analysis. As shown in Fig. 6(a), these shadows typically
create dark patterns that may be confused with the drop of intensities of the DRT presence, leading to the erroneous
identification and segmentation of these regions as DRT edemas (FPs)24. In this way, we implemented a strategy to
analyze the influence of the FP rates, using two designed parameters: minimum width of each set of DRT columns
and the distance to the subsequent closer DRT region.

Secondly, as illustrated in Fig. 6(b), the presence of CMEs with relatively large dimensions in the outer retina
frequently creates miss-classified regions. These regions are wrongly classified as non-DRT regions, given that the
presence of, for example, hyperreflective membranes of the CMEs create bright patterns with different properties
than the typical DRT regions in the outer retina. Moreover, the presence of bright artifacts in the outer retina could
be also confused with non-DRT edemas, increasing the FN rates. Given that, we implemented a post-processing
approach to analyze the influence of these misclassified regions. To this aim, we implemented an aggregation factor
that connects two consecutive detected DRT regions, if the distance between them is smaller than the defined value of
the aggregation factor. Given that, we assume that both non-consecutive regions belong to the same DRT edema, by
unifying the unconnected detections of the classifier.

Using both strategies, we measured their impact in the global performance of the proposed system for the DRT
segmentation and the corresponding increment of the obtained efficiency.

3. Results and Discussion

The proposed method was validated using a dataset that is composed by 70 OCT images. This dataset was ac-
quired with a Spectralis R© OCT confocal scanning laser ophthalmoscope from Heidelberg Engineering. The scans are
centered in the macula with a resolution that varies from 401×1015 to 481×1521 pixels. The images correspond to
scans from both left and right eyes of different patients that were diagnosed with ME.

In order to test the performance of the proposed work, the images were labeled by an expert clinician, identifying
the regions that presented DRT edemas. Using this information, we constructed a dataset by the extraction of the 307
defined features for 560 samples with non-DRT and DRT edema presence. The constructed dataset was randomly
divided in two subsets with the same size, one for training and other for testing, without the application of any
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(a) (b)

Fig. 6. Example of OCT images. (a) Presence of shadows generates FP detections. (b) Presence of CME with a relative large dimensions and
hyperreflective membrane generates FN detections.

preprocessing to the input images. Then, the features were obtained with the same defined window size in the test and
validation stages of the methodology. As said, to ensure the accuracy of the global performance, we trained the model
using a 10-fold cross-validation with a total of 50 repetitions, being calculated the mean error/accuracy to measure the
final performance of the method.

In particular, we analyzed the efficiency of the proposed system in three main stages: firstly, we tested the detection
of DRT columns; then, we validated the segmentation results; and finally, we analyzed the post-processing strategies
to determine their influence in the reduction of the FPs and FNs rates, using the best trained classifier.

To detect the DRT edemas within the outer retina, we firstly determined the subset of features that better dis-
criminate the presence of this ME type by the application of the SFS strategy until there is no improvement in the
identification process. The majority of the selected features were taken from Gabor, LBP and HOG categories, as
they present a high capacity of differentiation between healthy retinal layer patterns and pathological regions as DRT
edemas. The thickness of the ILM/RPE and the ratio between the OPL/ISOS and ILM/RPE regions also presented a
significant relevance, being selected in the first positions given that DRT edemas imply not only an increment of the
outer retina thickness but also the increment of the entire “retinal thickening”.

Table 2 details the results that were achieved by the method using different classifiers and configurations, as well
as the application of progressive larger feature sets. A maximum of 55 selected features were established as no further
improvements were obtained from that size.

Table 2. Accuracy results that were obtained with the tested classifiers using different feature sets sizes.

N. Features 5 15 25 35 45 55

Naive Bayes 0.8898 0.9024 0.8889 0.8764 0.8716 0.8696
3-kNN 0.9086 0.9202 0.9236 0.9269 0.9293 0.9252
5-kNN 0.9068 0.9253 0.9274 0.9283 0.9282 0.9241
7-kNN 0.9100 0.9298 0.9252 0.9265 0.9275 0.9210
Parzen 0.9082 0.9245 0.9299 0.9278 0.9299 0.9281
QDC 0.9044 0.9202 0.9302 0.9257 0.9223 0.9163

Also, Table 3 presents the best feature set sizes for each classifier configuration and the corresponding obtained
accuracy. Generally, the obtained results in all the cases are satisfactory, being above a 0.86 of accuracy even for
relatively small subsets of selected features. From all of them, the best result was achieved with the 7-kNN and
21 selected features, returning a performance of 0.9366. On the contrary, the worst results were obtained using the
Naive Bayes classifier with a value of 0.9074 of accuracy and 20 selected features, also representing a satisfactory
result. With respect to the Parzen and QDC classifiers, both also offered an adequate performance, reaching accuracy
values of 0.9351 and 0.9335 with 43 and 30 selected features, respectively, at a close distance of the 7-kNN classifier
performance, reinforcing the validity of the designed methodology.

Table 3. Accuracy results that were obtained with the tested classifiers using different features set sizes.

Classifier Naive Bayes 3-kNN 5-kNN 7-kNN Parzen QDC

N. Features 20 46 18 21 43 30
Accuracy 0.9074 0.9310 0.9346 0.9366 0.9351 0.9335

We also tested the influence of the dimensions of the window size in the training and testing stages of the method-
ology. Each window is centered in the column under analysis using progressively larger window sizes and variable
heights (h), as previously described. Table 4 details the best performance that was achieved for each window size
combined with the best configuration of the analyzed classifiers. As we can see, the best accuracy result was obtained
with a h × 23 window size. Smaller window sizes do not offer the same satisfactory results, given that it does not
contain sufficient significant information to distinguish the DRT texture from the surrounding healthy tissue. On the
other hand, using too large window sizes, as h × 33, the extracted features do not incorporate new information from
the DRT regions, being the obtained accuracy relatively similar to the best window size.

Table 4. Best accuracy obtained by each tested classifier using different window sizes.

Window size h × 5 h × 11 h × 17 h × 19 h × 23 h × 25 h × 29 h × 33

7-kNN 0.8866 0.9076 0.9170 0.9210 0.9366 0.9197 0.9331 0.9291

The segmentation stage of the methodology is based on the previous DRT detection, using as reference the height
of the outer retina. To validate the performance of this stage, we used as reference two statistical metrics that are
commonly used in the literature for similar purposes: Jaccard and Dice coefficients. Moreover, to further improve the
efficiency of the segmentation stage, we analyzed the performance of the mentioned post-processing approaches for
the FP and FN rates reduction. Table 5 presents a comparative analysis using accuracy, Jaccard and Dice coefficients
for the three tested approaches: no post-processing, using the first post-processing strategy and using the second post-
processing strategy. As we can see, the results from the classifier without any post-processing strategy are satisfactory,
achieving a 0.6106 and 0.7480 of Jaccard and Dice coefficients, respectively. Figure 7 shows an example of resultant
OCT image after the application of the first post-processing approach. As we can see, the presence of artifacts in the
outer retina produces wrong detections. Given that, the first post-processing approach analyzes the best combination
of the optimal FP width (wmin) and the distance to the closer DRT columns (dmin), in order to reduce the FPs from
the classifier output. Hence, the best accuracy was obtained using values of wmin and dmin of 16 and 10, respectively,
resulting in an increase of 1% of the Jaccard and the Dice coefficients. Therefore, we can conclude that this strategy
offers a slight improvement on the segmentation performance of the DRT regions.

Table 5. Accuracy , Jaccard and Dice coefficients for the segmentation stage using the best configuration classifier.

Classifier No Post-Processing First Post-Processing Second Post-Processing
Accuracy Jaccard Dice wmin dmin Accuracy Jaccard Dice da f Accuracy Jaccard Dice

7-kNN 0.8381 0.6106 0.7480 16 10 0.8437 0.6162 0.7516 34 0.8668 0.6625 0.7899

The second post-processing approach tests the influence of the FN classified regions in the precise performance of
the DRT region segmentation. From the implementation of this approach, the Jaccard and Dice coefficients achieved
satisfactory results reaching values of 0.6625 and 0.7899, respectively. Comparing these coefficients with the results
from the output of the classifier, it is possible to verify the significant improvement of 5% and 4% for Jaccard and
Dice coefficients, respectively. Figure 8 presents an illustrative result image from the implementation of this second
post-processing approach, where we can verify that the unification of non-consecutive DRT regions improves the
efficiency of the method.
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(a) (b)

Fig. 6. Example of OCT images. (a) Presence of shadows generates FP detections. (b) Presence of CME with a relative large dimensions and
hyperreflective membrane generates FN detections.

preprocessing to the input images. Then, the features were obtained with the same defined window size in the test and
validation stages of the methodology. As said, to ensure the accuracy of the global performance, we trained the model
using a 10-fold cross-validation with a total of 50 repetitions, being calculated the mean error/accuracy to measure the
final performance of the method.

In particular, we analyzed the efficiency of the proposed system in three main stages: firstly, we tested the detection
of DRT columns; then, we validated the segmentation results; and finally, we analyzed the post-processing strategies
to determine their influence in the reduction of the FPs and FNs rates, using the best trained classifier.

To detect the DRT edemas within the outer retina, we firstly determined the subset of features that better dis-
criminate the presence of this ME type by the application of the SFS strategy until there is no improvement in the
identification process. The majority of the selected features were taken from Gabor, LBP and HOG categories, as
they present a high capacity of differentiation between healthy retinal layer patterns and pathological regions as DRT
edemas. The thickness of the ILM/RPE and the ratio between the OPL/ISOS and ILM/RPE regions also presented a
significant relevance, being selected in the first positions given that DRT edemas imply not only an increment of the
outer retina thickness but also the increment of the entire “retinal thickening”.

Table 2 details the results that were achieved by the method using different classifiers and configurations, as well
as the application of progressive larger feature sets. A maximum of 55 selected features were established as no further
improvements were obtained from that size.

Table 2. Accuracy results that were obtained with the tested classifiers using different feature sets sizes.

N. Features 5 15 25 35 45 55

Naive Bayes 0.8898 0.9024 0.8889 0.8764 0.8716 0.8696
3-kNN 0.9086 0.9202 0.9236 0.9269 0.9293 0.9252
5-kNN 0.9068 0.9253 0.9274 0.9283 0.9282 0.9241
7-kNN 0.9100 0.9298 0.9252 0.9265 0.9275 0.9210
Parzen 0.9082 0.9245 0.9299 0.9278 0.9299 0.9281
QDC 0.9044 0.9202 0.9302 0.9257 0.9223 0.9163

Also, Table 3 presents the best feature set sizes for each classifier configuration and the corresponding obtained
accuracy. Generally, the obtained results in all the cases are satisfactory, being above a 0.86 of accuracy even for
relatively small subsets of selected features. From all of them, the best result was achieved with the 7-kNN and
21 selected features, returning a performance of 0.9366. On the contrary, the worst results were obtained using the
Naive Bayes classifier with a value of 0.9074 of accuracy and 20 selected features, also representing a satisfactory
result. With respect to the Parzen and QDC classifiers, both also offered an adequate performance, reaching accuracy
values of 0.9351 and 0.9335 with 43 and 30 selected features, respectively, at a close distance of the 7-kNN classifier
performance, reinforcing the validity of the designed methodology.

Table 3. Accuracy results that were obtained with the tested classifiers using different features set sizes.

Classifier Naive Bayes 3-kNN 5-kNN 7-kNN Parzen QDC

N. Features 20 46 18 21 43 30
Accuracy 0.9074 0.9310 0.9346 0.9366 0.9351 0.9335

We also tested the influence of the dimensions of the window size in the training and testing stages of the method-
ology. Each window is centered in the column under analysis using progressively larger window sizes and variable
heights (h), as previously described. Table 4 details the best performance that was achieved for each window size
combined with the best configuration of the analyzed classifiers. As we can see, the best accuracy result was obtained
with a h × 23 window size. Smaller window sizes do not offer the same satisfactory results, given that it does not
contain sufficient significant information to distinguish the DRT texture from the surrounding healthy tissue. On the
other hand, using too large window sizes, as h × 33, the extracted features do not incorporate new information from
the DRT regions, being the obtained accuracy relatively similar to the best window size.

Table 4. Best accuracy obtained by each tested classifier using different window sizes.

Window size h × 5 h × 11 h × 17 h × 19 h × 23 h × 25 h × 29 h × 33

7-kNN 0.8866 0.9076 0.9170 0.9210 0.9366 0.9197 0.9331 0.9291

The segmentation stage of the methodology is based on the previous DRT detection, using as reference the height
of the outer retina. To validate the performance of this stage, we used as reference two statistical metrics that are
commonly used in the literature for similar purposes: Jaccard and Dice coefficients. Moreover, to further improve the
efficiency of the segmentation stage, we analyzed the performance of the mentioned post-processing approaches for
the FP and FN rates reduction. Table 5 presents a comparative analysis using accuracy, Jaccard and Dice coefficients
for the three tested approaches: no post-processing, using the first post-processing strategy and using the second post-
processing strategy. As we can see, the results from the classifier without any post-processing strategy are satisfactory,
achieving a 0.6106 and 0.7480 of Jaccard and Dice coefficients, respectively. Figure 7 shows an example of resultant
OCT image after the application of the first post-processing approach. As we can see, the presence of artifacts in the
outer retina produces wrong detections. Given that, the first post-processing approach analyzes the best combination
of the optimal FP width (wmin) and the distance to the closer DRT columns (dmin), in order to reduce the FPs from
the classifier output. Hence, the best accuracy was obtained using values of wmin and dmin of 16 and 10, respectively,
resulting in an increase of 1% of the Jaccard and the Dice coefficients. Therefore, we can conclude that this strategy
offers a slight improvement on the segmentation performance of the DRT regions.

Table 5. Accuracy , Jaccard and Dice coefficients for the segmentation stage using the best configuration classifier.

Classifier No Post-Processing First Post-Processing Second Post-Processing
Accuracy Jaccard Dice wmin dmin Accuracy Jaccard Dice da f Accuracy Jaccard Dice

7-kNN 0.8381 0.6106 0.7480 16 10 0.8437 0.6162 0.7516 34 0.8668 0.6625 0.7899

The second post-processing approach tests the influence of the FN classified regions in the precise performance of
the DRT region segmentation. From the implementation of this approach, the Jaccard and Dice coefficients achieved
satisfactory results reaching values of 0.6625 and 0.7899, respectively. Comparing these coefficients with the results
from the output of the classifier, it is possible to verify the significant improvement of 5% and 4% for Jaccard and
Dice coefficients, respectively. Figure 8 presents an illustrative result image from the implementation of this second
post-processing approach, where we can verify that the unification of non-consecutive DRT regions improves the
efficiency of the method.
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Fig. 7. Illustrative output OCT image after the application of the first post-processing approach. Yellow regions, direct result of the classifier. Red
regions, removed columns by the application of the first post-processing approach.

Fig. 8. Illustrative output OCT image after the application of the second post-processing approach. Yellow regions, direct results from the classifier.
Green regions, result of the second post-processing approach.

Summarizing, despite the accurate performance of the different configurations, we can conclude that the best
configuration for the segmentation of the DRT edema regions includes the use of the 7-kNN classifier followed,
especially, by the application of the second post-processing approach.

4. Conclusions

The precise identification and quantification of the DRT edemas are crucial tasks for the early diagnosis of a relevant
disease as is the Macular Edema, among the main causes of blindness in the developed countries. Additionally,
a precise segmentation of the entire DRT region represents a tedious and hard issue given the absence of limiting
membranes as well as the lack of contrast of its constituting region.

Given that, in this work, a new methodology for the automatic identification and segmentation of DRT edemas
using OCT images is proposed. As said, to date, no other work faced the identification and segmentation of the DRT
type of the relevant disease as is the Macular Edema. Firstly, we restricted the search space of these edemas using,
as reference, four principal retinal layers that are initially segmented: ILM, OPL, ISOS and RPE layers. These layers
permit the restriction of the search space to the outer retina, region where the DRT edemas are originated. In this
restricted region, a complete and heterogeneous set of 307 features were extracted within windows of a defined size.
Given the high dimensionality of the feature set, the SFS feature selector was applied, reducing the dimensionality
of the feature set as well as providing to the classifier the most useful subset of features. Representative classifiers
were trained to discriminate the DRT presence. Using the best classifier configurations, we applied post-processing
strategies that address two different ways of facing the FP and FN influence in the performance of the proposed
method, improving the obtained results. Satisfactory results were obtained, being the best performance achieved by
the 7-kNN classifier using 21 features, providing a 0.6625 and a 0.7899 of Jaccard and Dice coefficients, respectively.
As future works, a further analysis should be done to include more suitable characteristics as well as test different
features selectors as wrapped-based methods. In addition, the performance of others classifiers should be analyzed,
as neural networks.
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Fig. 7. Illustrative output OCT image after the application of the first post-processing approach. Yellow regions, direct result of the classifier. Red
regions, removed columns by the application of the first post-processing approach.

Fig. 8. Illustrative output OCT image after the application of the second post-processing approach. Yellow regions, direct results from the classifier.
Green regions, result of the second post-processing approach.

Summarizing, despite the accurate performance of the different configurations, we can conclude that the best
configuration for the segmentation of the DRT edema regions includes the use of the 7-kNN classifier followed,
especially, by the application of the second post-processing approach.

4. Conclusions

The precise identification and quantification of the DRT edemas are crucial tasks for the early diagnosis of a relevant
disease as is the Macular Edema, among the main causes of blindness in the developed countries. Additionally,
a precise segmentation of the entire DRT region represents a tedious and hard issue given the absence of limiting
membranes as well as the lack of contrast of its constituting region.

Given that, in this work, a new methodology for the automatic identification and segmentation of DRT edemas
using OCT images is proposed. As said, to date, no other work faced the identification and segmentation of the DRT
type of the relevant disease as is the Macular Edema. Firstly, we restricted the search space of these edemas using,
as reference, four principal retinal layers that are initially segmented: ILM, OPL, ISOS and RPE layers. These layers
permit the restriction of the search space to the outer retina, region where the DRT edemas are originated. In this
restricted region, a complete and heterogeneous set of 307 features were extracted within windows of a defined size.
Given the high dimensionality of the feature set, the SFS feature selector was applied, reducing the dimensionality
of the feature set as well as providing to the classifier the most useful subset of features. Representative classifiers
were trained to discriminate the DRT presence. Using the best classifier configurations, we applied post-processing
strategies that address two different ways of facing the FP and FN influence in the performance of the proposed
method, improving the obtained results. Satisfactory results were obtained, being the best performance achieved by
the 7-kNN classifier using 21 features, providing a 0.6625 and a 0.7899 of Jaccard and Dice coefficients, respectively.
As future works, a further analysis should be done to include more suitable characteristics as well as test different
features selectors as wrapped-based methods. In addition, the performance of others classifiers should be analyzed,
as neural networks.
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