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Abstract

Optical Coherence Tomography (OCT) constitutes an imaging technique that is 

increasing its popularity in the ophthalmology field, since it offers a more complete 

set of information about the main retinal structures. Hence, it offers detailed 

information about the eye fundus morphology, allowing the identification of many 

intraretinal pathological signs. For that reason, over the recent years, Computer-

Aided Diagnosis (CAD) systems have spread to work with this image modality and 

analyze its information. A crucial step for the analysis of the retinal tissues implies 

the identification and delimitation of the different retinal layers. In this context, we 

present in this work a fully automatic method for the identification of the main 

retinal layers that delimits the retinal region. Thus, an active contour-based model 

was completely adapted and optimized to segment these main retinal boundaries. 

This fully automatic method uses the information of the horizontal placement of 

these retinal layers and their relative location over the analyzed images to restrict 

the search space, considering the presence of shadows that are normally generated 

by pathological or non-pathological artifacts. The validation process was done using 

the groundtruth of an expert ophthalmologist analyzing healthy as well as unhealthy 
.e01271

vier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01271
mailto:mortega@udc.es
https://doi.org/10.1016/j.heliyon.2019.e01271
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.heliyon.2019.e01271
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2019.e01271&domain=pdf


Article No~e01271

2 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 Published by Else
Figure 1. Analyzed retinal layer boundaries and regions of clinical interest in an OCT image.

patients with different degrees of diabetic retinopathy (without macular edema, with 

macular edema and with lesions in the photoreceptor layers). Quantitative results are 

in line with the state of the art of this domain, providing accurate segmentations of 

the retinal layers even when significative pathological alterations are present in the 

eye fundus. Therefore, the proposed method is robust enough to be used in complex 

environments, making it feasible for the ophthalmologists in their routine clinical 

practice.

Keywords: Computer science, Medical imaging, Ophthalmology

1. Introduction

Nowadays, many significative diseases can be identified by the analysis of retinal 

images [1]. In this line, a precise segmentation of the main ocular structures [2] [3]

is useful for the posterior diagnosis and treatment of relevant retinal and systemic 

pathologies [4].

Among the different retinal image modalities, Optical Coherence Tomography 

(OCT) is a powerful tool for the diagnosis of retinal diseases, since the image 

acquisition in these devices consists in a contactless, non-invasive method which 

gives a set of images of the main retinal structures in real time [5, 6]. Nowadays, OCT 

imaging can be employed in the analysis and diagnose of many relevant diseases: 

the information regarding the thickness of OCT layers is useful in the diagnosis of 

glaucoma [7], macular degeneration [8, 9] or diabetic retinopathy [10], among others. 

Also, the retinal thinning is studied in multiple sclerosis [11]. Therefore, an adequate 

segmentation of the layers of the retina is crucial for clinical experts as they delimit 

the region of interest as well as offer relevant clinical information.

In this work, the top boundaries of the Internal Limiting Membrane (ILM) and the 

Ellipsoid (limiting with the Myoid) (M/E) are included, as well as both boundaries of 

the Retinal Pigment Epithelium-Bruch’s Complex, limiting with the Interdigitation 

zone (I/RPE) and the Choroid (RPE/C), see Figure 1. These layers correspond 
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to the retinal thickness (ILM and RPE/C) and the photoreceptor zone (M/E and 

I/RPE), also known as the External Zone of Photoreceptors (EZPR). Many studies 

correlated these retinal regions with the visual acuity measurement [12, 13, 14]. 

The efficacy of therapies to treat some of the most common eye-diseases, including 

diabetic macular edema or age-related macular degeneration, are usually evaluated 

by the retinal thickness (ILM and RPE/C) measurement [15, 16, 17]. Additionally, 

the photoreceptor zone (M/E and I/RPE) is also affected by these diseases and, 

therefore, is correlated with the visual acuity loss [18, 19, 20]. Given this clinical 

background and relevance, we aimed the mentioned layers as the most representative 

and informative ones, delimiting the regions of the most studied diseases that use the 

analysis of OCT imaging as reference.

Different methods have been proposed in previous works to segment the layers of 

the retina. As reference, a graph-based technique is presented in [21, 22], achieving 

the segmentation by finding the minimum-closed-set in the geometric graph, while 

in [23] the proposal includes a multi-scale 3-D graph search for the optic nerve head 

segmentation. Dynamic programming was used in [24] to automatically segment 

seven retinal layers. A sparsity-based process is presented in [25], where the input 

image is transformed into a layer-like domain to the later application of graph-

theory. A further proposal with diffusion maps using a sparse representation of the 

graphs is presented in [26], where its main limitation is the influence of the value 

for the size of the rectangles (or cubes) used in the approach. In [27], the authors 

proposed a learning strategy for the retinal layers segmentation task. This method 

uses a random forest (RF) algorithm for the classification of the pixels between 

these boundaries. A dual-gradient-based method is proposed in [28] to segment 

nine intra-retinal boundaries, combining gradient information to achieve the shortest 

path-based segmentation. Although the results were promising, the segmentation in 

the area of the fovea was not accurate regarding the manual expert segmentations. 

That work is extended in [29], where the segmentation is obtained to construct 

layer maps representing the thickness in a context of pathological patients. For this 

kind of segmentation tasks, the active contour models seem suitable. A multi-object 

geometric deformable model is used in [30], where nine retinal layers are segmented. 

In [31], the authors proposed an adapted the Chan-Vese’s model [32], an active 

contour-based model using a Mumford-Shah functional [33], for the extraction of 

the retinal layers in OCT images of rodents. Posteriorly, this strategy was refined in a 

semiautomatic method presented in [34]. Although this method achieved an adequate 

performance, it still presents some intrinsic limitations of the active contour models 

as, for reference, the improvable segmentation results in images with intensity 

inhomogeneity, the sensitivity to the initial location of the level set contours in 

complicated images and the high time-consuming of the re-initialization step of the 

algorithm [35, 36].
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Figure 2. OCT images from a healthy patient (a) and a patient with some pathology altering the EZPR (b). 
The arrows identify regions where this layer is altered or almost missing.

Recently, deep learning-based strategies have been used successfully for the

automatic retinal layer segmentation issue. In [37], the authors proposed an automatic 

system that uses convolutional neural networks (CNN) for the thickness

segmentation in OCT scans. Other work, [38], also proposed a CNN based deep 

learning approach to simultaneously segment three surfaces. This approach

demonstrated a low computation cost and a higher performance compared to the 

graph based approaches and the U-NET learning-based method. In [39], the authors 

proposed a method also using a CNN implementation, followed by an analysis of 

the effects of the patch size as well as the network architecture design on the CNN 

performance and the subsequent layer segmentation. A new fully-convolutional 

architecture was presented in [40]. This architecture, called ReLayNet, uses a 

contracting path of encoders to learn a hierarchy of contextual features, followed 

by an expansive path as decoder for the retinal layer and fluid segmentation.

The main contributions of the paper include: (i) a new strategy based on an active 

contour model that uses the horizontal placement of the layers of the retina and 

their relative location over the analyzed images to restrict the search space and to 

enclose the possible movements of the model to reach the different desired layers; 

(ii) not all the proposals to segment the layers of the retina considered the presence 

of shades that are normally generated by blood vessels, exudates, cysts or any other 

pathological or non-pathological artifact; (iii) to date, none proposal considered the 

pathological scenarios (patients without macular edema, with macular edema and 

with lesions in the photoreceptor layers) where the retinal layers suffer significative 

alterations, including the fusion of some of them or the possibility of their absence 

in particular regions of the retina, as illustrated in Figure 2.

In this paper, we propose a fully automatic methodology to segment the main retinal 

layer boundaries using OCT images, not only when the layers are clearly perceived 

but also in the previously exposed situations. The proposed method, based on active 

contours, was completely adapted and optimized for this specific search space using 

anatomical knowledge of the retinal layers. Additionally, the adopted segmentation 

method includes specific refinement phases to correct possible mistakes and improve 

as much as possible the performance of the layer segmentation task. Preliminary 
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Figure 3. Phases of the presented methodology.

results of an early proposal were presented in [41], initially demonstrating the 

potential of the followed strategy.

This paper is organized as follows: Section 2 presents the proposed methodology 

for the automatic retinal layer segmentation and the characteristics of all its stages. 

Section 3 presents the results that were obtained with the method. Finally, Section 4

presents the conclusions about the proposed system as well as possible future lines 

of work.

2. Methodology

Generally, the methodology, shown schematically in Figure 3, is divided in three 

main stages: firstly, in the preprocessing stage, the region of interest (ROI) is 

bounded. Thus, a first approach for the boundary is obtained to initialize the active 

contour that is used in the next stage; secondly, the automatic segmentation of the 

retinal layers is performed; and finally, refinement processes are applied to obtain a 

better adjustment. Further details about the stages are going to be discussed next.

2.1. Preprocessing

Considering that the minimization process is sensitive to fall in local minima, the 

contour initialization must be close to the real existing boundary location. Thus, the 

first step consists of bounding the ROI where the searching process must be done. 

Also, this is useful to reduce the computational cost of the method.

For that purpose, enhancement operations are applied, mainly based on smoothing 

filters. Then, as all the target boundaries are determined by bright surfaces, the 

image is thresholded depending on the intensity distribution of the image. To do 

that, a threshold covering a percent of the darkest pixels in the image is applied. The 

binarized image is processed with morphological operators to fill the holes. Finally, 

a first approach for the boundary is determined by the pixels that remains at each 

column. With the aim of obtaining a smooth initial boundary for the next phase, their 

points are fitted to a curve. Figure 4 shows a representative example of this process 

(in this case, for the RPE/C layer), where the first approach of the boundary is given 

by the pixels of the bottom boundary of the ROI (b), being shown the obtained curve 

in (c).
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Figure 4. First approach obtained for a generic layer boundary (in this case, RPE/C): (a) original image; 
(b) mask covering the ROI; (c) boundary in red as result of the fitting points of the last row of the mask.

These steps are only used to segment the ILM and RPE/C layers, as they serve as 

boundaries of the retina. Therefore, active contours for inner layers can be initialized 

based on them.

2.2. Retinal Layers Segmentation

Based on anatomical knowledge of the retinal layers, we designed a strategy 

completely adapted and optimized using an active contour model for this specific 

segmentation task. Kass et al. [42] introduce the concept of snakes, or active 

contours. An active contour is an energy-minimizing spline guided by external and 

internal forces that pull the contour towards features in the image, following:

𝐸𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐸𝑖𝑛𝑡(𝑣(𝑠)) + 𝐸𝑒𝑥𝑡(𝑣(𝑠))𝑑𝑠 (1)

𝐸𝑖𝑛𝑡 =
1
2
(𝛼|𝑣𝑠(𝑠)|2) + 1

2
(𝛽|𝑣𝑠𝑠(𝑠)|2) (2)

𝐸𝑒𝑥𝑡 = −|∇𝐼(𝑠)|2 (3)

where the internal energy 𝐸𝑖𝑛𝑡 is usually defined as a function of a first-order term 

𝑣𝑠(𝑠)2, which gives a measure of elasticity, and the second-order term 𝑣𝑠𝑠(𝑠)2, which 

makes the contour to acquire a thin-plate behavior representing the curvature, both 

governed by parameters 𝛼 and 𝛽, respectively. External energy, 𝐸𝑒𝑥𝑡, attracts the 

contour to the desired intensity characteristics of the image 𝐼 .

In this work, a boundary corresponds to a sequence of points, one per column of the 

image, being the topology used in this problem a lineal sequence of 𝑛𝑎𝑐 equidistant 

nodes. Each node corresponds to one pixel of the image, being connected to two 

neighbors, except for the first and the last ones, which are located in the first and last 

columns. During the minimization process, the nodes can make displacements into 

a neighborhood of size 𝑤𝑛 ×ℎ𝑛 pixels, except for the nodes in the limits, which only 

can move along the rows. The model energy minimization was done using a greedy 

approach for simplicity and optimal computational cost, but other techniques could 

be applied.

The model herein proposed is designed to work over two images at the same time, 

each one enhanced in a different way. The idea is to be able to combine different levels 

of information detail into the model. The first image is the original one smoothed and 
on.2019.e01271
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Figure 5. Images used in the energy-minimization process: (a) sample original image; (b) first image used 
in the process, resulting of enhanced contrast; (c) second image used in the process, resulting of coarse 
preprocessing (median filter of 𝑘𝑥 × 𝑘𝑦 = 19 × 3).

with enhanced contrast, containing precise information. The second image provides a 

coarse level of information, useful in the first steps of the energy minimization. In this 

image, bright areas have been remarked using a more aggressive process: firstly, the 

image is blurred with a median filter of 𝑘𝑥×𝑘𝑦 pixels; then, morphological operators 

and Gaussian blurring are applied. Figure 5 shows a sample image and results after 

both processing approaches, being (b) and (c) the images that are considered in the 

energy-minimization process.

Considering that the external energy is defined as a function of the edges and the 

intensity of the image, the different terms used in this problem are grouped in edge-

based terms and intensity-based terms.

Edge-based information

Edges are extracted with the Sobel algorithm with Non-maximum suppression. Since 

the layer boundaries are determined by light-to-dark or dark-to-light transitions 

for each case, only edges associated to the considered transition are extracted. 

For instance, while the ILM layer corresponds to a dark-to-light edges, RPE/C is 

associated to light-to-dark ones.

With regards to the image edges, their importance can be determined on two 

ways. Firstly, the gradient can consider the intensity variation over non-adjacent 

pixels. Thus, it is computed considering a given pixel and another one located at a 

distance 𝑑𝑒𝑑𝑔𝑒. This is useful to obtain edges that are associated to the different layer 

boundaries that are considered in this work, because some of them, such as ILM, are 

more immediate than other ones. On the other hand, edges with low magnitude can 

be discarded using a threshold 𝑡ℎ𝑒𝑑𝑔𝑒.

Although the gradient distance seems useful in most of the cases, after some 

initial test, that idea can not be universally generalized for every retinal location or 

appearance. This is given by the fact that, when the retinal layers disposition in the 

image present a vertical sufficient slope, the gradient distance makes the contour be 

attracted to the nearest edges, which are not usually the correct ones. This situation 

is described in Figure 6 for an easier understanding. To take into account these kind 

of situations, the distance to the best edge is rewritten. Thus, for each pixel, only the 
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Figure 6. Influence of the gradient distance computed over a neighborhood in the active contour evolution, 
with the remarkable ROI squared: (a) input image after enhancement, with the initial active contour; 
(b) strongest edges per column; (c) image of gradient distance, with zoom applied over the ROI, showing 
schematically a node (green circle) and two near edges (black squares), being the nearest (red circle) which 
attracts the node; (d) result using gradient distance in (c); (e) image of gradient distance computed over 
a neighborhood of 𝑛𝑐𝑜𝑙 columns (limit marked by black dot-line), with zoom showing how the limitation 
is solved; (f) result using gradient distance in (e).

edges located in its 𝑛𝑐𝑜𝑙 nearest columns are considered. Differences in results are 

reflected in Figure 6(e) and (f).

The gradient distance term is extracted for both the smoothed and the preprocessed 

images, controlled by 𝑤2 and 𝑤2𝑝𝑟𝑒𝑝, respectively. The term reflecting information 

of edges is extracted only for the second image, governed by 𝑤3𝑝𝑟𝑒𝑝. With the 

purpose of a fast evolution of the contour and also to avoid the influence of some 

edges that would make the model reaching wrong segmentations, a new energy 

term is added governed by 𝑤4𝑝𝑟𝑒𝑝, representing the distance between a node and the 

strongest edge in the search area. This term constitutes an important heuristic, which 

facilitates the movement of the contour in the first steps of its evolution, although it 

should be relaxed later in order to perform a finer adjustment.

Intensity-based information

This term is computed as follows: firstly, addition of the intensities in the 𝑛𝜅 pixels 

above (or below) is obtained; then, pixel with highest (or lowest) value at each 

column is marked, building image 𝐼𝑎𝑑𝑑 . Thus, term 𝜅𝑎𝑑𝑑 is defined as the distance 

of each pixel in the image to the nearest non-zero pixel in 𝐼𝑎𝑑𝑑 . Since this term 

is equivalent to the gradient-distance over the image 𝐼𝑎𝑑𝑑 , it is computed using a 

neighborhood 𝑛𝑐𝑜𝑙 to avoid analogous problems of those presented in Figure 6.

𝑎𝑑𝑑
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Figure 7. Generation of the entire boundary: (a) nodes after the minimization process (red points); 
(b) interpolated layer boundary points (red line).

Apart from gradient and intensity-based information, the proposed model includes 

an additional term governed by 𝜀 to reinforce regions located on the top part of 

the image with respect to others at the bottom. This term is only used for the ILM 

segmentation.

Once all the energy terms are known, it is necessary to introduce that, depending on 

the complexity and the environment of each boundary, the contour adjustment is not 

performed with constant energy weights along the energy minimization process (the 

objective to minimize is not constant). This is derived by the initial interest in driving 

the contour evolution avoiding possible obstacles during the first steps of the process, 

while in later stages, the control over its deformations is essential to achieve a smooth 

and refined adjustment. According to that, the adjustment is tackled in 𝑛𝑠 steps, 

modifying the parameters dynamically in function of the boundary complexity and 

the information to be considered. In general, the external energy presents a highest 

influence in the first steps to attract the contour to the desired features, while the 

internal energy is predominant at the end of the process to guarantee the continuity 

and smoothness of the model.

After the contour adjustment, its nodes are interpolated to obtain the entire boundary 

(see Figure 7). Lineal interpolation is used in this work, considering that there are 

enough nodes to cover the boundary and represent properly the details of its shape.

Once the general method segments a generic layer boundary in the OCT retinal 

images, particular features involved in each boundary can be described.

2.2.1. Segmentation of the ILM layer

As the ILM is placed at the top of the image, the first edge is searched in the binarized 

image, allowing to initialize the active contour and the mask to be used in the energy 

minimization process around it, as Figure 8 represents.

It is remarkable that the involved steps are also useful to discard misleading regions 

from the ROI. For instance, when the Posterior Hyaloide is present (see Figure 9(a)), 

the implemented process avoids the detection of that region, bounding the real ILM. 

Thus, the region where retinal layers are located is delimited.
on.2019.e01271
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Figure 8. Preprocessing of the ILM layer: (a) original image; (b) mask with the initial approach for the 
layer boundary (red line) and the limits considered to bound the ROI (red dot-rectangle) and (c) image 
after preprocessing.

Figure 9. Presence of (a) Posterior Hyaloid and (b) ERM, indicated by arrows.

Whereas the obtained boundary is used to initialize the contour, the mask is also 

useful to bound the region where the model can be moved. In this sense, only the 

edges corresponding to dark-to-light transitions are considered. It was observed that 

some nodes can be attracted to M/E, specially in the limits of the image, where the 

information is low. In order to avoid this behavior, as said, the term 𝜀 is included, 

encouraging regions that are located at the top of the image.

On the other hand, the presence of the Epiretinal Membrane (ERM) must be taken 

into account, because it deteriorates the contour adjustment, as it can cause a stronger 

dark-to-light transition than the ILM. A sample image including this layer is shown 

in Figure 9(b). This problem was presented and solved in [43], where a graph-based 

method is used to segment the ILM boundary. In that work, edges in the same column 

with similar direction, located nearby, are detected. Thus, the edge, located above is 

penalized to encourage the detection of the other one. A similar idea is applied here, 

by modifying the image of the edges and therefore, the gradient distance, with the 

purpose of attracting the contour to the correct boundary.

In order to segment the ILM, the adjustment is done in 𝑛𝑠 = 3 steps: initially, the 

external energy presents a high influence; next, this relevance lies on the internal 

energy and finally, more nodes are added in the middle part of the image, where the 
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Figure 10. Segmentation of the ILM layer: (a) initial active contour after preprocessing; (b) active contour 
after first step; (c) active contour after second step and adding nodes in the center of the image; (d) layer 
boundary as result of interpolating nodes in (c).

Figure 11. Main steps of the minimization process.

fovea should be located, to perform a more detailed and adjusted segmentation. Once 

the contour is adjusted, the nodes are interpolated to obtain the entire layer. Figure 10

shows the evolution of the active contour and the final segmentation obtained over 

the sample image of Figure 8.

2.2.2. Segmentation of the RPE/C layer

Analogously to the ILM case, the segmentation of the RPE/C layer begins bounding 

the ROI and providing a first approach for the active contour. Thus, after generating 

and processing the binarized image, the last edge is searched (which should be near 

the real location of the RPE/C layer) and a curve is fitted to that. Using this approach, 

the mask used in the minimization process is delimited establishing a region above 

the curve used to initialize the active contour.

The active contour is configured as follows: the gradient information only considers 

light-to-dark transitions. Regarding the intensity-based information, light areas are 

encouraged to attract the contour to the desired region.

The minimization process is composed by the steps shown in Figure 11: firstly, the 

contour is attracted to the boundary in a coarse way. Then, it is fitted to a curve 

ignoring information in the extrema, given the image sides present lower information 

and the nodes usually fall in local minima. This curve is used as initialization of a new 

contour, replacing the first one. With the new contour, a more accurate adjustment is 

done. Finally, the boundary of RPE/C is generated interpolating the contour nodes. 

Figure 12 presents the evolution of the active contour and the final result.

Despite the internal energy included in the contour, the low definition of this 

boundary (specially in both sides of the image) causes that some nodes end the 
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Figure 12. Segmentation of the RPE/C layer: (a) original image where the rectangle identifies the ROI 
after the preprocessing; (b) initial active contour; (c) configuration after the first step; (d) after the second 
step; (e) layer boundary result of interpolating nodes.

Figure 13. Presence of outlier after segmenting RPE/C: (a) original image where the rectangle identifies 
the ROI after the preprocessing; (b) and (c) ROI zoomed with initial active contour and configuration 
after two steps of minimization, respectively. Arrow in (c) indicates a node trapped in a local minimum 
(outlier).

process in wrong isolated positions. This situation is reflected in Figure 13, showing 

the evolution of the active contour, whose final configuration (c) presents an outlier, 

identified by an arrow. In order to avoid this situation, after the minimization steps, 

a process of relocation of outliers explained below is applied. Once every outlier in 

the active contour is detected and corrected, the boundary is generated through node 

interpolation.

Relocation of outliers

As it was presented above in the RPE/C layer segmentation, after the contour 

adjustment, some nodes can be trapped in local minima and the obtained boundary 

can present deviations. With the purpose of avoiding that, we propose a process of 

detection and replacement of these nodes (outliers). For the detection, initial and 

final nodes are firstly analyzed followed by, the inner nodes.

In order to check a node 𝑣𝑖 in the active contour of size 𝑛, the process is described 

as follows: slope 𝑠𝑝𝑖 defined by two nodes 𝑣𝑖−1 and 𝑣𝑖, is obtained for each pair of 

consecutive nodes; thus, considering also slopes 𝑠𝑝𝑖+1 and 𝑠𝑝𝑖+2 for the following 

nodes and 𝑣′
𝑖

the approximation obtained by Lagrange polynomial method for the 

node 𝑣𝑖, it is possible to introduce the rule for nodes in the limits:

𝑜𝑢𝑡𝑙𝑖𝑒𝑟(𝑣𝑖) =
⎧⎪⎨⎪⎩
1, if ((𝑠𝑝𝑖 ∗ 𝑠𝑝𝑖+1 < 0) & (𝑠𝑝𝑖+1 ∗ 𝑠𝑝𝑖+2 > 0)

& (|𝑠𝑝𝑖| > 𝑡𝑠𝑝)), i=0,n-1

0, Otherwise

(4)
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Figure 14. Relocation of outliers after the model adjustment: (a) original image, with the region 
considered in the segmentation of RPE/C (rectangle); (b), (c) zoom applied over the rectangle in (a) 
with the nodes at the end of the process and after replacing the outlier (marked with arrow), respectively.

where 𝑡𝑠𝑝 establishes the maximum value that 𝑠𝑝𝑖 can take. In this way, when the 

slope between consecutive nodes changes in sign and takes high values, it is assumed 

that the associated node is an outlier. Then, this node is changed by 𝑣′
𝑖
, which is the 

approximation given by the Lagrange polynomial method, based on its neighboring

nodes.

We could observe that the last node takes wrong values more usually than the first 

one. This is related to the inherently sequential process of the energy minimization: 

considering 𝑛 nodes, it is applied from the first node 𝑣0 to the last one 𝑣𝑛−1, which 

correspond to nodes located in the left and right sides of the image in the physical 

context. Consequently, a new constraint must be included for the last node, rewriting 

Eq. (4) as follows:

𝑜𝑢𝑡𝑙𝑖𝑒𝑟(𝑣𝑖) =
⎧⎪⎨⎪⎩
1, if ((|𝑣𝑖 − 𝑣′

𝑖
| > 𝑡𝑙𝑔) || (𝑠𝑝𝑖 ∗ 𝑠𝑝𝑖+1 < 0)

& (𝑠𝑝𝑖+1 ∗ 𝑠𝑝𝑖+2 > 0) & (|𝑠𝑝𝑖| > 𝑡𝑠𝑝)), i=n-1

0, Otherwise

(5)

being 𝑣′
𝑖

the approximation obtained for the node 𝑣𝑖, using Lagrange extrapolation 

method. An example with a node in the right side of the image which has been 

relocated is shown in Figure 14.

For the rest of the nodes of the active contour, determining if they are outliers is done 

in a different way. Following the idea of the second derivative between nodes, the 

difference 𝑑𝑠𝑝𝑖 between slopes 𝑠𝑝𝑖 and 𝑠𝑝𝑖+1 is computed. After all the differences 

are computed, the median value 𝑑𝑠𝑝𝑚𝑒𝑑 is calculated for establishing an outlier 

criterion:

𝑜𝑢𝑡𝑙𝑖𝑒𝑟(𝑣𝑖) =
⎧⎪⎨⎪⎩
1, if ((𝑑𝑠𝑝𝑖 ∗ 𝑑𝑠𝑝𝑖+1 < 0) & |𝑑𝑠𝑝𝑖 ∗ 𝑑𝑠𝑝𝑚𝑒𝑑| > 𝑡𝑚𝑒𝑑

& |𝑑𝑠𝑝𝑖+1 − 𝑑𝑠𝑝𝑚𝑒𝑑|), 0<i<n-1

0, Otherwise

(6)

where 𝑡𝑚𝑒𝑑 is a threshold to determine if the difference 𝑑𝑠𝑝𝑚𝑒𝑑 is too far from the 

median difference 𝑑𝑠𝑝𝑚𝑒𝑑 . When the condition expressed in Eq. (6) is satisfied, the 

node is considered an outlier and should be replaced. Since a node which is not 

located in the extrema counts on neighbors on both sides, Lagrange extrapolation 

is not needed and the approximation can be given by the mean point between its 
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Figure 15. Relocation of outliers (not in the extrema) in the model after the contour adjustment: 
(a) zoomed image, with nodes at the end of the process; (b) final nodes after replacing the outlier (marked 
with arrow).

neighbors, as Eq. (7) establishes. Figure 15 shows an example of this situation, where 

the outlier (node indicated by the arrow) is replaced.

𝑣′
𝑖
=
𝑣𝑖−1 + 𝑣𝑖+1

2
(7)

2.2.3. Segmentation of the M/E layer

Once the boundaries of the RPE/C and ILM layers are segmented, the segmentation 

process of the M/E can be more easily initialized. Thus, considering that 𝑛 equidistant 

nodes are used, the 𝑥-coordinate 𝑖 (column in the OCT image) is known for each 

node. Therefore, the 𝑦-coordinates (row) are obtained in the following way:

𝑦𝑖 =
2
3
∗ (𝑦𝑖𝑅𝑃𝐸∕𝐶

− 𝑦𝑖𝑇 𝑜𝑝𝐼𝐿𝑀
) (8)

where 𝑦𝑖𝑅𝑃𝐸∕𝐶
and 𝑦𝑖𝑇 𝑜𝑝𝐼𝐿𝑀 are the 𝑦-coordinates taken by points in the boundaries 

of ILM and RPE/C, for each column 𝑖. That means that the new node is between both 

layers, but nearer RPE/C than ILM, what usually occurs.

The active contour model to segment the M/E considers edges corresponding to dark-

to-light transitions. Regarding the intensity-based terms, pixels with dark areas above 

are encouraged, but also with bright areas below, this way considering the intensities 

of Myoid and Ellipsoid. The minimization process is composed by 𝑛𝑠 = 4 steps, as 

Figure 16 presents schematically: firstly, the external energy governs the process; 

after that, the contour is fitted to a curve, ignoring information in the extrema. That 

curve is used to initialize a new contour, which replaces the first one (analogous 

process to that used for RPE/C). Based on this new contour, the mask is bounded 

again. The internal energy is increased in the second step to obtain an appropriate 

adjustment. However, since this layer tends to be stretched when the presence of 

the fovea is more evident, two new steps are included: after adding more nodes 

around the fovea, the contour is adjusted, keeping the rest of them fixed; then, the 

distance regarding the RPE/C is checked, modifying the location of those nodes that 

are too close to that layer to perform the final minimization process. This method 

shows accurate results, even in the fovea region, while presenting good continuity 

and smoothness. Figure 17 presents a segmentation example.
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Figure 16. Schema of the active-contour-based process to segment the M/E layer.

Figure 17.Active contour used to segment the boundary of M/E: (a) initialization, based on the location of 
the ILM and RPE/C; (b) after the step with predominant external energy; (c) second active contour, based 
on fitting the first one to a curve, ignoring the nodes in extrema; (d) after increasing the internal energy; 
(e) final adjustment, with nodes added in the area of the fovea; (f) boundary after node interpolation.

Although this model usually provides appropriate results, it has been observed 

that the shades produced mainly by the vessels have a strong influence in the 

model evolution. They do not only cause smoother edges in these regions, but also 

that intensity-based term 𝜅𝑎𝑑𝑑 that attracts the contour to wrong areas. This term 

represents the distance to the best pixel at each column in the image (where the 

“goodness” of the pixel is determined by the intensity above or below). Under the 

presence of a shade, this information is not valid. This is specially misleading in 

the M/E detection, because it involves encouraging pixels with dark areas above and 

these structures greatly alter the results. Figure 18 reflects this problem, where (a) 

presents the sample image with the vessel shade marked with an arrow and (b) the 

𝐼𝑎𝑑𝑑 image obtained to compute the term 𝜅𝑎𝑑𝑑 (c). Regions where 𝐼𝑎𝑑𝑑 provides 

wrong information (obviously due to the vessel shades) are marked with circles. 

Under these conditions, a coarse identification of vessel shades is done, with the 

purpose of modifying this information in the columns where they are located.

Vessel shades detection

The presence of any possible shade provoked by the vessels is identified using 

vertical regions over the image where the intensity suffers a significant drop, as 
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Figure 18. Intensity-based energy term 𝜅𝑎𝑑𝑑 influence under the presence of shades: (a) sample image, 
with an arrow indicating the vessel shade; (b) 𝐼𝑎𝑑𝑑 (best pixel per column, considering the lowest intensity 
above with 𝑛𝜅 = 20), where misleading regions are marked in circles; (c) image representing 𝜅𝑎𝑑𝑑 , using 
a neighborhood of 𝑛𝑐𝑜𝑙𝑎𝑑𝑑 = 20 columns; (d) active contour after the two first steps.

shown in Figure 18(a). Given the complexity of an accurate detection, a coarse 

detection is presented in this work, detecting these intensity drops along the image. 

To do that, firstly, the mean intensity by columns 𝑖 in the OCT image is calculated, 

constructing a vector 𝑣𝑒𝑐𝑖. After blurring this vector to smooth the information, the 

median value 𝑣𝑒𝑐𝑚𝑒𝑑 is calculated. Using the results, a function 𝑣𝑒𝑠𝑠𝑒𝑙 is designed 

to identify the presence of the vessel shades over the columns 𝑖 of the image:

𝑣𝑒𝑠𝑠𝑒𝑙(𝑖) =

{
1, if 𝑣𝑒𝑐𝑖 < (𝑣𝑒𝑐𝑚𝑒𝑑 − 1.5 ∗ 𝑣𝑒𝑐𝑠𝑡𝑑)
0, Otherwise

(9)

where 𝑣𝑒𝑐𝑖 is the result of 𝑣𝑒𝑐 for column 𝑖 and 𝑣𝑒𝑐𝑠𝑡𝑑 is the corresponding 

standard deviation over the vector. A given column is, therefore, determined as vessel 

if its smoothed mean intensity is significantly distant from the median intensity 

value. The used threshold is automatically calculated given the conditions of each

image.

When a column is identified with the presence of a vessel shade, the image 𝐼𝑎𝑑𝑑
does not include information of its best pixel. Therefore, the term 𝜅𝑎𝑑𝑑 takes high 

energy values in order to penalize them. Figure 19 shows the differences derived 

from modifying this term to exclude columns associated to the vessel shades and the 

resulting layer delimitation, in (c).

2.2.4. Segmentation of the I/RPE layer

This boundary separates the Interdigitation (I) and RPE layers, determining the 

bottom boundary of the EZPR. As it was presented in Section 1, alterations in this 

zone are correlated to several pathologies. Therefore, segmenting this boundary is 
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Figure 19. Intensity-based energy term 𝜅𝑎𝑑𝑑 , influence after excluding the vessel shades: (a) 𝐼𝑎𝑑𝑑 after 
excluding columns detected as vessels shades; (b) image representing 𝜅𝑎𝑑𝑑 , using a neighborhood of 
𝑛𝑐𝑜𝑙𝑎𝑑𝑑

= 20 columns, after the exclusion of the columns identified as vessel shades, whose pixels take 
high values; (c) resulting active contour after the two steps.

essential. However, its presence is not always appreciable, because sometimes there 

is not enough information to distinguish it. In addition, EZPR can be missed or 

altered, making its detection even more difficult.

The active contour used to segment this boundary is initialized based on the M/E and 

RPE/C locations. Thus, considering that 𝑛 equidistant nodes are used, 𝑥-coordinate 

𝑖 (column in the image) is known for each node. Therefore, 𝑦-coordinate (row) are 

obtained as follows:

𝑦𝑖 =
1
2
∗ (𝑦𝑖𝑅𝑃𝐸∕𝐶

− 𝑦𝑖𝑀∕𝐸
) (10)

where 𝑦𝑖𝑅𝑃𝐸∕𝐶
and 𝑦𝑖𝑀∕𝐸

are the 𝑦-coordinates taken by points in boundaries RPE/C 

and M/E, for each column 𝑖. Thus, the new node is equidistant to both pixels in those 

boundaries. Regarding the mask used to bound the ROI, it is restricted based on the 

M/E and RPE/C locations.

Segmentation of the I/RPE is not straightforward, given it is not boundary and 

information of intensity and edges is insufficient (edges are mainly short and 

disconnected, even after a blurring process). Only the intensity below each pixel 

is considered, because when the EZPR presents alterations, the region above I/RPE 

is darker than usual. Therefore, this term would attract the contour to wrong regions. 

Gradient-based information considers intensity transitions. However, the presence 

of this boundary is not precise, with edges mainly short and disconnected, even 

after a blurring process. In addition, more than one dark-to-light transition can be 

found in the region, specially when the foveal depression is more salient and the 

Ellipsoid layer is stretched (Figure 20). This causes a higher transition between the 

photoreceptors Outer Segment (OS) and the Interdigitation (I) zone in the center of 

these images, which is more accused than in the rest of the images. To avoid that, 

instead of the I/RPE, the boundary OS/I attracts the active contour, the images are 

processed to erase the first top edges in the ROI. Only edges located around the fovea 

column are erased and, as this situation is usually given when the Ellipsoid stretches, 

only inner images in the sequence are processed in this way (the OCT sequence is 

centered in the fovea).
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Figure 20. Influence of the Ellipsoid stretching in the gradient information considered to extraction of 
the I/RPE: (a) original image; (b) zoomed image shows the OS/I boundary in red, above the I/RPE one, 
in blue. Active contour will be attracted to OS/I boundary, unless its correspondent edges were erased.

Figure 21. Segmentation of I/RPE and M/E (in red) for two different images, which have been zoomed: 
(a) successful segmentation; (b) confusion between I/RPE and M/E, due to the altered EZPR.

As explained before, the lack of information in this area is significative. Given the 

imprecise presence of this boundary combined with the initialization based on the 

previous boundaries (RPE/C and M/E), that makes internal constraints being almost 

satisfied, the selection of parameters is not very relevant in this case to achieve an 

appropriate adjustment. After the energy minimization, the final node interpolation 

provides the entire retinal layer.

Figure 21(a) shows the segmentation obtained for the M/E and I/RPE layer

boundaries over an OCT scan. Despite that this approach provides satisfactory 

results, it presents some limitations, specially if the EZPR is altered, as Figure 21(b) 

shows. Because of this, a specific refinement stage is designed to correct possibles 

mistakes of the segmentation and improve the performance of the proposed method, 

even under pathological conditions.

2.3. Refinement

To obtain precise segmentations of the layers of the retina, two specific refinement 

phases are introduced to achieve an accurate performance even in pathological cases 

presenting different degrees of retinal degenerations that can be derived by many eye 

diseases, such as diabetic retinopathy. Further details about these refinement phases 

are going to be discussed next.
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Figure 22. M/E Refinement: (a) wrong result, produced by the pathological condition in the EZPR, 
making the M/E boundary segmentation confusing; (b) correction using the refinement approach over (a).

2.3.1. M/E layer refinement

Although the results of the M/E segmentation are accurate, in the case of the EZPR, 

there are some intensity alterations given that the information in that area is lower 

and the gradient information misleading. Therefore, the segmentation model shows 

a bias of delimiting the I/RPE layer, instead of the objective, the M/E one. This 

situation is shown in Figure 21, where (a) illustrates a successful result whereas 

(b) an erroneous M/E segmentation. For that reason, a new approach for the M/E 

detection is performed to correct erroneous deviations. In this way, the refinement 

process is composed of 𝑛𝑠 = 2 steps, as the current boundary is already close to its 

aimed position. Firstly, the active contour model is initialized near the M/E layer. 

Then, a set of nodes is added to the foveal region to achieve a refined delimitation. 

Figure 22(b) shows the correction results over (a), to illustrate this phase.

2.3.2. I/RPE and RPE/C refinement

Once these retinal layers are delimited, a refinement process may be applied taking 

advantage of their morphological localization. In particular, it may be assumed that 

both retinal layers are quite parallel. Therefore, this step intends to find the unique 

parametric polynomial which best fits both boundaries. A polynomial of degree 3 

was determined as enough to contain the possible curvatures of these boundaries. 

It is important to remark that keeping the polynomial degree low is interesting for 

computational purposes, also avoiding rough deviations. Thus, a set of curves 𝐶 is 

calculated using all the 𝑛𝑐𝑚𝑖𝑛 points corresponding to the final contour nodes used in 

the segmentation process. Only points from the contour are considered because they 

spot the position of the boundary, excluding those derived through interpolation.

The curves in set 𝐶 are obtained based on the nodes of the I/RPE segmentation. 

To do that, firstly, we calculate the difference between each individual node on the 

I/RPE layer and the curve point of the corresponding column. Secondly, the curve 

𝐶 is moved to fit with the RPE/C layer. To do that, all the rows that are close to the 

RPE/C layer are studied, covering the margin 𝑚𝑐𝑖 between the highest and the lowest 

points of the boundary, as Figure 23 shows.
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Figure 23. Adjustment process of the refinement of the RPE/C layer segmentation, where the curve C is 
determined by the red dot-line, the nodes of the M/E layer are the red circles and the nodes of the RPE/C 
layer are represented by the blue circles covering the 𝑚𝑐𝑖 range.

The fitness measure is given by the nodes in both boundaries matching the curve. 

Since this measure is very restrictive regarding the exact position of a node, in order 

to gain feasibility, it is formulated as the difference 𝑑𝑐𝑛𝑖 between each node 𝑛𝑖 and 

the aimed curve 𝑐, given the information of the 8-connected neighborhood 𝑀𝑖:

𝑑𝑐𝑛𝑖
=

{
0, if ∃ 𝑚 ∈ 𝑀𝑖 | 𝑚 ∈ 𝑐

1, Otherwise
(11)

Hence, the distance between the curve 𝑐 ∈ 𝐶 and the retinal layer 𝑙𝑗 is calculated as 

the sum of all the distances 𝑑𝑐𝑛𝑖 , where 𝑁 represents the total number of nodes:

𝑑𝑐𝑙𝑗
= 1
𝑁

𝑁∑
𝑖=0

𝑑𝑐𝑛𝑖
(12)

Although the total number of nodes in the final contour for each boundary can be 

different, the importance of the distance of each boundary is already reflected in 

Eq. (12), with the division factor representing the number of nodes in the boundary.

Taking into account that the curve 𝑐 is constructed with the nodes belonging to 

the boundary of the I/RPE layer and, therefore, should be relocated to obtain the 

projection 𝑐′ over the RPE/C layer. Thus, the global measurement 𝑑𝑔 covering 

information of distance for both boundaries is defined as:

𝑑𝑔 = 𝑑𝑐𝑙𝐼∕𝑅𝑃𝐸
+ 𝑑𝑐′𝑙𝑅𝑃𝐸∕𝐶

(13)

where 𝑙𝐼∕𝑅𝑃𝐸 and 𝑙𝑅𝑃𝐸∕𝐶 represents the boundaries 𝐼∕𝑅𝑃𝐸 and 𝑅𝑃𝐸∕𝐶 . Since 

the projection 𝑐′ of each curve 𝑐 may be located covering a range 𝑚𝑐𝑖, as Figure 23

presented, the global distance 𝑑𝑔 is redefined:

𝑑𝑔 = 𝑑𝑐𝑙𝐼∕𝑅𝑃𝐸
+ 𝑚𝑖𝑛(𝑑𝑐′

𝑟
𝑙𝑅𝑃𝐸∕𝐶

), 𝑟 = 0..𝑚𝑐𝑖 (14)

where 𝑐′
𝑟

is the projection of 𝑐 over the boundary 𝑅𝑃𝐸∕𝐶 considering the row 𝑟 in 

the environment defined by 𝑚𝑐𝑖.

Thus, the aimed curve 𝑐 is the one minimizing the distance between these boundaries, 

determined by Eq. (15). Given the extraction of the curve 𝑐, it substitutes RPE/C and 

M/E layers, considering the appropriate modifications in the aforementioned retinal 

layers.

𝑎𝑟𝑔𝑚𝑖𝑛𝑘 𝑑𝑔𝑘, 𝑘 = 1..|𝐶| (15)
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Figure 24. RPE/C and I/RPE segmentation refinement: (a) set of end nodes (red circles) used in the 
delimitation process; the big yellow circles correspond to the control points of the best configuration. 
(b) I/RPE and RPE/C final segmentation.

Figure 24 presents the results (with zoom applied over the region of interest) using 

the refinement method, marking the nodes adjusted with red circles. Once all the 

possible curves for the I/RPE layer have been explored, the best configuration is 

obtained using control points, indicated as yellow circles.

Regarding the image dataset that was used for the validation of the methodology, we 

expose that all the procedures in this study adhered to the tenets of the Declaration 

of Helsinki. More detailed information about the ethical committee that approved 

this study is presented below in Section 3.

3. Results & discussion

The proposed method has been validated using 40 OCT sequences, obtained with a 

CIRRUSTM Carl Zeiss Meditec. Each sequence includes 128 histological sections, 

summing a total of 5120 images. The sequences belong to 34 healthy individuals 

and other 6 with different degrees of diabetic retinopathy (3 individuals without 

macular edema, 1 individual with macular edema and 2 individuals with lesions in 

the photoreceptor layers). Each histological section presents a resolution of 501 ×478
pixels, where a pixel size covers 11.98 × 4.18 𝜇𝑚/pixel. The left and right margins 

of the sections were not faced in the tests [24], removing the 10% of the both sides 

to avoid the inclusion of areas with low information.

The “Comité de Ética da Investigación de A Coruña-Ferrol” committee belonging 

to the “Rede Galega de Comités de Ética da Investigación” attached to the regional 

government “Secretaría Xeral Técnica da Consellería de Sanidade da Xunta de 
Galicia” approved this study (Ref. 2014/437), which was conducted in accordance 

with the tenets of the Helsinki Declaration. Written informed consent was obtained 

from all studied patients.

Regarding the parameters, they were empirically established with a preliminary test 

to those that offered accurate results. Table 1 presents the model parametrization 
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Table 1. Values of the parameters that are used to initialize the active contour 
model for all the boundaries.

Boundary ILM M/E I/RPE RPE/C

𝑝 75 85

𝑑𝑒𝑑𝑔𝑒1
1 1 2 4

𝑡ℎ𝑒𝑑𝑔𝑒1
30 30 5 0

𝑑𝑒𝑑𝑔𝑒2
2 1 2 3

𝑡ℎ𝑒𝑑𝑔𝑒2
10 10 10 0

𝑛𝑛𝑜𝑙 21 9 9 9

𝑊𝑛 × ℎ𝑛 3 × 3
𝑘𝑥 × 𝑘𝑦 19 × 3
𝑡𝑠𝑝 0.5

𝑡𝑚𝑒𝑑 0.25

𝑡𝑡ℎ𝑖𝑐𝑘 10

𝑛𝑐𝑚𝑖𝑛 4

Table 2. Values of the parameters that were used in the active contour model to segment the ILM 
and RPE/C layers (absence of parameter means that it is set to zero).

ILM RPE/C
Step 1 2 3 1 2

𝑛𝑎𝑐 26 26 40 21 21

𝛼 0.0001 0.001 0.0001 0.05 0.0001

𝛽 0.0001 0 0.0001 0.001 0.0001

𝛾 0.0001 0.0001 0 0.0001 0.0001

𝑛𝑛ℎ𝑏 5 5 5 5 5

𝑤1 – – – – –

𝑤2 0 0.005 0.001 0 0.0001

𝑤2𝑝𝑟𝑒𝑝 0.001 0.005 0.001 0 0.001

𝑤3𝑝𝑟𝑒𝑝 −0.01 0 0 −0.01 −0.001

𝑤4𝑝𝑟𝑒𝑝 0.1 0.01 0.01 0.01 0

𝜅 – – – 0.1 0.001

𝑛𝜅 – – – 10 10

𝜀 0.001 0 0 – –

that was optimized for this problem. Absence of parameters in this table means 

that they were not applied to those cases. Regarding the weights that were used 

during the active contour model evolution, they are presented in Tables 2 and 3, 

with the purpose of allowing reproducibility of the results that were obtained in this

work.

Regarding the existence of speckle noise, we emphasize that one of the main 

advantages of using an active contour model is their significative tolerance to noisy 

scenarios, being more independent on a specific noise removal process than other 

strategies. Consequently, no further denoising strategy was adopted in addition to 

the general smoothing filters of the pre-processing stage.

Two experiments were conducted to validate the proposal, both in patients with 

pathological and non-pathological conditions. Firstly, the results over all the 5120 
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Table 3. Values of the parameters that were used with the active contour model to segment M/E, 
I/RPE and refine M/E (absence of parameter means that it is set to zero). In M/E, when the 
intensities above and below are considered, the correspondent values for 𝑛𝜅 are represented as 
𝑛𝜅𝑎𝑏𝑜𝑣𝑒∕𝑛𝜅𝑏𝑒𝑙𝑜𝑤 .

M/E I/RPE M/E Correction
Step 1 2 3 4 1 1 2

𝑛𝑎𝑐 18 18 18 26 25 21 31

𝛼 0 0.0001 0.001 0.001 – – –

𝛽 0 0.0001 0.005 0.001 0.0001 0 0

𝛾 0 0.0001 0.001 0.0001 0.0001 0.0001 0.0001

𝑛𝑛ℎ𝑏 5 5 5 5 5 5 5

𝑤1 0 0 0.001 0 – – –

𝑤2 0 0 0.01 0.01 0.001 0.001 0.001

𝑤2𝑝𝑟𝑒𝑝 0.001 0.001 0.001 0.01 0.01 0.01 0.01

𝑤3𝑝𝑟𝑒𝑝 0 −0.005 0 0 – – –

𝑤4𝑝𝑟𝑒𝑝 0 0.01 0.00001 0.00001 0.001 0.001 0.001

𝜅 0.05 0.001 0.001 0 – 0.001 0

𝑛𝜅 20/30 20/30 20/40 – – 10 –

𝜀 – – – – – – –

Figure 25. Segmentations obtained in the OCT images, with layers segmented in red. The green lines 
indicate the regions that were eliminated from the evaluation process. (a) and (b) histological sections 
from patients with pathological conditions; (c) and (d) histological sections from healthy patients.

sections were reviewed by a clinical expert indicating, for each boundary, if the 

segmentation was correctly achieved or not. Hence, we can derive a qualitative 

evaluation of the proposed method. The purpose of this experiment consists 

of demonstrating the clinical feasibility of the proposed methodology using a 

significantly large dataset. Then, we calculate a quantitative measurement of the 

method’s performance. In this experiment, the method results were compared 

with the manual labeling of an expert. Given the large size of the used image 

dataset, a random subset of 100 images was analyzed. Figure 25 includes different 

representative segmented cases that were reviewed by a clinical expert in these 

experiments.
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Table 4. Success rates of the presented system over the set of 5120 histological sections from 
patients with pathological and non-pathological conditions. 1st, 2nd, 3rd, 4th & 5th row, success – 
not success segmentated images (S/NS); 6th row, corresponding success rates (% of OCT scans 
with successful delimitations).

Boundary ILM M/E I/RPE RPE/C Total

Health (S/NS) 4350/2 4223/129 4114/238 4133/219 16820/588

Without Edema (S/NS) 384/0 381/3 309/75 309/75 1383/153

With Edema (S/NS) 128/0 126/2 81/47 90/38 425/87

Photoreceptors (S/NS) 256/0 249/7 203/53 206/50 914/110

Total (S/NS) 5118/2 4979/141 4707/413 4738/382 19542/938

Success rate (%) 99.960 97.246 91.933 92.539 95.419

Table 5. Distribution of the mark lengths over all the dataset, where each cell shows the percent of 
marks falling in each category. Most of the mistakes (category 1) correspond to small deviations 
in the segmentation.

Error category No error 1(smallest) 2 3 4 5(biggest)

Frequency (%) 95.419 3.964 0.512 0.053 0.024 0.024

3.1. Experiment I

The aim of this experiment is the assessment of the method over a large dataset (all 

the 5120 images) to determine the feasibility of the proposed approach in the daily 

clinical practice. As the dataset is big enough to be marked manually, the expert 

clinician revised all the computationally extracted boundaries of each image section 

in a visual way to indicate if they were successfully segmented or not. For a better 

analysis, we detailed the results that were obtained by our proposal for the 34 healthy 

patients and the other 6 with different degrees of diabetic retinopathy (3 patients 

without macular edema, 1 patient with macular edema and 2 patients with lesions in 

the photoreceptor layers). The obtained results are shown in Table 4.

The expert not only marked the boundaries at each image as successful/unsuccessful, 

but also the area where they are not correctly segmented. For that reason, it is possible 

to study the distribution of the mistakes along the images. This is relevant given that, 

observing the results, most of them mainly correspond to small deviations or they 

are located on the image sides (next to 10% margins). With that purpose, the length 

of the areas 𝑙𝑎 marked as unsuccessful were measured. Then, they are categorized 

using a set 𝐶𝑎𝑡 of 𝑛𝑐𝑎𝑡 groups, based on their importance, taking as reference the 

image width 𝑤𝐼 , as follows:

(𝑖 − 1) ∗
𝑤𝐼

𝑛𝑐𝑎𝑡
≤ 𝑙𝑎 < 𝑖 ∗

𝑤𝐼

𝑛𝑐𝑎𝑡
→ 𝑙𝑎 ∈ 𝐶𝑎𝑡𝑖, 𝑖 = 1..𝑛𝑐𝑎𝑡 (16)

For this problem, a set 𝑛𝑐𝑎𝑡 = 5 categories are defined (1, 2, 3, 4, 5), representing 

different lengths. After categorizing all the marks that were made by the expert, the 

summarized results are shown in Table 5.
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3.1.1. Discussion

Table 4 shows the percentage of images that the expert determined as successfully 

segmented or not. The M/E and ILM segmentations offered the best results, being 

those for the case of RPE/C slightly lower. Wrong segmentations are identified 

mainly in the segmentation of the I/RPE layer, as expected, given its highest 

complexity of segmentation added to its presence, that is not even immediate for 

the clinicians.

As happens typically with computational methodologies for medical imaging, the 

proposed system obtains better results under the normal conditions in healthy 

tissues. We have to consider that pathological OCT images includes a significative 

degradation of the retinal layers structure, for what it represents a significantly more 

challenging scenario than the healthy cases. Given that, we consider that the results 

of the proposed method are also satisfactory for all the pathological cases that were 

presented in our dataset. In fact, we reported a success rate of 87.14% for all the 

pathological images, numbers that we consider satisfactory. We also highlight that 

the initialization of the active contour model for all the retinal layers is independent 

of the different pathological conditions or disorders that are analyzed in this work.

Regarding the distribution of the mark lengths over all the dataset, Table 5 shows 

that most of the mistakes (3.964%) belong to the first category, what means that 

they correspond to small deviations in the segmentations that were obtained for 

the boundaries. In fact, the percent of mistakes affecting to more than half of the 

boundary length is depreciable (lower than 0.03% of the mistakes). The similar 

tendencies can be observed between pathological and non-pathological cases. 

Therefore, combining these results with the rates presented in Table 4, we confirm 

the suitability and robustness of the proposed method even when it is applied to 

complex clinical scenarios.

3.2. Experiment II

The previous experiment constitutes an adequate approach to analyze the kind 

of mistakes that are typically made by the method. Complementary, a second 

experiment was made to further validate the method. Hence, 100 histological 

sections were randomly selected from the entire dataset, being 25 healthy cases, 25 

without macular edema, 25 with macular edema and 25 cases with lesions in the 

photoreceptor layers.

Tables 6 and 7 show respectively the unsigned and signed boundary differences 

between the segmentations that are produced by the proposed methodology and those 

labeled by the clinical expert. The results are presented into subgroups, analyzing 
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Table 6. Unsigned boundary differences of the proposed method and other state of the art 
methods, in terms of mean ± std in pixels (results for the state of the art methods were converted 
to pixels). Since different settings were used in each method, a direct comparison is not possible, 
but they show that the proposed method is in line with the state of the art in the boundary 
segmentation issue.

ILM M/E I/RPE RPE/C All Layers
Pr

op
os
ed

m
et
ho

d Health 1.27 ± 0.82 1.44 ± 0.96 1.33 ± 1.97 1.20 ± 1.03 1.31 ± 1.20

Without Edema 1.24 ± 0.92 1.31 ± 1.01 1.06 ± 0.82 1.21 ± 1.08 1.20 ± 0.96

With Edema 1.26 ± 0.87 1.45 ± 1.03 1.48 ± 1.27 1.06 ± 0.87 1.31 ± 1.01

Photoreceptors 1.27 ± 0.83 1.46 ± 0.99 1.21 ± 1.03 1.12 ± 1.07 1.27 ± 0.98

All Patients 1.26 ± 0.86 1.42 ± 1.00 1.27 ± 1.35 1.15 ± 1.02 1.27 ± 1.06

St
at
e
of

th
e
ar
t [23] 3.45 ± 2.02 1.98 ± 0.41 – 3.44 ± 0.74 2.96 ± 1.06

[26] 2.11 ± 0.60 1.21 ± 0.80 – 2.11 ± 0.30 1.81 ± 0.57

[26], Isfahan 1.43 ± 0.67 0.72 ± 0.21 1.30 ± 0.49 1.43 ± 0.50 1.22 ± 0.47

[29] 1.02 ± 0.71 1.12 ± 0.33 – 1.32 ± 0.65 1.15 ± 0.56

[39] 0.58 ± 0.77 0.49 ± 0.95 – 0.57 ± 0.68 0.54 ± 0.80

[41] 1.10 ± 1.35 0.98 ± 1.26 1.19 ± 1.50 1.13 ± 1.32 1.10 ± 1.36

Table 7. Signed boundary differences of the proposed method and other state of the art methods, 
in terms of mean ± std in pixels (results for the state of the art methods were converted to pixels). 
Since different settings were used in each method, a direct comparison is not possible, but they 
show that the proposed method is in line with the state of the art in the boundary segmentation 
issue.

ILM M/E I/RPE RPE/C All Layers

Pr
op

os
ed

m
et
ho

d Health 1.19 ± 0.94 1.41 ± 1.00 0.43 ± 2.34 0.51 ± 1.50 0.89 ± 1.45

Without Edema 1.10 ± 1.08 0.95 ± 1.35 −0.14 ± 1.33 −0.39 ± 1.57 0.37 ± 1.33

With Edema 1.17 ± 0.98 1.17 ± 1.35 0.26 ± 1.93 0.38 ± 1.32 0.74 ± 1.40

Photoreceptors 1.20 ± 0.93 1.34 ± 1.14 0.80 ± 1.38 0.31 ± 1.53 0.91 ± 1.24

All Patients 1.16 ± 0.99 1.22 ± 1.23 0.34 ± 1.83 0.20 ± 1.52 0.73 ± 1.39

St
at
e
of

th
e
ar
t [23] 1.31 ± 0.61 0.79 ± 0.56 – −0.95 ± 1.54 0.38 ± 0.90

[26] 0.80 ± 0.53 0.60 ± 0.47 – −0.90 ± 0.76 0.16 ± 0.58

[26], Isfahan 1.01 ± 0.50 0.66 ± 0.26 −0.86 ± 0.49 −0.75 ± 0.51 0.01 ± 0.44

[29] 0.13 ± 0.85 −0.21 ± 0.69 – −0.18 ± 1.13 −0.08 ± 0.89

[39] −0.09 ± 0.96 −0.08 ± 1.07 – −0.08 ± 0.88 −0.08 ± 0.97

[41] 0.24 ± 1.73 0.43 ± 1.54 −0.75 ± 1.77 0.11 ± 1.73 0.005 ± 1.691

different pathological and non-pathological scenarios. We want to highlight that 

the state-of-the-art methods were validated with different datasets, under different 

conditions and settings (image size, pixel-level resolution, quality, OCT device, 

signal averaging, enhanced depth, image acquisition protocol, different pathological 

cases, labeling of different clinical experts,...), reasons for what a completely fair 

comparison seems extremely complicated. Despite that, the most representative 

methods with specified results were collected to be able to compare the current 

method with the state of the art, heaving in mind these limitations.

Additionally, we calculated the Jaccard index and Dice similarity coefficient

(Eqs. (17) & (18), respectively) between the manually annotated regions and 

the segmentation outputs of the proposed method. These measurements use, as 
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Table 8. Dice similarity coefficient and Jaccard index in the retinal layers segmentation.

(ILM)–(M/E) (M/E)–(I/RPE) (I/RPE)–(RPE/C) (ILM)–(RPE/C)
Jaccard Dice Jaccard Dice Jaccard Dice Jaccard Dice

Health 0.954 0.976 0.773 0.869 0.762 0.852 0.968 0.983

Without Edema 0.954 0.976 0.741 0.851 0.769 0.869 0.965 0.982

With Edema 0.955 0.976 0.694 0.817 0.768 0.868 0.969 0.984

Photoreceptors 0.955 0.977 0.740 0.850 0.768 0.868 0.968 0.984

All Patients 0.954 0.976 0.737 0.847 0.767 0.864 0.967 0.983

Table 9. Dice similarity coefficients obtained by the proposed method and the state of the art 
methods. Since different settings were used in each method, a direct comparison is not possible, 
but they show that the proposed method is in line with the state of the art in the boundary 
segmentation issue.

(ILM)–(M/E) (M/E)–(I/RPE) (I/RPE)–(RPE/C) (ILM)–(RPE/C)

Proposed method 0.976 0.847 0.864 0.983

[27] 0.848 0.816 0.884 0.848

[30] 0.869 0.846 0.900 0.870

[37] Health – – 0.821 0.887

[37] Glaucoma – – 0.839 0.887

[44] 0.765 0.770 0.675 0.748

reference, the true positives (TP), false positives (FP), true negatives (TN), and false 

negatives (FN).

Jaccard = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(17)

Dice = 2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(18)

Table 8 presents the results of the comparative analysis through Jaccard and 

Dice coefficients of the retinal layers segmentation. In addition, we also structure 

the results of this analysis by grouping them according to the different degrees 

of diabetic retinopathy that were presented in our dataset. For this analysis, we 

considered four retinal regions: (ILM)–(M/E), (M/E)–(I/RPE), (I/RPE)–(RPE/C) and 

(ILM)–(RPE/C).

Table 9 represents the Dice results of the methods of the state of the art and our 

proposal. Details of these methods were previously introduced and described in 

Section 1. As shown, our method offers a competitive performance respect to other 

proposals.

3.2.1. Discussion

The mean unsigned differences and the mean signed differences that were calculated 

for all the boundaries determine that the proposed methodology segments the layer 

boundaries accurately, as we can observe in Tables 6 and 7. Although an accurate 
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comparison is extremely complicated, given each state of the art method was 

validated under different conditions and settings, the results, at a pixel-wise level, 

achieved by the proposed methodology demonstrates a competitive performance in 

relation with the previous works. In fact, the method obtained error rates around 1 

pixel in all the considered scenarios. Given the resolution of the used images, we 

consider that these rates are significantly low. In addition, the error rates are not 

only low but also stable for all the boundaries and for all the different pathological 

cases that were analyzed in our dataset, a desirable characteristic for any proposed 

computational tool. Despite that the standard deviation is appropriate, the results can 

be improved if higher resolutions were considered.

Specifically, the results presented in Tables 6 and 7 also suggest the suitability of 

the approach that was designed for the M/E layer by the detection of overlapping 

boundaries and correcting the M/E segmentation. Regarding the RPC/C layer, the 

low obtained error leads to suppose that the refinement process obtains a satisfactory 

result for this retinal layer. Regarding the I/RPE layer, a high accuracy is achieved. 

This is remarkable, considering that not all the methods tackle the segmentation of 

this boundary (only results for [41] and the Isfahan dataset [26] are available).

Table 8 presents the results using the Jaccard index and the Dice similarity 

coefficient. As we can see, satisfactory results were achieved for all the different 

pathological conditions that were present in our dataset. Table 9 lists a comparative 

analysis between different reference works of the literature and our proposed 

strategy. Despite considering complete boundaries, this proposal obtains similar 

results to most of the recent methods, also including deep learning strategies. This 

significant advantage suggests, along with the results from the previous experiments, 

that the proposed methodology returns accurate segmentations even in complex 

environments, making it feasible for the ophthalmologists in their routine clinical 

practice.

4. Conclusions

A fully automatic system to segment the main retinal layers using OCT images is 

presented in this work. In particular, four layer boundaries are delimited: ILM, M/E, 

I/RPE and RPE/C. The existence of large variability of structures, not only blood 

vessels but also others as exudates, cysts or other pathological or non-pathological 

artifacts that are frequently present in the OCT images harden enormously the 

segmentation process, representing a significant challenge.

The method was completely adapted and optimized for the specific search space that 

is addressed in this work, aiming to obtain a low computational cost. Refinement 
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processes have been designed to correct possible segmentation errors and improve 

the accuracy in the obtained results.

Two experiments were designed to assess the method, both in patients with 

pathological and non-pathological conditions. The first experiment demonstrated 

that the method provides appropriate results over a large dataset of 5120 OCT 

images. In the second experiment, the accuracy is quantitatively evaluated,

comparing the results with other state of the art methods, showing that the proposed 

method presents a high potential with respect to other similar approaches.

In this line, the method can be extended to segment more retinal boundaries. In 

addition, information of adjacent scans of the same OCT sequence could also be 

used in the delimitation process to improve the accuracy results. Coarse detection 

of the vessel shades could be refined to obtain more precise results and be used in 

the segmentation of other layers. Besides that, this method should be tested over 

images with different resolution. That leads to assume that an interesting task to be 

done is building a dataset of OCT images, marked by different experts, to make a 

consistent comparison between the methods. In addition, further validations could 

be implemented by the increase of the dataset dimensionality, including other types

of ocular diseases, as for example, cases with macular hole or age-related macular 

degeneration.
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