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Abstract—Central serous chorioretinopathy is one of the most
frequent causes of vision impairment among middle-aged adults.
Optical Coherence Tomography (OCT) is a non-invasive diag-
nostic technique that is commonly used for the monitoring of
this relevant eye disease. In this context, this paper proposes a
fully automatic system for the characterization of intraretinal
pathological fluid regions associated with central serous chori-
oretinopathy using OCT scans. To achieve this, we adapted an
end-to-end fully convolutional architecture for semantic pixel-
wise segmentation. The proposed methodology was tested using
a heterogeneous set of 100 OCT scans of different patients. Satis-
factory results were obtained, reaching values of 0.9954 ± 0.0007,
0.8792 ± 0.0079 and 0.9651 ± 0.0041 for the mean Accuracy,
mean Jaccard index and mean Dice coefficient, respectively. The
proposed system also demonstrated its competitive performance
with respect to other state-of-the-art approaches.

Index Terms—Computer-aided diagnosis, retinal imaging, op-
tical coherence tomography, central serous chorioretinopathy,
segmentation

I. INTRODUCTION

Central serous chorioretinopathy, the fourth most frequent

encountered non-surgical retinopathy, is a posterior segment

disorder characterized by the serous detachment of the neu-

rosensory retina that is associated with leakage of fluid from

the choriocapillaris through the retinal pigment epithelium

surface [1]. This relevant eye disease is a common cause

of visual impairment among young and middle-aged adults

worldwide, being more frequent in men than women [2].

Nowadays, the diagnosis and monitoring processes of pa-

tients with central serous chorioretinopathy disease are per-

formed through the visual inspection of Optical Coherence
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Tomography (OCT) scans [3]. Hence, OCT constitutes a non-

invasive optical imaging modality that allows the acquisition

of cross-sectional tomographic scans in real-time [4]. This

acquisition technique offers a micrometer-level resolution that

allows a complete visualization of the main ocular tissues [5].

In Fig. 1, we can observe representative examples of OCT

scans that were taken from patients with and without central

serous chorioretinopathy disease, where we can observe an

abnormal leakage of fluid from the choriocapillaris in the

central macular region.

In daily clinical practice, the diagnosis and monitoring pro-

cesses of patients with central serous chorioretinopathy disease

are performed through the visual inspection of several OCT

scans by the clinicians, a process which is extremely tedious

and time-consuming [3]. For that reason, a fully automatic

system for the characterization of intraretinal pathological fluid

regions associated with the central serous chorioretinopathy

using OCT scans is significantly helpful, reducing drasticaly

the load of work.

Given the potential of the OCT image modality, over the

recent years, different computational proposals were presented

related to the automatic segmentation of intraretinal fluid

regions using OCT scans over a disparity of diseases. Some

examples of that can be found in the work of Roy et al.
[6], using a end-to-end fully convolutional architecture called

ReLayNet; Lee et al. [7] with a Convolutional Neural Network

(CNN); Moura et al. [8] using different image processing

techniques; Vidal et al. [9] using a machine learning strategy

combined with enhanced heat maps; Girish et al. [10] using

a Fully Convolutional Network (FCN) that was adapted by

the U-Net [11] architecture; Samagaio et al. [12] combining

different image processing and machine learning strategies to

characterize different types of macular edemas; Wu et al. [13]

with a strategy based on the maximum flow optimization algo-

rithm combined with the probability map that was generated

by a random forest classification; and Gao et al. [14] using

multi-level feature representations and area-constraint fully

convolutional network. Rao et al. [15] proposed a automatic

segmentation of sub-retinal fluid regions in OCT scans using

a deep learning strategy.
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Fig. 1. Representative examples of OCT images. 1st row, OCT images without the presence of central serous chorioretinopathy. 2nd row, OCT images with
the presence of central serous chorioretinopathy.

Despite the satisfactory results obtained by these works,

most of them only address the segmentation of intraretinal

fluid regions in patients with diabetic macular edema or age-

related macular degeneration. In this work, we propose an

end-to-end fully automatic system for the characterization

of intraretinal pathological fluid regions associated with the

central serous chorioretinopathy using OCT scans, an oph-

thalmic image modality that is increasing in popularity and

clinical use. To achieve this, we adapted to this issue a fully

convolutional neural network architecture for semantic pixel-

wise segmentation with a great potential. Additionally, the

proposed system graphically presents the results of the seg-

mented pathological regions, facilitating the posterior analysis

and diagnosis of the patients by the clinical experts.

This paper is organized as follows: Section II describes the

materials and methods that were used in this research work.

Results and discussions are presented and discussed in Section

III, respectively. Finally, Section IV shows the most relevant

conclusions of the work as well as the presentation of future

lines of research.

II. MATERIALS AND METHODS

A. Network Architecture

Deep learning architectures are widely used in the field

of medical imaging, commonly demonstrating superiority in

both terms of time efficiency and prediction accuracy. In this

work, we use a neural network architecture inspired by SegNet

[16], given its simplicity, computational performance and

adequate results for many relevant image segmentation issues

[17]–[19]. In addition, SegNet architecture presents reduced

memory requirements in comparison with other architectures

during both the training and test stages and, consequently,

the resulting model size is much smaller than those obtained

from other architectures such as FCN, U-NET or DeconvNet.

This network architecture is composed by an encoder and a

corresponding decoder structures, followed by a final pixel-

wise classification layer, as illustrated in Figure 2. In particular,

the encoder block contains of 13 convolutional layers which

correspond to the first 13 convolutional layers in the VGG-

16 architecture [20]. In the case of the decoder part, the

main role is to project the discriminatory semantic features

learned by the encoder. Specifically, the decoder structure uses

pooling indexes that are calculated in the pooling layers of the

corresponding encoder to perform a non-linear up-sampling,

generating a map of pixel-wise probabilities belonging to

each class. Finally, the feature map of the final decoder layer

is processed by the Softmax classification layer in the final

pixel-wise classification between both the pathological and

non-pathological regions, ensuring a well-behaved probability

distribution function.

B. Training

Regarding the training stage, the used OCT image dataset

was randomly divided into 2 smaller datasets, with 60% of

cases for training and the remaining 40% for testing. The

SegNet architecture was training using the Stochastic Gradient

Descent with Momentum (SGDM) optimizer [21] with a

constant learning rate of 0.001, a first-order momentum of 0.5
and a mini-batch size of 5. To correctly assess the feasibility

of the problem, we follow a 10-fold cross-validation approach,

where 10 repetitions with different training-test splits are

performed, being calculated the mean accuracy and the mean
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Fig. 2. An illustration of the SegNet architecture that was adapted for the experiments of this work. The encoder block consists of 13 convolutional layers
which correspond to the first 13 convolutional layers in the VGG-16 architecture. The feature map of the final decoder layer is processed by the Softmax
classification layer in the final pixel-wise classification between both the pathological and non-pathological classes.

cross-entropy loss [22] to illustrate the overall performance of

the proposed system, as Eq. 1 establishes:

L = −Y · log(Ŷ ) (1)

where Y represents the ground truth values and Ŷ represents

the estimated values for each identified category. Additionally,

in order to mitigate the issue of class unbalance that is typical

in this segmentation issue, we used the median frequency

balancing [16] where the weight assigned each class (patholog-

ical and non-pathological) is the corresponding inverse class

frequency multiplied by the median of all class frequencies in

the entire OCT dataset, according to Eq. 2:

ωc =
median(f(c))

f(c)
(2)

where f(c) is the number of pixels of class c divided by

the total number of pixels in OCT images where c is present,

and median(f(c)) is the median of all frequencies.

C. Data Augmentation

Data augmentation is a popular technique widely used in

deep learning strategies to reduce overfitting and make the

models more robust, being especially useful for small datasets

[23], [24]. In this work, we apply different combinations of

affine image transformations to increase only the training data

and improve the performance of the network architecture for

segmentation of pathological fluid regions associated with

the central serous chorioretinopathy using OCT scans. In

particular, we generated a set of random values for scaling

in the range [0.5, 1], rotation in the range [0, 180] degrees,

and rigid translation in the range [-10 10] along the horizontal

and vertical direction.

D. Dataset

The proposed method was validated using a heterogeneous

image dataset that was specifically designed for the study of

this relevant eye disease. In particular, the proposed dataset

is composed of 100 OCT scans from 100 different patients,

being 15 healthy and 85 pathological patients diagnosed with

central serous chorioretinopathy. These scans were taken with

a confocal scanning laser ophthalmoscope coupled with an

SD-OCT device (Spectralis, Heidelberg Engineering). The

OCT scans are centered on the macula, from both left and

right eyes with a variability of configurations using 1-Line and

the 7-Line pre-set scan protocols. All scans were manually

labeled by an expert, precisely segmenting all the existing

target pathological fluid regions. The study was approved by

the local ethics committee and complied with the principles

of the Declaration of Helsinki.

E. Evaluation

In order to quantitatively evaluate whether the trained model

has generally learned about the domain, an analysis of their

capability for fluid region segmentation was performed. In this

way, the proposed method was evaluated using statistics that

are commonly used in the state of the art to measure the

performance of computational proposals in similar segmenta-

tion tasks. Thus, Accuracy, Jaccard index and Dice similarity

coefficient (Eqs. 3, 4 and 5, respectively) were calculated

for the quantitative validation of the segmentation results.

These measures use as reference the True Positives (TP), False

Positives (FP), True Negatives (TN), and False Negatives (FN):

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Jaccard =
TP

TP + FP + FN
(4)

Dice =
2× TP

2× TP + FP + FN
(5)

III. RESULTS AND DISCUSSION

To correctly assess the suitability of the proposed system,

we follow a 10-fold cross-validation approach, where 10

independent repetitions with different training-test splits were

performed. Furthermore, after 100 epochs, the training stage

was stopped due to the absence of further improvement in
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both accuracy and cross-entropy loss. Figure 3 shows the

performance that was obtained from the deep learning-based

model over the repetitions of the training stage. As we can

see, our model reaches stability after 10 epochs, with a best

mean accuracy of 0.9965± 0.0001 in the epoch 99. Comple-

mentary, in Fig. 4, we can observe a similar behavior with

the cross-entropy loss, demonstrating that our model presents

a significative generalization capability with an excellent and

stable classification performance.
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Fig. 3. Mean ± standard deviation training accuracy after the 10 independent
repetitions. A logarithmic scale has been set to correctly display the values
for a better understanding of the results.
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Fig. 4. Mean ± standard deviation training cross-entropy loss after the 10
independent repetitions. A logarithmic scale has been set to correctly display
the values for a better understanding of the results.

Table I summarizes the results of the proposed system

in terms of analysis of Accuracy, Jaccard index and Dice

similarity coefficient. In particular, we present the results

that were obtained in the test stage with OCT scans of

patients with pathological and non-pathological conditions. In

general, as we can see, satisfactory results were achieved,

with a global Accuracy of 0.9954± 0.0007, a global Jaccard

index of 0.8792 ± 0.0079 and a global Dice coefficient of

0.9651±0.0041, demonstrating the robustness of the proposed

system.

As illustration, Fig. 5 presents different examples of com-

plex pathological intraretinal fluid regions that were correctly

identified and characterized. As we can see, our method

presents a satisfactory segmentation performance and an in-

tuitive graphical representation that can help the ophthal-

mologists to produce more precise diagnosis and appropriate

treatments of this relevant eye fundus disease.

Despite the satisfactory results that were obtained, the

method presents some intrinsic limitations due to the complex

characteristics that may be produced by this relevant eye

disease in the OCT scans. In particular, some cases of misclas-

sified pathological fluid regions wich were originated by a poor

contrast, the significant levels of noise that are characteristic

of this image modality or the projection of shadows derived

by the retinal vascularity (Figure 6, 1st row). Other times,

the presence of small artifacts that are typically found in the

OCT scans generates patterns of intensities with an appearance

similar to those of the subretinal fluid regions (Figure 6, 2nd

row).

In addition, we compared our method with the few proposals

of the literature that were proposed for the segmentation of

intraretinal pathological fluid regions associated with the cen-

tral serous chorioretinopathy, previously presented in Section

I. Table II presents the best Dice similarity coefficient results

of the proposed method compared to the other state-of-the-

art proposals. As we can see, our end-to-end method offers

a competitive performance without pre-processing or post-

processing stages, outperforming the rest of the strategies,

despite that these proposals were validated using OCT images

that were acquired using different settings and, therefore,

presenting different image characteristics, such as axial pixel-

level resolution, lateral pixel-level resolution, imaging depth,

bit frame rate, etc.

IV. CONCLUSIONS

In this work, we propose an end-to-end methodology for

the automatic identification and segmentation of intraretinal

fluid regions in OCT scans that are associated with the central

serous chorioretinopathy disease. To achieve this, we adapted

a fully convolutional architecture inspired by SegNet neural

network with a great potential, omitting any pre-processing

or post-processing stage. Additionally, the proposed system

graphically presents the results of the segmented regions, char-

acterizing them between pathological and non-pathological

regions. In this way, this fully automatic system provides

crucial information that facilitates a more complete analysis

of the clinical expert allowing, therefore, more accurate early

diagnosis of this relevant disease.
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TABLE I
ACCURACY, JACCARD INDEX AND DICE SIMILARITY COEFFICIENT OF THE TEST STAGE FROM PATIENTS WITH PATHOLOGICAL AND NON-PATHOLOGICAL

CONDITIONS AFTER 10 INDEPENDENT EXPERIMENTS. THE OBTAINED RESULTS ARE PRESENTED IN TERMS OF MEAN ± STANDARD DEVIATION IN

PIXELS.

Accuracy Jaccard Dice
Healthy 0.9967 ± 0.0001 0.9967 ± 0.0001 0.9912 ± 0.0010

Pathological 0.9942 ± 0.0015 0.7618 ± 0.0157 0.9238 ± 0.0076
Global 0.9954 ± 0.0007 0.8792 ± 0.0079 0.9651 ± 0.0041

(a) (b)

(c) (d)

Fig. 5. Representative examples of segmentation and characterization of intraretinal fluid regions in OCT scans. (a) Extraction of the intraretinal fluid
segmentation method in OCT scans from a healthy patient. (b), (c) & (d) Extractions of the intraretinal fluid segmentation method in OCT scans from patients
with central serous chorioretinopathy disease.

Fig. 6. Representative examples of OCT retinal images with the segmentation of intraretinal fluid regions that are associated with the central serous
chorioretinopathy disease. 1st column, results of the intraretinal fluid segmentation method. 2nd column, manual labeling of an expert. 3rd column, overlapping
of the manual labeling of an expert (white) and the resulting region of intraretinal fluid segmentation (green).
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TABLE II
CENTRAL SEROUS CHORIORETINOPATHY SEGMENTATION PERFORMANCE

RESULTS OF THE PROPOSED METHOD COMPARED TO THE OTHER

STATE-OF-THE-ART PROPOSALS.

State-of-the-art Jaccard Dice
Methods index coefficient

(Rao, 2019) [15] – 0.910
(Wu, 2017) [13] – 0.934
(Gao, 2019) [14] – 0.953

Our Method 0.8792 ± 0.0079 0.9651 ± 0.0041

Satisfactory results were obtained from the designed exper-

iments, reaching values of 0.9954 ± 0.0007, 0.8792 ± 0.0079
and 0.9651 ± 0.0041 for the mean Accuracy, mean Jaccard

index and mean Dice coefficient, respectively. Finally, the

obtained results demonstrate the advantages of our proposal

over the previous existing methods. In that sense, the deep

encoder-decoder architecture allows to further take advantage

of the potential modern deep learning algorithms. This leads

to an improvement in the classification of pathological and

non-pathological regions in OCT scans. As future work, we

plan to extend this methodology to segment other pathological

structures of the eye fundus that may be derived from many

types of ocular or systemic diseases.
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