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Abstract
Optical Coherence TomographyAngiography or OCTA represents one of themainmeans of diagnosis of Age-relatedMacular
Degeneration (AMD), the leading cause of blindness in developed countries. This eye disease is characterized by Macular
Neovascularization (MNV), the formation of vessels that tear through the retinal tissues. Four types of MNV can be distin-
guished, each representing different levels of severity. Both the aggressiveness of the treatment and the recovery of the patient
rely on an early detection and correct diagnosis of the stage of the disease. In this work, we propose the first fully-automatic
grading methodology that considers all the four clinical types of MNV at the three most relevant OCTA scanning depths for
the diagnosis of AMD. We perform both a comprehensive ablation study on the contribution of said depths and an analysis of
the attention maps of the network in collaboration with experts of the domain. Our proposal aims to ease the diagnosis burden
and decrease the influence of subjectivity on it, offering a explainable grading through the visualization of the attention of
the expert models. Our grading proposal achieved satisfactory results with an AUC of 0.9224 ± 0.0381. Additionally, the
qualitative analysis performed in collaboration with experts revealed the relevance of the avascular plexus in the grading of
all three types of MNV (despite not being directly involved in some of them). Thus, our proposal is not only able to robustly
detect MNV in complex scenarios, but also aided to discover previously unconsidered relationships between plexuses.

Keywords Optical coherence tomography angiography · Computer-aided diagnosis · Age-related macular degeneration ·
Multi-depth analysis · Qualitative analysis · Attention maps

1 Introduction

Thanks to the advances in sciences and, especially, inmedical
sciences, we are amidst an epoch of an ageing population
[8, 23]. Given this unprecedented situation, we are facing
a surge in age-related pathologies, promoting research on
methodologies focused on the analysis of said afflictions.

Among themain cases of age-related pathologies,wemust
highlight those that arise due to consumption habits in devel-
oped countries, such as Diabetic Macular Edema or DME
[6, 29]. This pathology manifests itself in the degeneration
of the blood vessels that irrigate the retina, causing fluid leak-
ages that deform and destroy its natural histology. DME is
usually studied by means of Optical Coherence Tomography
or OCT, which generates a cross-sectional representation of
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the retinal layers [2]. Due to the relevance of the pathology,
methodologies have been designed for its study from differ-
ent perspectives [16], such as looking for a classification of
the different fluid accumulations in the work of Barua et al.
[4] and Wu et al. [37], segmentation of the accumulations in
the work of Wu et al. [36] and Rahil et al. [21], or generation
of probability maps of the subtypes in the work of Vidal et
al. [33, 34].

However, in this work, we will focus on Age-relatedMac-
ular Degeneration or AMD, which constitutes the leading
cause of blindness in developed countries and is not only
affected by consumption habits but is a direct consequence
of the increase of life expectancy. Of this pathology, its neo-
vascular exudative variant (nAMD) is the most noteworthy,
since it represents a severe type of late AMD [5].

The presence of macular neovascularization (MNV) is the
defining characteristic of the nAMD. The degeneration of
the macular tissues can stimulate the development of new
vessels. These new vessels may leak and bleed (clinically
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termed exudation), disrupting the normal architecture of the
retinal layers. This, ultimately produces a fibrotic disciform
scar. Patients with nAMD describe a rapid onset decrease of
vision, metamorphopsia (or distortion of objects in the field
of vision) and paracentral scotomas (or sections in the field
of vision with complete or severe vision loss) [15].

Currently, the clinical literature considers four different
types ofMNV [27], being Type 1 the most common. It repre-
sents a growth of the vessels from the choriocapillaris into the
sub-retinal pigmented epithelium (RPE) space with sparse
leakages. Type 2 refers to the proliferation of new vessels
from the choroid into the subretinal space. With this type of
MNV, the vessels traverse the sub-RPE space. Type 3 MNV,
occurs when the vascular proliferation starts from the deep
capillary plexus in the retina, extending towards the outer
retina. Characteristic to this type of lesion, the blood flow
within the vascular proliferation is supplied by the retinal
vessels, instead of the choriocapillaris. Scattered intraretinal
haemorrhages and intraretinal fluid are present, with cystoid
macular edemas clearly visible in other imaging modalities.
The final stage of this type is the formation of a retinal-
choroidal anastomosis (or connection/opening between two
diverging structures) [3]. Finally, a fourth type is considered,
when the patterns present a mixture between the Type 1 and
Type 2 MNV (neovascularization in the sub-RPE region and
subretinal compartments). This would represent an interme-
diate state between Type 1 and 2, albeit still being a mixture
between the two for its defining features.

Recently, the development of Optical Coherence Tomog-
raphy Angiography (OCTA) presented a new explicit way of
visualizing the vascular flow (and, consequently, pathologies

that leave trace or directly involve vascular structures). This
medical imaging modality, unlike the aforementioned OCT
modality used in the works of Barua et al. [4], Vidal et al.
[33, 34] or Wu et al. [36, 37], generates a representation
of the structures with vascular flow by means of compar-
ing the decorrelation signal (differences in the backscattered
OCT signal intensity or amplitude) between sequential cross-
sectional scans taken at the same location. This results in a
representation of the vascular blood flow map [11, 27]. That
is, unlike OCT (and despite the name similarities), OCTA
allows for the study of only the vascular structures and not the
retinal tissues, absent in the generated images.Moreover, this
medical imaging modality does not the need invasive con-
trasts [9] unlike other techniques with similar purpose, with
the additional advantage of generating these images faster
than other techniques with comparable objectives.

The integrity of this vascular flow map has shown to be
correlated with several diseases, as well as the direct visual
acuity of the patients [7, 10, 24]. These images are commonly
analyzed at different depths, divided into four (and, some-
times, five) main regions: the Superficial Capillary Plexus
(SCP), Deep Capillary Plexus (DCP), Avascular Plexus (AP)
and Choriocapillaris or CP. In Fig. 1, we present an Opti-
cal Coherence Tomography image showing a cross-sectional
representation of the retinal layers depths from where the
OCTA images are extracted [12, 22]. In this figure, addition-
ally from the different labeled depths, for future reference,we
indicate also the boundary layers that establish their limits.
The vascular flow of these depths can be seen in Fig. 2, where
included a few representative examples of OCTA images for
both each type of MNV and normal OCTA images.

Fig. 1 Cross-sectional retinal
image (OCT). Over it, the
relevant depths with their
boundary layers from where
OCTA images are generated
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Fig. 2 Representative examples
of OCTA images from both
normal and each of the types of
MNV. The images are presented
at the three depths and two area
sizes considered in this work

Due to the relevance of the aforementioned AMD, some
works have focused on its classification. However, due to the
novelty of the medical imaging modality, scarcity of sam-
ples and difficulty of its diagnosis in some stages of the
disease, works exclusively focused on the detection ofAMD-
related MNV are not prominent and even less so that focus
in obtaining further understanding on the results and/or stud-
ied pathology). Some of the proposals, such as the work of
Alfahaid et al. [1], center its analysis to determine the pres-
ence or absence of AMD. This particular work is based on
the analysis of texture descriptors through local binary pat-
terns. In this same line, the works of Thakoor et al. [31, 32]

classify this presence or absence of neovascular AMD and
non-neovascular AMD on all the considered depths through
deep learning strategies. Other works focus on the extraction
of a defined segmentation of theMNV, like the work of Liu et
al. [17] with a combination of pre-processing filters, saliency
map strategies and post-processing stages. Another example
is the work of Xue et al. [38], with a thresholding strategy
followed by a CLIQUE clustering algorithm. Finally, works
like the proposal of Wang et al. [35], Patel et al. [20], and Jin
et al. [14] offer a multi-task approach, performing a binary
classification on the presence or absence of neovasculariza-
tion as well as obtaining a segmentation.
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1.1 Research gaps

With the above in mind, we can summarize the research gaps
we have found in the literature with the following ideas:

• Due to the novelty of OCTA, the features that define the
pathology in this medical imaging modality at different
depths are ill-defined.

• Most of the research is focused on Type 1 MNV, or in
analyzing the presence or absence of the general pathol-
ogy.

• Only a few retinal depths are used or studied in the lit-
erature, severely hindering the potential of the proposed
methodologies and potentially offering biased results.

This means that, while there is a clinical definition of
each type of MNV, the impact and features that each type
presents in the OCTA medical imaging modality remains
not well studied. This is mostly because the lack of samples
and a properly labeled datasets which, in consequence, limits
what these research works can study. In particular, most of
the works we found explore only the most common type of
MNV,Type 1, that ismostly limited (per definition in the clin-
ical literature) to a very narrow depth in the Choriocapillaris
layer. Also, as presented, some works also consider a binary
classification on the presence or absence of the pathology
altogether, reducing the impact of the two aforementioned
factors.

1.2 Our proposal

To approach these research gaps, we propose a fully-
automatic methodology with the objective of obtaining a
grading on the severity of MNV in all the four types/stages
that are considered in the clinical literature only based on
OCTA images. With this methodology, we perform an in-
depth ablation study of all the different depths relevant for
the diagnosis of the pathology: DCP, AP and CP presented

in Fig. 2. We assess the relevance of each depth for each
type of the pathology, as well as the contributions of their
combinations to the detection and diagnosis of MNV. In Fig.
3, we present all the combinations and surfaces analyzed in
this work. The same way, the dataset is composed by images
at different stages of treatment of the disease, ensuring that
the model is able to perform a detection even in the most
borderline scenarios.

Finally, as our proposal aims to be useful for a coherent
study on the features that define the target pathology (and to
use as much samples as we have available to us from clin-
ical practice) we also include samples with severe artifacts.
In Fig. 4, we present a collection of these OCTA images
from our dataset where the vasculature and fundus at differ-
ent analyzed depths are affected by these artifacts. As the
reader can appreciate in these examples, these images repre-
sent a challenging scenario, a hindrance that has to be taken
into account when analyzing the affliction, as the information
contained in the images is severely distorted and may lead to
false diagnosis.

In summary, the main contributions of our proposal are:

• First work to perform a comprehensive ablation study
with different complexity levels of CNNs to analyze the
contribution of the relevant OCTA depths and scanning
region sizes.

• Fully-automatic grading methodology for the four clini-
cal types of AMD-associated MNV in OCTA imaging.

• Complete qualitative analysis of the results through
explainable artificial intelligence strategies.

• Proposal tested with patients at different stages of treat-
ment, including images with complex artifacts from the
capturing process.

This manuscript is divided as follows: in Section 2
“Dataset”,we present the information and protocols followed
to capture the images from the patients, device configura-
tion and other pertinent data related to the acquisition of

Fig. 3 Depths, surfaces and
their combinations analyzed
with the proposed methodology
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Fig. 4 Representative examples
of OCTA images with capture
artifacts taken from all the
considered depths and areas

Area Deep Cap. Plexus Avascular Plexus Choriocapillaris

3×
3
m
m

6×
6
m
m

the images. Then, in Section 3 “Methodology”, we proceed
to explain our proposal and the experiments/analysis that
compose it. The results are shown and discussed in Section
4 “Results and discussion”. Finally, we provide some final
notes and possible future works in Section 5, “Conclusions”.

2 Dataset

For the development of this work, we used a dataset com-
posed by 939 OCTA samples generated with a SS-DRI-
Triton-OCTA device (Topcon Corp Inc, Tokyo, Japan). This
capture device has an A-scan rate of 100,000 scans per sec-
ond, using a light source with a wavelength of 1μm allowing
a deeper penetration into tissue. This allows better axial
resolution and improved detection sensitivity of microvas-
culature. All these images were taken centered in fovea, and
464 from these images were taken using a 3×3 mm scan
pattern and 475 from 6×6 mm scan pattern. The division of
samples per MNV class in this work is presented in Table 1.

The images were labeled by a team of expert clinicians,
conducting a prospective study of naive neovascular AMD,
treated with Ranibizumab in a “Treat and Extend” pattern
with a follow up of 12 months. The OCTA images were

Table 1 Number of OCTA samples (three image depths per sample)
for each type of MNV

¬ MNV Type 1 Type 2 Type 3 Mix 1&2

3 × 3 99 103 42 142 78

6 × 6 98 107 43 143 84

analysed using IMAGEnet 6 and the OCTARA algorithm
[28].All the eyeswere studied under pharmacologicalmydri-
asis. Two retina specialists assessed OCTA for abnormal
MNV flows using both en face and B-Scan flow images with
head-to-head comparisons with structural OCT to eliminate
misidentification affected by artifacts. All the visits (from the
baseline to the final stages)were included in the dataset, inde-
pendently of the artifacts and the treatment/severity stage.

3 Methodology

Our proposed work is divided into two stages. The first stage
represents the main proposal, a methodology focused on the
grading of the target pathology, as well as the consequent
ablation study on the relevance of each depth (as shown in
Fig. 3 and further explained in Section 3.1). In the second
stage, on the other hand, we focus in the comprehensive qual-
itative analysis performed in collaboration with experts of
the domain. This analysis, as mentioned, is made by means
of the independent and joint analysis of the attention maps
at different depths. To do so, we use the models trained in
the first stage, so we can also further compare the perfor-
mance obtained with the real behavior of the system (and,
thus, ensure its validity and robustness). Through this analy-
sis, we can better understand both the behavior of the models
and the pathology itself (Section 3.2).

3.1 Fully-automatic grading

First of all, wewill train themodels to perform the grading on
an input based on individual depths. This allows us to assess
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the contribution of each depth to determine the pathological
(or normal) class of the samples. This way, we can find alter-
native ways of circumnavigating the difficulties that arose
from the complex artifacts present in most of the images.
The grading is done such as the samples are classified into
normal (that is, no MNV is present in the input image), the
four different levels ofMNV (including the type representing
a mixture of Type 1 and Type 2 MVN). While these combi-
nations are explained in Sections 3.1.1 to 3.1.3, the precise
configuration and strategy used to train the models of these
analysis are explained in Sections 3.1.4 to 3.1.6.

3.1.1 Individual depth ablation study

The first proposal performs an study on the relevance of each
considered depth individually. While (by their clinical def-
inition explained the introduction of this manuscript) some
types of MNV are limited to one of the considered depths
(such as Type 1, limited to the sub-RPE space), others (such
as Type 3) transverse multiple regions. However, the struc-
tural changes could perfectly affect other depths in a way that
could be detected by machine learning strategies. This way,
in this first approach we study each of the different depths
independently from the others. We want to find which depths
are able (to a certain extent, we are not looking for a perfect
grading, but more of a significant tendency to be followed
in subsequent analysis stages) to distinguish types of MNV
that, in theory and by definition, do not leave a trace in said
depths. Also, for the types that extend along several layers,
the ones that are more significant. Moreover, the experiments
will be repeated for the two considered surfaces in this work:
3×3 and 6×6 mm. This way, we can also assess the rele-
vance of peripheral information of the models, as well as
study the impact of macro and micro structures (as, in big-
ger areas, the small structures are degraded by the resolution
of the images). Additionally, these models will also be the
main analyzed in the posterior qualitative analysis, as they
allow to explore the unbiased contribution towards the clas-
sification of each class. This way, we could further examine
if features present in layers that are not deemed clinically
relevant for the disease actually contribute with previously
unknown features. Thus, in total, in this analysis we perform
six experiments, or two per depth.

3.1.2 Paired depth ablation study

In this second approach, we study all the possible pairs of
depths that are relevant for our work. In this case, we want to
complement the results of the first proposal. We want to find
if, for each type of MNV, the information of each individ-
ual layer can be complemented with its neighboring one (or
opposite) to improve the resulting grading. While in the first
approach the models would only analyze the unique struc-

tures present in the individual layers (or the patterns that
leave a trace from another depths), by analyzing other layer
the model can have an added information about the struc-
tures. For example, themodel can assess if a particular unique
structural pattern of the retinal/subretinal vessels is part of
the normal nature of a patient or might be a pathological
formation surging from structures at other depths. The same
way as in the previous analysis, we test both 3×3 mm and
6×6 mm, thus also resulting in a total of six experiments for
this analysis.

3.1.3 Complete multi-depth ablation study

Finally, we study the potential combination of all the consid-
ered depths towards the grading of the pathology. This allows
us to compare the results with the other studies to, in effect,
perform a complete ablation study. In this analysis, we are
able to assess how the system performs with all the avail-
able information, and the degradation of the results when
the components of each previous iterations are not present.
Additionally, we can assess that these layers, instead of pro-
viding information, only increment the apparent information
noise (for example, by requiring more complex models to
obtain similar grading results). Like in the previous analysis,
to allow for a full comparison of the results, we also test both
3×3 mm and 6×6 mm, thus resulting in two experiments in
this case.

3.1.4 Model training

As we want to perform a coherent study on the performance
of our proposal, we study different configurations of a proven
model (presented in Section 3.1.5). To train and validate these
modelswe used random repetitions at patient level for each of
the depth configurations contemplated in the aforementioned
ablation studies and surfaces. That is, no samples from the
same patient are present both in training and test, but each
repetition distributes the subjects at randombetween training,
validation and test setswith a given proportion each. By using
this strategy, we mitigate the effects of the dataset imbal-
ance present in some of the classes and for some subjects,
as a cross-validation strategy would result in some folds to
have significantly less samples than other iterations in some
classes and return biased results. Then, due to the low num-
ber of repetitions of a cross-validation and its strict repartition
of the folds, each of these biased experiments would highly
impact the final results. By performing a high number of ran-
dom repetitions, these folds contribute less to the finalmetrics
and we get closer to the reality. Nonetheless, for informative
and disclosure purposes, we also include the experiments
where we train and evaluate the performance of all the stages
of our methodology by means of a 10-fold crossvalidation in
the Appendix.
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The training of each repetition is done by means of an
early-stopping strategy. That is, the training of the model
ends whenever no improvements are achieved in the valida-
tion loss for a given number of epochs. The final weights of
the model are the ones which achieved the minimum valida-
tion loss through all the epochs. Thisway, this strategy allows
to preserve themodelwith the best generalisation capabilities
while also preventing further overfitting (which would hap-
pen in amanually-set number of epochs). Finally, the learning
rate of the optimizer is modulated by a scheduler, where the
learning rate would decrease if themodel reached stagnation.
This allows for the training to self-regulate, decreasing the
step-sizes of the gradient descent the closer the model is to a
minimum. We follow these adaptive strategies to minimize
the impact of the initial configuration in the results of the
ablation and posterior study performed. The full pseucodode
of the training is presented in Algorithm 1.

3.1.5 Model architecture

The CNN network architecture chosen is the DenseNet [13].
As benefits, this network has shown to be a robust solution
used in pathologies with similar characteristics to the one
studied, as well as in medical imaging modalities with sim-
ilar properties. Furthermore, as this architecture consists of
dense blocks connected by skip-connections, mitigates the
possible effects of gradient vanishing in large networks or
overfitting in smaller configurations. This resilience allows
to minimize the effect of the configuration on the results that
were obtained in the conducted ablation study, being themain
factor affecting its outcome and the complexity of the prob-
lem in relation to the chosen network. Thus, this network
architecture represents a robust proven baseline to evaluate
both the contribution to the clinical domain of the different
factors considered in the proposed ablation study and a wide
range of network complexities needed for the classification
of the pathology.

In particular, we tested the configurations shown in Table
2: the DenseNet configurations 121, 161, 169 and 201. We
chose these configurations because, while the DenseNet 121
configuration is more reliable in simpler tasks, it obtains
lesser results in more complex scenarios (albeit able to
generalize more). On the other hand, the DenseNet 201 con-
figuration is quite reliable on very complex scenarios, but
(despite all the safeguards and measures of the network to
prevent it) tends to overfitting when the task at hand has a
simpler solution. This way, we can study not only the rele-
vance of the layers, but also compare the models to assess
the information noise and complexity of the features needed
to solve the task.

The potential drawback of using this architecture is the
concatenation of feature maps from each layer with the

Algorithm 1 Pseudocode of the training strategy.
Input: numRepeti tions, the number of times to repeat the training
process.

Input: max Patience, the number of epochswithout loss improvement
to stop training

Input: maxStagnation, the number of epochs without loss improve-
ment to reduce the learning rate.

Input: lr Factor , the learning rate reduction factor when maxStagna-
tion is reached.

Input: modelCon f igurations, each network architecture to consider.
Output: trainMetrics, validationMetrics, testMetrics,model
for each model configuration, surface and considered combination
of depths.
for each surface ∈ (3x3, 6x6) do

for each combination of 1, 2 and 3 elements of (DCP, AP,CP)

do
repeti tions ← numRepeti tions random distributions of the

patients.
for each repeti tion ∈ repeti tions do

divide repeti tion into trainSet , validationSet , test Set |
test Set ∩ validationSet ∩ trainSet = ∅

end for
for each model ∈ modelCon f igurations do

for each trainSet, validationSet, test Set ∈ repeti tions
do

stagnation ← 0
patience ← 0
do

model, trainMetrics ←
train(model, trainSet, learningRate)

validationMetrics = model(validationSet)
loss ← CrossEntropyLoss(validationMetrics)
if loss < minimumLoss then

minimumLoss ← loss
stagnation ← 0
patience ← 0

else
stagnation ← stagnation + 1
patience ← patience + 1
if stagnation >= maxStagnation then

learningRate ← learningRate ∗ lr Factor
stagnation ← 0

end if
end if

while stagnation < max Patience
testMetrics ← test(model, test Set)

end for
end for

end for
end for

previous layer, leading to duplicated information. As the
number of layers in the network grows along the different
configurations, this duplication of information can result in
an unnecessary increase in the number of model parameters,
leading to greater computational and memory requirements
during training.While we can use proven strategies to reduce
this effect (such as pruning and dropout), using these tech-
niques would require further analysis of the behavior of the
network to prevent collateral effects during the analysis (spe-
cially in larger datasets).
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Table 2 Basic structure of the DenseNet-based network configurations used in this work, where λ represents the size of the sides of the input
sample

Layers Convolution Pooling Dense block Transition layer Dense block Transition layer Dense block Transition layer Dense block Classification layer

Output

D
en
se
N
et
12
1

Convolution

Stride 2

Maxpool

Stride 2

1 conv

3 conv
6

Convolution

Average

pool

Stride 2

1 conv

3 conv
12

Convolution

Average

pool

Stride 2

1 conv

3 conv
24

Convolution

Average

pool

Stride 2

1 conv

3 conv
16

Fully-connected

softmax

5 classes

D
en
se
N
et
16
1

Convolution

Stride 2

Maxpool

Stride 2

1 conv

3 conv
6

Convolution

Average

pool

Stride 2

1 conv

3 conv
12

Convolution

Average

pool

Stride 2

1 conv

3 conv
36

Convolution

Average

pool

Stride 2

1 conv

3 conv
24

Fully-connected

softmax

5 classes

D
en
se
N
et
16
9

Convolution

Stride 2

Maxpool

Stride 2

1 conv

3 conv
6

Convolution

Average

pool

Stride 2

1 conv

3 conv
12

Convolution

Average

pool

Stride 2

1 conv

3 conv
32

Convolution

Average

pool

Stride 2

1 conv

3 conv
32

Fully-connected

softmax

5 classes

D
en
se
N
et
20
1

Convolution

Stride 2

Maxpool

Stride 2

1 conv

3 conv
6

Convolution

Average

pool

Stride 2

1 conv

3 conv
12

Convolution

Average

pool

Stride 2

1 conv

3 conv
48

Convolution

Average

pool

Stride 2

1 conv

3 conv
32

Fully-connected

softmax

5 classes

3.1.6 Training configuration

First of all, regarding the dataset, the images are rescaled
to a size of 224 × 224 as no diminishing results were
observed at this resolution configuration and the load on
the model was lesser. Additionally, to prevent overfitting
and increase the information extracted from our dataset,
as data augmentation strategy the images were randomly
rotated a random angle between 90 and -90 degrees with
nearest neighbors interpolation. Finally, they were randomly
flipped horizontally and/or vertically with a probability of
0.5 each.

For the training, we employed the Stochastic Gradient
Descent or SGD with Nesterov momentum of 0.9 [30]. The
training of the models was performed with a patience of 35
epochs for the early-stopping strategy. The scheduler, on the
other hand, reduces to a 75% of its value the learning rate
every 10 epochs without improvements in the loss. As opti-
mizer, we used the CrossEntropyLoss [18, 19], with an initial
learning rate of 0.005 (obtained by preliminary tests as an sta-
ble starting point with acceptable training times). Finally, the
experiments are repeated 25 times, with random distributions
at patient-level between the train, validation and test sets (that
is, no images from the same patient are allowed into both the
evaluation and training sets). The dataset was divided into
60% for training, 25% for validation and 15% for testing in
each repetition.

3.1.7 Model evaluation

To evaluate the performance of the models, we employed the
metrics shown in Equations 1 to 5, where TP are the True

Positives, TN the True Negatives, FP the False Positives and
FN the False Negatives:

Accuracy = T P + T N

T P + T N + FP + FN
(1)

Precision = T P

T P + FP
, Recall = T P

T P + FN
(2)

AUC=
∫ 1

x=0
Precision(FPR−1(x))dx, FPR=1−Recall

(3)

F1 Score = 2 × Precision × Recall

Precision + Recall
(4)

MCC= T P × T N−FP × FN√
(T P+FP)(T P+FN )(T N+FP)(T N+FN )

(5)

These measures are the accuracy (or percentage of cor-
rectly classified samples), precision (or percentage of posi-
tives returned by the system that are actually positive), recall
(or percentage of true positives returned by the system from
the total),AreaUnder the ROCCurve or AUC (or probability
of the system to assign a higher score to a positive sample than
a negative sample), F1 Score (or the harmonic mean of the
precision and recall), andMatthews correlation coefficient or
MCC (the correlation between the true labels and the labels
returned by the system). This last score is between -1 and 1,
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as it is based on the correlation coefficient of Pearson. These
metrics were chosen as they offer different points of view of
the results but, as we are dealing with a multiclass problem,
the average-per-class result will be presented in the cases the
metric does not inherently support it by its definition (such
as in the case of MCC).

3.2 Qualitative analysis of the attention

After the training of the different grading models and statis-
tical analysis of the results (where we trained a total of 14
models at different scanning depths), we will study the atten-
tion maps of the networks to further understand the results
in the scenarios that offer the most interesting study cases.
That is, we will analyze in collaboration with experts what
structures the networks are looking for at each depth to solve
this challenging scenario and the situations where themodels
achieve outstanding performance for combinations of MNV
types and depthswhere it should not be possible. To do so, we
will explore the gradient-weighted class activation mappings
describing the regions the network focused its attention [25,
26]. Then, we consult the most representative and relevant
ones with the experts to assess what features and structures
match with the ones returned by these attention maps.

Our proposal extracts the attention of the network by using
the partially retained spatial information of the last convolu-
tional layers and the higher-level features developed in them.
It uses the gradient information flowing into this last convolu-
tional layer to assign the importance values to each neuron.
These activations reveal which parts of the original image
contributed more to the final grading. Usually, these network
attention maps are employed by methodologies to further
ensure that the model is not taking advantage of other arti-
facts and elements of the image to improve its results such
as noise and artifacts product of the capture device that may
reveal a subgroup of patients, clinical devices that suggest
symptoms of related pathologies to the expert system (or risk
of), or interface information left by the capture device that
gives clues related to the nature of the patient and pathology.
In our case, the images do not contain any information perti-
nent to the patient. All the samples were taken with the same
device and configuration, and both healthy and pathological
images contain different levels of artifacts to ensure that the
system can only assess the results based on true biomarkers.

In this work, we explore the situations where, in the previ-
ous analyses, we noticed odd behaviors of the models given
the expertise of the clinicians. As mentioned, we will mainly
focus mainly on the models based on individual depths so
we can perform an unbiased per-layer study at this stage that
complements and expandswhatwe explored in the first stage.
For example, good testing metrics for types of MNV with

theoretical no presence at the studied depth and vice versa.
This way, in this work we not only propose a fully-automatic
grading solution. In conjunction with the previous per-depth
analysis we are further increasing the understanding of the
target pathology and proving the robustness and validity of
our work.

4 Results and discussion

In Sections 4.1 to 4.6 we will proceed to present and offer
a brief discussion on the results obtained for each experi-
ment. Each section offers the results of its analogous section
from the explainedmethodology (including both quantitative
and qualitative analyses). For the sake of allowing a better
per-MNV-type analysis, the results of each experiment are
presented as a normalized confusion matrix. The best global
results for each scenario are presented in Section 4.4 with the
metrics contemplated in the methodology.

4.1 Individual depth ablation results

In this first section of the results, we present the analysis of
the metrics for each depth independently of the rest. That is,
the networkswere trained by using only one of the considered
depths at the same time. This way, in Fig. 5 we present the
results by using only the DCP depth. In Fig. 6 the results only
using images taken at AP depth. Finally, in Fig. 7, images
taken from the CP depth.

The first thing to note is that, as expected, most of the
studied types of MNV obtain sensibly bad results at the
DCP depth (Fig. 5) except from the particular case of Type 3
MNV. This is understandable, as this type of MNV is the one
that extends through the retinal layers and prone to a vascu-
lar anastomosis along them. On the other hand, seems that
regardless of the severity and type of the pathology, the DCP
depth is as good as the rest of considered depths to determine
wether a patient presents normal retinal patterns or any type
of MNV. This indicates that, despite the clinical affliction be
exclusively focused on a given depth or depths, the DCP still
manifests artifacts or deformations that reveal the patholog-
ical nature present in the other depths. That is, despite not
being able to determinewether theMNV is focused on proxi-
mal depths to theCPor already has traversed the retinal layers
towards the DCP, still the DCP vascular structures seem to be
altered in a way that allow to predict wether the samples are
pathological or not in a global manner. Finally, we have to
remark also how the methodology is slightly better at deter-
mining Type 2 MNV at the wider area (6×6 mm) than the
smaller area (3×3mm). From amachine learning standpoint,
this could be due to the removal of smaller structures from the
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Fig. 5 Normalised confusion matrices for the models trained only using the OCTA images at DCP depth

resolution change. Both areas are covered in an image of the
same size, so the 6×6 mm OCTA samples covers more area
in an image with the same number of pixels than 3×3 mm.
Thus, smaller patterns are lost. This could, theoretically, help

the network to focus on the macro structures that are formed
and less on the removed smaller patterns.

Regarding the results from the models trained exclusively
with images at the AP depth (Fig. 6), we can see how, even
compared to the CP depth (Fig. 7), it obtained the best over-

Fig. 6 Normalised confusion matrices for the models trained only using the OCTA images at AP depth
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Fig. 7 Normalised confusion matrices for the models trained only using the OCTA images at CP depth

all results to determine both the presence and type of MNV.
This is probably due to the fact that at this depth, as its name
implies, there is a limited presence of vascular activity and,
thus, less noise to infer features related to new vascular for-
mations. Moreover, Type 2 MNV and, by extension, Type
3, are also characterised by the presence of new vessels that
transverse this region. This justifies the good results regard-
ing Type 2 and Type 3. However, the good results of Type
1 indicate that, despite this type of MNV only limited to
the sub-RPE space (thus, with no presence whatsoever in
the AP), microstructures product of MNV can be seen too
in Type 1 MNV at this depth. This is confirmed by the fact
that these good results are achieved exclusively in 3× 3 mm
OCTA images, while 6 × 6 mm OCTA images (that lost the
small structures due to the image resolution as mentioned
in the previous analysis) obtain understandable significantly
worse results for Type 1 MNV.

Finally, as expected, the models trained exclusively with
images at theCP depth (Fig. 7) present the best results for dis-
tinguishing normal from pathological cases. As MNV cases
have its source at this level, its understandable that the most
early indicators are present at this depth. However, this also
indicates that we can infer a certain degree of severity from
this layer despite being a common factor in all the MNV
types. Also, we see how it obtains better results the higher
the type ofMNV (probably due to the fact that, the longer the
reach of the retinal vessels, the thicker the base structures that
grow from this depth need to be). Also, this depth seems to be
also key for detecting caseswithmixed patterns of Type 1 and

Type 2, indicating that this MNV already presents particular
structural alterations at this depth that suggest the mixture
between the types.

4.2 Paired depths ablation results

Regarding the paired analysis, we first will study the results
obtained at the combined depths of the AP and the DCP (Fig.
8). In this case, we see that, as happened in the first individual
analysis, these two layersmostly favor theType 2 and3MNV,
as themain difference between these two types is the presence
or absence of MNV in the DCP layers. As no information
from the CP is given (and, as mentioned, this is the source
point forMNV), Type 1MNV returns underwhelming results
at these depths being confused in several timeswith themixed
MNV class.

Secondly,we study the results combiningOCTA images at
DCP depth and from the CP (Fig. 9). This case is particularly
interesting, as is at this combinationwhere the best results for
detecting Type 1 MNV are found (and only in the 3×3 mm
OCTA images). This is probably because the model is taking
advantage ofmicrostructures present in the innermost studied
depth of the retina (DCP) that aid it to discern between Type
1 and Type 2 MNV. It seems that Type 2 MNV leaves traces
in the DCP depth that aid the model to properly distinguish
them from the Type 1. This is further confirmed by the good
results also obtained in the mixed type MNV class.

Finally, in the particular casewhere the themodel received
as input OCTA images from both the CP and the AP depths
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Fig. 8 Normalised confusion matrices for the models trained only using the OCTA images at both DCP and AP depths

(Fig. 10), as expected, the results are the best from the three
combinations of this analysis. As seen in the analysis at indi-
vidual depths, at this depths the most significant features are
present: the CP where the MNV grows from, and the AP
where features leaked to this layer aid to denote changes in
Type 1MNV(and also present in the definition for bothTypes
2 and 3).

4.3 Complete multi-depth ablation results

Finally, in Fig. 11 we present the results for the model that
combines as input all the three depths. As expected, from
all the options, this is the one that obtains best results (as it
contains all the information available). However, the Type
1 MNV is still the class which suffers the most in the final

Fig. 9 Normalised confusion matrices for the models trained only using the OCTA images at both DCP and CP depths
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Fig. 10 Normalised confusion matrices for the models trained only using the OCTA images at both AP and CP depths

results. Additionally, the results shown that, when all the
depths are available, the system is able to better assess the
class of the input in the 3×3mmOCTAs (being the exception
Type 2 MNV that appears to be confused more with Type 1
and the mixed type).

However, all the results are obtained best with the most
complexDenseNet configuration, and still significantly close
to the combination of both the AP and CP layers in the previ-
ous paired approach with simpler models. Thus, we can infer
that the addition of the DCP layer does not add significant

Fig. 11 Normalised confusion matrices for the models trained only using the OCTA images at the three considered depths
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information to the detection, and mostly forces the model to
use more lower-lever features to be able to remove the added
noise from said depth. Nonetheless, these scenarios will be
further explored in the following results of the qualitative
analysis (Section 4.6), which will help us to confirm if this
layer actually contributes and in which manner.

4.4 Global results

The best metrics for each type of analysis are included in
Table 3. In this table, the reader can see how our work
has achieved more than satisfactory results despite the chal-
lenging scenario presented. Our dataset, as shown in the
introduction of this work, presents severe artifacts that seem-
ingly completely obfuscates any relevant features present at
some depths. This is shown particularly by the improvement
of the results as more information is provided to the model.
This is not only because the new points of view, but also
thanks to the redundancy of information present in the rest
of layers layers. Moreover, as shown in the previous confu-
sion matrices, even in completely opposite depths the model
is able to infer features to aid in the grading process.

These results confirm what we suggested in previous sec-
tions. The performance of themodel that uses exclusively the
information from the AP depth with an outstanding 0.8983
± 0.0645 of AUC, proving the usefulness of this individual
layer in the proposed grading task. Adding extra depth infor-
mation adds only an increase of 0.03 of performance in all
metrics, well inside the standard deviation of the AP-only
model. Also, it is worth mentioning that only in the single
depth analysis the favored depth was the 3×3 mm, while the
other two experiments favored the 6×6 mm. As mentioned,
we can infer that this is caused by the removal of small pat-
terns and noise due to the same resolution of the imageswhile
capturing a bigger region, but this will be further studied in
the following qualitative analysis stagemade in collaboration
with the expert clinicians.When we are only considering one
of the depths, the model takes advantage of the most infor-
mation it can from a single bidimensional projection of a
region, and maintaining these features is critical to predict
the structures at other depths to improve the grading per-
formance. However, when including information about the
adjacent layers, these small patterns become significantly less
relevant (as this information is present in these extra layers).
Thus, their removal greatly simplifies the problem and allows
the model to focus on the inter-depth relationship and filter
the intra-depth patterns.

As mentioned, this phenomenon seen in the AP depth and
its unexpected performance is going to be studied further in
the qualitative analysis of these models, where we will infer
what structures present in the images allow for this perfor-
mance despite (in theory) some of the types not considering

to a certain extent this depth (such as Type 1 and the Mixed
type).

4.5 Analysis of themisclassifications

In this section we analyze the samples that the proposed
methodology misclassified. One of the main causes of mis-
classifications are the severe artifacts present in the dataset
(specially in the tests where we only consider one of the
depths at the same time). In particular, in Fig. 12, we present
a random assortment of samples for each individual ablation
test, network and surface area analyzed. In them, we can note
how in all these scenarios the normal structures of the retina
are severely distorted. As we will present in following sec-
tions, the methodology is able to classify samples up to a
certain level of disruption, and these scenarios are extreme.
Moreover, this effect is diminished the more depths are con-
sidered (even considering that the artifacts tend to affect to
similar regions along all depths).

When considering multiple (or all) depths, these artifacts
become a lesser concern. Our proposal seems to be able to
take advantage from the redundancy of information aswell as
continuity between depths to compensate for the data degra-
dation. This way, most of the impact now falls on the extreme
scenarios of each category where the number of samples is
not sufficient. This is reflected in that most of the misclassifi-
cations belong to particular patients, instead of a randomized
set like in the previous set. In Fig. 13, we present a random
selection of misclassified samples per subject. As the reader
can see, these represent scenarios for the different types of
AMD that might be underrepresented in the dataset (note
that, unlike in Fig. 12, all three depths belong to the same
patient in each column).

4.6 Qualitative analysis of the attention results

Finally, in this last stage we analyzed some representative
cases that would better illustrate the results attained by our
grading proposal. In particular, we wanted to further under-
stand why the AP of the retina was significant for a type of
MNV that should not be present at that depth. In Figs. 14 and
15 we present representative examples at the relevant depths
that explain this scenario.

In these two figures, we can see how, for the networks that
attained the best results using exclusively OCTAs taken at
the depth of the AP (in both cases, with the DenseNet 201,
as shown in Section 4.1), the networks attention is focused
on vascular structures present at AP depth. These structures,
despite being at AP depth, are actually under the RPE layer,
as they deformed the retinal layers but did not cross through.
Thus, despite this MNV actually being technically Type 1,
due to the deformation of the external retinal layers, its pres-
ence is shown at the depth of the AP. Additionally, this MNV
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Fig. 12 Random misclassified
examples that present severe
artifacts. All the presented
samples are random, not
necessarily belonging to the
same patient or visit per row or
column

grows from the Bruch’s membrane (the innermost layer of
the choroid). Thus, this MNV is imperceptible mostly at this
depth.

In both figures we also include the attention maps of the
network that obtained the best results at the depth of the CP.
Again, in both cases this corresponds to the DenseNet 161.
As we can see (and, in contrast with the same depth of the
DenseNet 201), there are actually some patterns present at
this depth that hint the presence of Type 1 MNV despite
not being clearly visible. In the case of the patient presented
in Fig. 15, this is mostly focused on a particular vascular
structure on the rightmost side of the image that could hint
what has actually surfaced in innermost layers. On the other
hand, in the patient of Fig. 14, no particular notable vascular
structures have appeared on said membrane that could lead
to believe that there is MNV; but the network has been able
to infer its presence by the overall sparsity of the capillar
structures at this depth.

In Fig. 16, we include a view from the capture device
that confirms our explanation. In the cross-sectional view
of these retinal layers (labeled by expert clinicians in the
capture device) we can see the RPE layer marked in green.
Under it, the vascular flow of the lesion is colored in red,

and the CP flow in purple. As the reader can see, there is a
clear disturbance in the RPE layer that pushes over the CP
line, facilitating said vascular artifacts to appear at depths
they should not. Additionally, as shown by the depth maps
in these images from both patients, this is prominent along
all the retina, explaining the behavior shown in the attention
maps.

The same way, in Fig. 17 we present a case with Type
2 MNV. In this particular case, the MNV should be visible
(by definition, as mentioned in the introduction of this work)
in both the AP and CP depths. In that figure, we present
these two relevant depths with the network (DenseNet161)
and surface analyzed size that returned the best results in
the individual analysis (6×6 mm for the AP and 3×3 mm
for the CP). As we can see in this case, the attention map is
more concentrated in both scenarios. The MNV present at
AP is clearly visible and attracts the attention of the net-
work. This is the same scenario at CP level, where also
the network is clearly focused on the region underneath the
CP that presents a darkened pattern underneath the MNV
at the AP depth. Moreover, despite attaining better results
at different surface regions, both attention maps are consis-
tent, showing that both cases reached the same approximate

Fig. 13 Random misclassified
6x6 samples from the DenseNet
201 network experiment trained
with all three depths. Each
column represents a random
misclassified visit from the
subject with the given ID in the
dataset
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Fig. 14 Attention maps generated for the Type 1 MNV generated for
the images with a surface of 3×3 mm

conclusion on the relevance of the structures present in the
OCTAs.

Finally, in Fig. 18 we present a patient with clear Type
3 MNV. In this scenario, we also include the DCP layer as,
per definition of this type of MNV, the MNV patterns should
also be noticeable in an OCTA at this depth (additionally,
the models obtained satisfactory results identifying Type 3
MNV in the individual analysis when only using this depth).
In this figure, aswe did in previous scenarios, we included the
cases of the individual analysis where the networks obtained
the best performance at that depths and surface sizes. In this
case, the DenseNet 161 for the analysis at DCP depth and
the DenseNet 169 for both the AP and CP depths.

In the case of the CP depth, we see the same scenario
presented in previous attention map analysis. The networks
that perform better are the ones that measure the darkened
surface present at the CP level, better so than the ones that
consider the formation of pathological structures (such as the
ones shown at the same depth with the DenseNet 161). This
is a similar situation with what happens at the AP, where

Fig. 15 Attention maps generated for the Type 1 MNV generated for
the images with a surface of 3×3 mm

also the model that outperforms the rest is the one focusing
on particular darkened patches versus the models that focus
on underlying vascular patterns. On the other hand, at DCP
level the results show that the vascular formations are actually
more relevant than the darkened regions, where no network
has focused on them, but more on the lattice patterns with
high lacunarity at this depth.

5 Conclusions

In this work, we presented a fully-automatic gradingmethod-
ology, able to distinguish the four clinical stages of MNV in
OCTA images.We performed an in-depth study of all the rel-
evant layers for the disease, taking advantage of models with
a range of complexities to understand their contribution to
the issue. Furthermore, we studied this already challenging
domain with a dataset comprised by images with severe cap-
turing artifacts and with different stages of treatment, which
would hinder the diagnosis process. Finally, we presented
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Fig. 16 Images from the
capture device interface for the
patients of Figs. 14 (left) and 15
(right). Top-left corner of each
image: layer depth. Top-right
corner of each image: the OCTA
view. Bottom panel:
cross-sectional OCT scan

an in-depth qualitative study of the results in collaboration
with expert clinicians, analyzing the attention maps of the
trained networks to understand the behavior of the proposed
methodology and improve the understanding of the target
pathology.

We obtained more than satisfactory results even with the
most limited approach. By only using the AP layer (which, in
theory, is not relevant for someof the stages of the disease)we
were able to obtain an 0.8937± 0.0654 AUC. The sameway,
with the completemodel considering all the layers, the results
improved to an 0.9224± 0.0381AUC. In the qualitative anal-

Fig. 17 Attention maps generated for the Type 2 MNV with the
DenseNet 161

ysis of the attention maps, we discovered that, both in the AP
and the CP layers, vascular formations were present despite
(in theory) not being defined by the type. In collaboration
with the expert clinicians and the provided maps, we con-
cluded that these vascular structures were under the proper
layers for the given type (as they did not cross the limiting
membranes), albeit the deformation they caused propagated
to upper levels, allowing for its detection at the considered
depths despite not being present in the layer. This same sce-
nario occurred with the DCP layer, being able to determine
the binary presence of the pathology despite being affected
by definition only in latter stages of it. This way, our pro-
posal is the first that considers the full grading of the MNV
in OCTA at the three most relevant depths (allowing us to
reveal the previously unconsidered line of research in the
usage of layers outside the explicit definition of MNV types)
and performs a complete qualitative analysis in collabora-
tion with expert clinicians by means of explainable artificial
intelligence strategies.

As future works, it would be interesting to consider also
the different treatment stages available in the dataset. Some
of the patients respond well to the treatment, while oth-
ers show minimal to no response. A methodology able to
predict or that takes into consideration this factor could
help to better assess the features that contribute the most
to each stage and type of MNV, minimizing (and explor-
ing) the influence and bias of the pharmacological/surgical
treatment. Additionally, we would like to further explore in
the qualitative analysis the change in detected patterns when
consideringmore than individual independent layers (as well
as the implication of said changes with the experts in the
domain).

Regarding the learning strategy and explainability tech-
niques, it would be interesting to apply image classification
strategies that would inherently include and favor explain-
ability. As an example, we can consider prototype-based
learning approaches such as ProtoPNet, which performs the
classification based on a set of representative training pro-
totypes. In this way, the classification is both justified and
explained with selected explicit examples from the train set
that can help to understand the classification process with-
out the requirement of an extensive analysis of samples by
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Fig. 18 Attention maps
generated for the Type 3 MNV
generated for the images with a
surface of 3×3 mm

an expert in the domain. Moreover, this paradigm can help
to filter problems related to the methodology itself, allowing
for a more robust analysis of the results. Finally, it would
also be interesting to combine this prototype based strategy
with three-dimensional vision transformers or ViT. The reti-
nal vascular tree expands itself along all the three axis of
the studied cube. As shown, this is relevant specially in sce-
narios where artifacts severely distort the generated image,
diminishing the impact of these artifacts themore layerswere
considered during training. Thus, these machine learning
strategies that intrinsically consider both the spatial continu-
ity and integrate attention mechanisms could greatly benefit
our proposal and its explainability. This would also help with
the aforementioned limitations of the network architecture
used in this work, which, due to its high number of connec-
tions, overfitting may occur in datasets of significant size,
being detrimental for future works with a higher number of
samples.
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