
Received 17 April 2024, accepted 14 May 2024, date of publication 17 May 2024, date of current version 24 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3402326

STuning-DL: Model-Driven Autotuning of Sparse
GPU Kernels for Deep Learning
ROBERTO L. CASTRO , DIEGO ANDRADE , AND BASILIO B. FRAGUELA
CITIC, Computer Architecture Group, University of A Coruña, 15071 A Coruña, Spain

Corresponding author: Roberto L. Castro (roberto.lopez.castro@udc.es)

This work was supported by grant PID2022-136435NB-I00, funded by MCIN/AEI/ 10.13039/501100011033 and by ‘‘ERDF A way
of making Europe’’, EU; also by Xunta de Galicia under the ConsolidaTon Programme of CompeTTve Reference Groups, ref. ED431C
2021/30. The work of Roberto L. Castro was supported by a predoctoral grant from the Ministry of Science, InnovaTon and UniversiTes,
ref. FPU19/03974.

ABSTRACT The relentless growth of modern Machine Learning models has spurred the adoption of
sparsification techniques to simplify their architectures and reduce the computational demands. Network
pruning has demonstrated success in maintaining original network accuracy while shedding significant
portions of the original weights. However, leveraging this sparsity efficiently remains challenging due to
computational irregularities, particularly in GPU kernels. A new trend of template-based GPU kernels
for semi-structured sparsity shows promise in efficiency but lacks autotuning capabilities to adapt to
input dynamics, often underperforming in scenarios where they have not been meticulously hand-tuned.
We present STuning-DL, the first pruning-aware autotuner for third-party template-based implementations
enabling efficient optimization of sparse kernels for Deep Learning, spanning from high-level aspects
(CUDA C++ level) down to GPU-native instructions specifics (assembly-level). STuning-DL tunes
and optimizes at run-time sparse kernels’ performance for each input problem, yielding speedups
of up to 5.42× on NVIDIA T4-16GB and up to 3.6× on NVIDIA A100-40GB GPU in sparse
matrices from real world models compared to existing heuristics from sparse libraries like cuSparse and
cuSparseLt.

INDEX TERMS CUDA, GPU, learning-based predictive model, network pruning, sparse computation,
SpMM, Tensor Core.

I. INTRODUCTION
ModernMachine Learning (ML)models, such as transformer-
based architectures, have obtained unrivaled performance in
multiple domains like Natural Language Processing (NLP)
with Large Language Models (LLMs) [60], or Computer
Vision with Vision Transformers (ViT) [14], [59]. However,
generally, this remarkable progress comes at the cost of bur-
geoning architectural complexity, escalating computational
demands, and heightened energy consumption [1], [3], [20],
[25].

GEneral Matrix-Matrix Multiplication (GEMM) is a
fundamental operation in many algorithms including most

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

ML models. As a consequence, improving its performance
has been a topic of continuous research and development
over time [31], [64]. However, optimizing this routine to
cater to diverse input problems and platforms presents a non-
trivial challenge. This complexity is especially pronounced
within the realm of ML due to the widely varying properties
exhibited by each layer within a model [26], [28]. Moreover,
certain ML applications grapple with additional complexities
stemming from this challenge. One such instance arises in the
context of Automated Machine Learning (AutoML), where
the network architecture undergoes continuous evolution in
pursuit of the optimal configuration tailored to a specific
input dataset [13], [63]. In that sense, the autotuning
of computational kernels has garnered significant interest,
offering various strategies to optimize GEMM kernels based

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 70581

https://orcid.org/0000-0001-5493-0287
https://orcid.org/0000-0001-5670-7425
https://orcid.org/0000-0002-3438-5960
https://orcid.org/0000-0002-0917-2277

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

on the specific characteristics of the input problem and
hardware architecture [10], [30], [58], [65], [69].

In this pursuit of accelerating GEMM computations
and enhancing the overall performance of ML models,
recent research has ventured into the domain of weight
pruning [22]. The core aim of weight pruning is to generate
faster lightweight representations of dense original models
with reduced memory consumption, while simultaneously
endeavoring to avoid or minimize any increase in loss
of accuracy. This is achieved through the removal of the
weights considered less relevant in the overall network.
Depending on the granularity of the pruning technique
employed (structural/non-structural), the outcome of the
pruning process can be sparse matrices serving as repre-
sentations for network components. Consequently, GEMMs
are transformed into Sparse Matrix-Matrix Multiplications
(SpMMs), resulting in a fundamental alteration in the
computations.

Historically, sparse computation has been a recurring
theme in the domain of High Performance Computing
(HPC) [11]. However, sparsity in HPC has been predom-
inantly associated with scientific workloads, characterized
by sparse matrices that exhibit markedly different properties
from those encountered in Deep Learning (DL) [16]. These
distinguishing characteristics include: (1) exceedingly high
sparsity levels (≥ 99%), (2) a concentration of non-zero
elements constituting quite structural matrices (e.g., banded
matrices), (3) shorter row lengths, and (4) greater variability
in row lengths within a matrix. Autotuning techniques for
sparse computation in scientific problems have been studied
before; however, (1) they are mostly limited to Sparse-Matrix
Vector Multiplications (SpMV), which are largely less
common in DL than SpMMs, and (2) the design and the
procedures are strongly tailored to the aforementioned input
characteristics, which renders the tools and findings gleaned
from previous studies in this field non-transferable to the
domain of sparsity in DL [8], [15], [36], [37], [50].

As a consequence of these strong differences, the advent
of sparse computation in DL has prompted the development
of novel implementations tailored to accommodate these
distinctive workloads. However, a critical aspect remains
unaddressed – the development of autotuning techniques
for sparse GPU kernels tailored specifically to DL problems.
A recent trend in DL compilers has attempted to address this
open question by automating the generation of code for sparse
computations [8], [57], [61], [62], [68], [71]. However, as is
frequently the case with such tools, their aim of adaptability
to various platforms and formats often comes at the cost
of performance, preventing them from reaching the level of
hardware-native performance that ad-hoc implementations
can achieve.

In the pursuit of creating a novel autotuner that addresses
this open question, first, we made an in-depth study of the
techniques that have historically been applied in the context
of autotuning to linear algebra kernels. While hand-written

autotuning heuristics have long been employed in this con-
text, recent research has revealed their susceptibility to issues
related to input specifications and limited generalizability
across diverse inputs [28], [64]. This concern is particularly
critical in the context of DL, where the potential range
of configurations is vast, especially when incorporating
sparsity into the equation. In response to these limitations,
a burgeoning trend involves the utilization of Predictive
Models for the development of adaptive and input-aware
libraries with enhanced efficiency [28]. Nevertheless, apply-
ing this approach in the context of sparsity for DL introduces
different problems that constitute an important challenge,
namely:

Problem 1: Implementations are highly-coupled to one
compressed storage format. Until now, the focus in sparsity
for HPC has predominantly revolved around optimizing
performance aspects. Consequently, previous studies mainly
concentrated on autotuning the sparse compression formats
employed to represent sparse inputs, with the primary aim of
achieving performance enhancements [37], [62].

However, in the context of sparsity for DL, a pivotal
and novel dimension emerges as a critical concern: the
accuracy of the network. Sparse input matrices are inherently
shaped by the pruning algorithms, which can generate
highly irregular sparse matrices [16]. This irregularity,
however, can significantly undermine performance due to
inefficient hardware utilization [4]. Therefore, a new trend
of semi-structured pruning techniques, which aims to find
trade-offs between performance and accuracy, can yield quite
structured patterns that offer better performance, but little to
no room for tuning their representation [29]. This trend is
caused because of the tremendous complexity of achieving
speedups with sparse matrices in DL, since they exhibit
a relatively high density, and their irregular nature does
not align with the highly regular execution style of GPUs,
particularly Tensor Cores Units (TCU).

The aforementioned situation imposes a substantial limita-
tion when attempting to create an autotuning system, which
severely restricts their tunability in terms of formats and
makes the custom existing implementations only useful for
a particular distribution of non-zeros. This renders the core
principles of previous research, which primarily concentrated
on refining sparse representations, inapplicable to this novel
problem.

Problem 2: Poor generalization to new input problems
and other platforms. The daunting task of crafting efficient
kernels for sparse computation in DL has spurred the prolifer-
ation of specialized kernels tailored to address specific input
problem shapes and hardware architectures [4], [7], [16]. This
limitation recognizes the inherent difficulty of preserving the
performance across all conceivable scenarios. Among the
most critical issues with this trend, is their inability to perform
effectively with input shapes other than those for which
they have been optimized, which typically are small/medium
problem sizes. Consequently, when dealing with a larger

70582 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

input problem, they fail to scale efficiently. Regarding
platform portability, existing implementations are also highly
coupled and optimized for a particular architecture because
of this complexity. Hence, this renders them non-portable in
terms of performance across various hardware architectures.

This phenomenon has already been empirically demon-
strated in prior research [5], and it represents an impor-
tant challenge in terms of autotuning, which aims to
address adaptability to varying input dynamics and hardware
platforms.

Problem 3: Lack of autotuning engines for sparsity
on DL. The limitations described above have hindered the
progression of sparse implementations for DL from aligning
with the inherent characteristics of dense linear algebra
libraries: tunability, scalability, and portability across diverse
architectures. The lack of previous studies has represented
an important challenge, and this paper aims to answer the
questions present in this field in that sense, as well as to
establish a way to design new implementations that would
favor the aforementioned desirable features in the context of
sparse linear algebra libraries for DL.

Template-based GPU kernel implementations are emerg-
ing as a promising solution to the previously mentioned
limitations. Similar developments have already proven suc-
cessful in the realm of dense computations [64], offering a
middle ground between the hardware-native performance of
hand-tuned implementations, which provide limited room for
autotuning, and the lower performance but highly tunable and
portable approach of DL compilers.

In this paper we introduce STuning-DL, a new autotuning
tool for accelerating sparse template-based GPU kernels
for DL. STuning-DL confronts this scenario by targeting
an ultimate goal: instantiating template-based kernel imple-
mentations with the utilization of Predictive Models for
the development of adaptive and input-aware libraries with
enhanced efficiency. As we mentioned above, a similar idea
has been applied to dense computation before, but to the best
of our knowledge, this concept has not been explored yet
within the realm of sparse computation for DL. This target
is achieved by creating a vast hardware-dependent tuning
space (assembly-level), instead of just facing the autotuning
problem for sparse computation from a purely software-level
perspective (e.g., sparse format), as the vast majority of
existing works do.

This papers addresses these 3 problems with the following
contributions:

• We first provide an in-depth analysis of the potential
flaws and opportunities for autotuning in the field
of sparse computation for DL workloads, particu-
larly focused on SpMM problems. We also study
the effectiveness of existent solutions in the context
of DL.

• We present a detailed and transparent methodology for
generating high-quality datasets in this context that is
easy to extend to other potential new architectures,
implementations, and formats that may arise in the field.

• We present an in-depth evaluation of several classifi-
cation methods in the performance tuning of sparse
computational kernels for DL workloads. This includes
the assessment of each model from different perspec-
tives: accuracy, latency, and final practical performance
(kernel evaluation).

• Encompassing all of this, we propose STuning-DL,
an autotuning tool highly coupled to the underlying
hardware details reaching GPU native instruction opti-
mization by means of template-based sparse linear alge-
bra implementations, and outputting high-performance
near-optimal SpMM kernel instances. The tool is able to
operate at run-time requiring negligible overhead. To our
knowledge, this is the first autotuning project focused
on SpMM template-based kernels for DL, covering from
high-level format details to assembly-level aspects.

• We evaluate STuning-DL on real-world models from the
DLMC dataset and the Llama 2 architecture. STuning-
DL achieves speedups of up to 5.42× on the T4-16GB
GPU and 3.6× on the A100-40GB GPU compared
to the configurations extracted from the NVIDIA
sparse libraries cuSparse and cuSparseLt on the same
input problems, but requiring a negligible autotuning
overhead.

II. BACKGROUND
This section presents a foundational overview of GPU
architecture and terminology, while also introducing some
background information on autotuning and supervised clas-
sification methods. Since all the GPU implementations
referenced in this paper are written in CUDA, we adopt the
NVIDIA terminology.

A. GRAPHIC PROCESSING UNITS AND SPMM
GPUs are composed by an array of StreamingMultiprocessor
(SM) elements that share a L2 cache and a DRAM GPU
memory, or Global Memory (GMEM). Each SM is divided
in partitions of different processing blocks. All the processing
blocks in the same SM share a L1 cache that can be partially
used as Shared Memory (SMEM). Each of those processing
blocks within an SM is equipped, in a simplified form, with
a Register File (RF), a L0 instruction cache, and four types
of processing units: Floating-Point Units (FPU), Tensor-Core
Units (TCU), Int Units (ALU) and Special Function Units
(SFU).

The design of an efficient CUDA kernel highly depends
on three aspects: (1) the efficiency of the data movements
to the top levels of the memory hierarchy (i.e., GMEM →

SMEM → RF), and back (data storage), (2) the usage of
the hardware resources during the computation, and (3) the
degree of overlap between (1) and (2) to hide memory latency
with computation. Block tiling and software pipelining
techniques are extensively used not only for this purpose but
also for improving data locality.

The execution model hierarchy of a GEMM GPU CUDA
kernel can be categorized into three levels of granularity:

VOLUME 12, 2024 70583

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 1. Hierarchical decomposition of an SpMM kernel.

thread-blocks, warps, and threads. A thread block comprises
a collection of warps, with warps serving as the fundamental
scheduling unit in CUDA, encompassing 32 threads each.
Within a single warp, all threads are dispatched to the same
SM and execute instructions synchronously, adhering to a
SIMD (Single Instruction, Multiple Data) architecture. Any
deviation from this uniformity results in thread divergence,
leading to serialized execution. The number of warps accom-
modated by an SM depends on several factors, including
the available resources and the allocation designated for
each warp. This parameter is referred to as occupancy,
and optimizing it is crucial for effectively harnessing GPU
resources.

Figure 1 illustrates the interrelation between GPU hard-
ware components and the software elements in the CUDA
programming model for a SpMM kernel of dimensions M ×

K × N . This hierarchical decomposition begins with the
GMEM, where the entire matrices serve as inputs to the
SpMM function. Three distinct levels of decomposition are
subsequently considered: (1) Thread-Block Tile, assigned to
a block of threads, this level of decomposition is stored in
SMEM. Then, (2) the Warp Tile, associated with a warp
of threads, is stored in RF. Finally, (3) the Instruction
Tile (shape), positioned at the bottom of the hierarchy,
pertains to the processing unit in use (e.g., TCU). The
specific instruction shape adopted depends significantly
on the architecture at hand. For instance, on the Ampere
architecture, a single Tensor Core instruction can receive
a tile of 16 × 16x8 elements, enabling the execution of a
Matrix-Matrix Multiplication (MMA) in a single instruction,
and thus removing the overhead of fetching and decoding
multiple instructions to perform the same computation.

This scenario raises a set of configurable parameters
that strongly depend on the specific GPU architecture. The
optimal tile sizes for a given input problem and GPU
architecture have been studied and optimized for years
in dense computation. Some of these tunable parameters

have been referenced in Figure 1 for each dimension of
an SpMM operation, such as the block tile size (BM ×

BK × BN), the warp tile size (WM × WK × WN), the
instruction (MMA) size (MM × MK × MN), and the batch
size (batch). However, autotuning for sparse computations
in DL problems, and particularly the relation between such
hardware-dependent parameters (some of them at ptx code-
level [39], an intermediate virtual assembly) with the sparse
matrices generated by different weight pruning processes,
still remains an open question.

B. NETWORK WEIGHT PRUNING AND SPARSE FORMATS
Weight pruning lays its foundations in the idea that modern
large ML models are overparameterized [22]. As a conse-
quence of this observation, this research is focused on the
study of the best methods to select which neuron connections
to remove, simplifying models’ complexity, all while trying
to preserve their accuracy. These pruning techniques may
operate at different granularity levels.

Structured pruning techniques drop whole components
(e.g., filters, layer, heads) of a network, which reduces the
architecture complexity while keeping dense the computa-
tion [29]. However, this approach is too aggressive in the
weight selection for removal and the sparsity level achievable
is very limited.

Recent advancements [27], [47] in weight pruning tech-
niques with lower granularities have proven successfully
to maintain the original dense accuracy while enabling
higher levels of sparsity, opening the path to a boost in the
performance. This trend not only contributes to the sparsity
level, but also to the emergence of more constrained sparse
compression formats, since in this second group of techniques
real sparse matrices are generated. This implies transitioning
from a dense to a sparse computational paradigm. Depending
on the granurality level, we can differentiate between:

Unstructured pruning: is the most flexible approach,
which allows dropping weights with no constraints in

70584 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

the distribution of non-zeros. Modern techniques have
successfully pruned models to sparsity levels > 90%
with minimum to no negative impact on accuracy [47].
Despite this, GPU implementations for unstructured sparsity
in DL are usually slower than their dense counterparts in
most scenarios because of the irregularity of the sparse
matrices, which hinders the efficient usage of the GPU
resources [4]. Such sparse matrices are typically represented
by well-known sparse compression formats extensively used
in other domains such as CSR, COO, ELLPACK, HYB,
CSR5, or merged-based CSR formats.

Semi-structural pruning: facilitates the distribution of
non-zeros across the sparse matrix in a more uniform
manner, consequently benefiting critical aspects of GPU
kernels, including inter- and intra-warp load balancing,
mitigating thread divergence, enhancing data locality, and
optimizing memory transactions with wider memory instruc-
tions. Several non-zero patterns have been proposed to
achieve the best accuracy-to-performance trade-offs: block-
wise pruning [18], [29] selects 2-D blocks of non-zero
elements with size BM × BK ; vector-wise pruning [4], [7],
[32] selects vectors or 1-D blocks of elements of length
l; N:M pruning [35] divides the matrix into vectors of
consecutive M elements and selects the best N out of M for
each one of them; V:N:M pruning [5] divides the matrix into
blocks of size V × M , drops a subset of M − 4 columns for
each group, and selects N elements per row in the preserved
columns.

C. AUTOTUNERS AND PREDICTIVE MODELS
Autotuning engines serve as the core of numerous Deep
Neural Network (DNN) compilers. These autotuners operate
by taking tensor problems as inputs and meticulously
navigating vast search spaces to determine the optimal kernel
configuration [6], [70]. However, the ideal configuration
depends on various low-level device properties, such as L2
and L1 cache sizes, SMEM size, instruction shapes available,
and many others. Therefore, these compilers often fall short
of achieving the hardware-native performance because they
prioritize aspects like portability across different hardware
architectures, often overlooking crucial low-level hardware
details in their optimization processes [64].

Most BLAS libraries, such as cuBLAS, are written in sass
code [66] (GPU assembly code) and have been heavily
hand-optimized by experts, so they are able to achieve
hardware-native performance. However, it is very hard to
achieve portable implementations since sass code is native to
the target GPU architecture. Furthermore, autotuners in this
kind of kernels seek the best configuration for a limited set
of inputs. For instance, GEMM implementations are often
per-default tuned for squared matrices [38], [48]. For that
reason, traditional autotuning techniques underperform in
ML workloads, where the amount of different input shapes
is large.

The expanding diversity of input data in ML has spurred
the proliferation of specialized databases (SAMPL) [52],
which are designed to store and reuse tuning logs. However,
modern ML models exhibit growing dynamism, not only
dynamic data structures but also variable shapes, rendering
traditional caching methods less effective. Additionally,
maintaining these databases is very expensive.

With the aim of dealing with such dynamism, a new
trend of autotuners based on Predictive Models is emerg-
ing [2], [28], [53], [55] which tries to balance flexibility
and hardware-native performance in core routines such
as GEMMs and convolutions. The idea is to use ML
techniques to model performance, and replace hand-written
rules by supervised classification techniques. Some of these
supervised methods previously used for dense computation
include [28], [46]:
Decision trees (DT) [51] are a non-parametric supervised

learning method employed for regression and classification
tasks. DTs try to predict the value of a target variable
by learning simple decision rules, which can be easily
interpreted as a chained set of if-then-else statements,
inferred from the input data features. However, DTs can be
unstable and may produce completely different trees with
small data variations. This problem can be mitigated using
DTs with an ensemble.

Random Forest (RF) [21] is an ensemble method of
DTs that can provide better generalization and reduced
overfitting. It is a meta estimator that fits many independent
DTs on various sub-samples of the dataset, and then uses
averaging predictions (for regression) or takes majority vote
(for classification) to provide the result.

Gradient Tree Boosting (GTB) [67] is another ensemble
method that builds DTs sequentially. It makes use of gradient
descent to improve the model by adding DTs that focus on
the errors made by the previous ones.

Naive Bayesian Classifier (NBC) [49] is a supervised
learning method based on Bayes’ theorem. It represents the
simplest variant of a Bayesian network and assumes that,
given a class variable, all the features are strongly (naively)
independent. Despite being usually false, this straightforward
approach can generate simple but effective models.

Logistic Regression (LoR) [34], in this project, serves as a
linear classification model, which predicts the probability of
a given input belonging to a particular class. This prediction
is made by assessing the input’s features through a logistic
function.

K-Nearest Neighbours (KNN) [44] finds the K training
samples that are closest in distance to the new point, and
predict its label from them.Neighbors-basedmethods are also
referred to as non-generalizing learning methods, since they
just remember the training points.

Support Vector Machine (SVM) [9] is a supervised
learning method that divides the data by drawing hyperplanes
in the feature space. SVMs represent an efficient solution for
high dimensional spaces. However, if the number of features

VOLUME 12, 2024 70585

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

is much greater than the number of samples, it can lead to
overfitting.

Multi-Layer Perceptron (MLP) [45] is a fully connected
feed-forward neural network formed by: (1) an input layer,
(2) at least one hidden layer, and (3) one output layer.

These methods have already demonstrated their effec-
tiveness in tackling dense computational BLAS tasks [28].
Remarkably, PredictiveModels have demonstrated near-optimal
performance in convolution. Furthermore, when applied to
GEMM tasks, they have exhibited outstanding performance
gains, outpacing traditional hand-tuned approaches (i.e.,
cuBLAS) by up to 3×. Recent studies [15], [37] have also
applied these learning methods in sparse computation for
performance modeling and for selecting the most suitable
sparse format representation. However, sparse compression
format represents only a high-level software aspect. Many
other variables which are highly coupled to the underlying
hardware remain unaccounted for, making it challenging
to achieve hardware-native performance. Furthermore, such
studies are generally limited to SpMV, and they focus
on traditional HPC scientific computation, which is very
different from the DL one. As such, Predictive Models hold
significant promise as an unexplored avenue for addressing
sparse BLAS problems in DL but not limited to software level
aspects, tuning also hardware-dependent (ptx-level) details
instead, in the pursue of such hardware-native performance.

III. CHALLENGES AND OPPORTUNITIES IN SPARSE
COMPUTATION FOR DL
In this section, we identify existing autotuning techniques
applied to general sparse computation, and their effectiveness
onMLworkloads. Table 1 provides a comparative analysis of
SOTA sparse libraries and third-party implementations with
support for fp16 precision. Alternative implementations for
other data representations have not been considered in this
analysis [61], [71].
In the following section, we will analyze the impact of

autotuning on libraries with this capability, but focusing
on DL-like problems. We will center this study on semi-
structured methods, since they achieve the best accuracy-to-
performance trade-off. First, we focus on 2-D block sparsity.
Then, we will delve into 2:4 sparsity. The experiments have
been conducted on an RTX 3090 NVIDIA GPU.

A. AUTOTUNING ALGORITHMS ON 2-D
BLOCK-STRUCTURED SPARSITY
Block-wise (2-D) sparsity represents the most regular
semi-structured sparse format. With larger block sizes (e.g.
32, 64, 128), key properties of an efficient kernel, such as
data coalescence, intra-warp load balance, and no thread
divergence, can be guaranteed. Consequently, aside from the
overhead incurred by loading sparse metadata and calculating
offsets, this sparse format transforms the sparse product
into a pretty close version of a GEMM, but with a smaller
input. For that reason, several attempts has been made
in the community to extend the autotuning rules to this

TABLE 1. Comparison of sparse BLAS libraries with support for fp16
precision. ‘‘DL-sparse-friendly:’’ Has the library been designed for sparse
ML problems?; ‘‘acc.:’’ Is the sparse granularity flexible or too restrictive
to preserve the accuracy (energy) of the dense model? ‘‘W:’’ very flexible,
‘‘F:’’ flexible, ‘‘E:’’ restrictive, ‘‘p:’’ very restrictive; ‘‘perf.:’’ Is the sparse
granularity favorable for GPU execution or is it too irregular to achieve
good performance? ‘‘W:’’ high performance, ‘‘F:’’ good performance,
‘‘E:’’ slightly better than dense, ‘‘p:’’ mostly worse than dense;
‘‘templated:’’ Is the sparse implementation open-source C++

template-based?; ‘‘autotuner:’’ Does the sparse library offer an autotuner
that allows the configuration of the implementation to different
platforms? ‘‘hand-tuned:’’ traditional autotuner based on hand-tuned
vendor heuristics, ‘‘code gen.:’’ Target-Specific Code Generation,
ML/tensor-compilers; ‘‘GS:’’ Grid-Search, cusparseLtMatmulSearch
function evaluates all available algorithms and selects the fastest
one [40]; *: implemented algorithms: XGBTuner, GATuner, RandomTuner,
GridSearchTuner.

format. Consequently, various dense libraries and tensor
compilers have incorporated support for 2-D block-wise
sparsity format, such as AutoTVM.

Figure 2 shows the speedup of cuSparse and AutoTVM
using the BlockedEll format w.r.t. cuBLAS on 2-D block-
structured sparsity. Thematrices have been grouped in 6 spar-
sity intervals. The red crosses represent the average values
for a given sparsity level window. The ‘‘ideal’’ bars reflect
the theoretical speedup expected considering the arithmetic
count reduction for each sparsity level. The sparse matrices
were extracted from the PruneBERT model with block-wise
sparsity 1 using 32×32 blocks and an average weight sparsity
of 92.5% on linear-layers. Overall, PruneBERT contains
28.2% of the original weights. The autotuning process of
AutoTVM to select the best configuration for each linear
layer in PruneBERT took around 24 hours to finish.

The results show that, on average, AutoTVM performs
slightly better than cuSparse for sparsity levels below
70%, and mostly equal for levels between 70% and 75%.
However, cuSparse, which has been hand-tuned for sparse
computation, is faster on average terms in moderate to
high sparsity ratios (≥ 75%). Overall, cuSparse can be
up to 8× faster than AutoTVM. Autotuning techniques in
AutoTVM seem to behave better in denser cases where
the sparse product is closer to a dense GEMM. However,
they important limitations to scale the performance with the
sparsity, with almost a constant speedup of around 1.8×
across the whole sparsity range. These results could be due
to autotuning techniques not being explicitly designed for
sparse computing, but inherited from its dense analogous
version instead. This is why we classified AutoTVM as a non

1https://huggingface.co/madlag/bert-base-uncased-squad1.1-block-
sparse-0.07-v1

70586 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 2. Speedup on Prune-BERT. The x-axis groups the sparse matrices
extracted this model according to different levels of sparsity.

FIGURE 3. Speedup on Prune-BERT. The x-axis groups the sparse matrices
extracted this model according to different levels of sparsity.

DL-friendly sparse library in Table 1. On the contrary, while
cuSparse starts with a lower performance, it scales with the
sparsity level, which is the behavior expected.

Overall, block-wise pruning can be too restrictive, and
it has been demonstrated to influence very negatively the
accuracy when block-size > 8. As an example, in the
previous PruneBERTmodel with block-size 32, 106 attention
heads out of 144 have been completely removed, and the
F1 score of the model is reduced from 88.5 to 81.36 on
SQuAD v1. Despite the performance-oriented nature of this
sparsity format, the speedups achieved for both AutoTVM
and cuSparse are still far from the ideal.

1) PARTICULAR CASE-STUDY: ML COMPILERS
Figure 3, shows a performance comparison of sparseTIR and
cuSparse using the BlockedEll format w.r.t. cuBLAS. The
matrices and model configuration in this evaluation belong
also to the PruneBERT model.

Tensor compilers (i.e., SparseTIR, Triton), on average,
underperform when compared to the vendor-tuned libraries
for sparse computation (i.e., cuSparse) on 2D-block sparse
matrices. In particular, these tensor compilers achieve,
on average, a 45−70% of the performance of cuSparse using
this format for sparsity levels below 90%. This performance
disparity comes at the cost of the flexibility provided by

FIGURE 4. Speedup of cuSparseLt w.r.t. cuBLAS using default kernel
configurations and after running the cusparseLtMatmulSearch
autotuning function for 3 iterations.

FIGURE 5. cuSparseLt speedup of the default configuration over the
autotuned one after 3 iterations.

these tools. However, in sparse computation, this trade-off
is crucial, as it can determine whether the computation is
slower or faster than dense computations, so that the decision
of pruning a model may not yield performance benefits.
These results are especially concerning when considering
that 70% of the PruneBERT sparse matrices exhibit sparsity
levels below 90%. Furthermore, sparseTIR and Triton start to
outperform the dense counterpart version for sparsity levels≥

85%, and≥ 87.5%, respectively, which is already considered
high sparsity in DL.

Autotuning for more flexible semi-structured sparsity for-
mats than 2-D blocks, such as N:M, is still an open-question
on this kind of tools. This represents a promising avenue
aiming to achieve better accuracy-to-performance trade-offs
than 2-D block-wise pruning.

B. AUTOTUNING ON CUSPARSELT: 2:4 SPARSE KERNELS
Figure 4 shows the performance of NVIDIA cuSparseLt on
matrices extracted from models in the DLMC dataset [17],
and BERT [12]. This library provides not only default kernel
configurations pre-defined by experts, but also an autotuning
function (cusparseLtMatmulSearch) that tries to find
more suitable kernel configurations for an specific input
problem to improve the performance.

Figure 4 shows the performance of cuSparseLt w.r.t
cuBLAS using (1) the baseline configuration according to
NVIDIA heuristics, and (2) after 3 autotuning iterations

VOLUME 12, 2024 70587

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 6. Overview of STuning-DL.

(kernel launches per algorithm) of the cusparseLtMat-
mulSearch function. Since cuSparseLt only supports 50%
sparsity, we have shrank the K dimension of the original
matrices to simulate smaller problem sizes (higher sparsity
levels) and see how this aspect affects the results obtained
(x-axis). Remind that cuSparseLt peak performance is 2×.
A fewmatrices slightly overcome this limit, probably because
the counterpart dense implementation has not been perfectly
optimized for some problem sizes. Overall, the default kernel
configuration achieves an average speedup of 0.75× (slower
than dense), while the same kernels after an autotuning
process achieve on average around 1.50×.

Figure 5, shows the frequency of the relative performances
obtained by (1) w.r.t. (2) on these matrices. As we can see,
NVIDIA default heuristics only select the best algorithm
(relative speedup 0.97-1.0) in 5% of the instances in the
dataset, while in most cases the default configuration is
2 − 2.5× slower.
We can conclude that the performance of a sparse kernel

is heavily influenced by the configuration selected. However,
as we mentioned in the introduction, the diversity of matrix
sizes in ML problems is vast, so this process needs to be
executed many times for each network architecture. These
conclusions raise a major concern in cusparseLtMat-
mulSearch, since it evaluates all available algorithms and
selects the fastest one [40] for each input problem. In that
sense, we have observed that the average time spent on this
function increases with the problem size (M × N × K).
Overall, increasing the FLOPS, increases the search time, and
with the datasets used in this evaluation, the search-process
took up to 175 minutes, around 3 hours, for a single matrix.
Furthermore, this search process does not guarantee the
best performance. As Figure 4 depicts, some matrices have
speedups ≤ 1×, which means that they are slower than the
dense counterpart version.

In this context, Table 2 shows the set of configurations that
the autotuner has selected in all the matrices of the dataset.
In total, 4 combinations are considered for the whole range
of problem sizes. This clearly represents a low tunability

TABLE 2. CuSparseLt’s considered configurations (cfg) within their tuning
space for the evaluated matrices.

and a limitation in ML workloads, being possibly one of the
reasons why some matrices are still far from the hardware-
native performance.

C. EMERGING TREND: TEMPLATED LIBRARIES
Existing solutions lack enough flexibility to correctly adapt
to the variability of key aspects such as the sparsity level, the
sparsity format, or the input problem shape. However, in the
same way that happened in dense computation [56], there
is an emerging trend of template-based implementations for
DL routines. A new wave of third-party kernels has surfaced,
providing implementations for different sparse formats, such
as Shfl-BW [24] and VENOM [5]. Such solutions offer as
configurable parameters the whole set of variables described
in Figure 1 such as Thread-Block, Warp, and MMA tile
shapes, as well as the Batch size. This allows to greatly adapt
the kernel implementations to different input problems and
hardware platforms, reaching ptx-code level. However, such
implementations lack an autotuner.

Furthermore, several open questions still remain if we ana-
lyze and compare this problem with the new template-based
approaches proposed for dense computation [64]. For
instance, new features must be added to the tuning process,
such as the sparsity level, the sparsity pattern, and other
optional variables concerning the specific sparse format used.

70588 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

TABLE 3. Definitions and notations.

In subsequent sections, we will provide a comprehensive
exploration of these differences, delving into their intricacies
and challenges.

IV. STUNING-DL: A SPARSE KERNEL AUTOTUNING TOOL
FOR DEEP LEARNING
Figure 6 contains an overview of the STuning-DL architec-
ture, which comprises two main components: the Search
Engine and the Kernel Designer.

The Learning-Based Predictive Model (LBPM) module
is the core component of the Search Engine, which works
as a predictor, traversing the Tuning Space (Section IV-B)
and providing the best configuration (knobs) as response
to a query for a given input problem. At this point,
a hardware-aware component known as the Tuning Space
Generator (TSG) is responsible for generating kernel con-
figurations that maximize hardware utilization, co-designed
for a specific GPU architecture and sparse implementa-
tion (Section IV-B1). These configurations together will
constitute our Tuning Space. The LBPM module relies
on supervised learning techniques for classification tasks
to find the best solution based on a predefined objective
function (Section IV-A). The LBPM is trained using historical
data from past executions, which represents the Input
Space (Section IV-C) for our classifier. This historical data
is prepared for training by an intermediate Exploration
Module (Section IV-D), which includes a pre-processing
stage to enhance data regularity for classification. Finally,
the Kernel Designer component takes the configurations
predicted and provided by the classifier as input, and uses
them to instantiate template-based implementations with the
corresponding settings.

A. PERFORMANCE TUNING THROUGH CLASSIFICATION
METHODS
Performance modeling SpMM kernels for DL problems
effectively remains an open question due to the various lim-
itations that have hindered its progress, as we have seen pre-
viously. Consequently, conventional autotuning approaches
or manual optimization methods are not effective for DL
workloads because of the multidimensionality and variability
of the input data. In this paper we tackle this problem
by studying various supervised classification techniques
previously proven effective in modeling the performance of
other linear algebra implementations, including GEMMs and
convolutions [28].
Table 3 shows a summary of the definitions and notations

used in this paper. In order to describe the Performance as a
Classification Task approach, let IS be the Task Parameter
Input Space containing all the possible input problems or
tasks to the application, while TS is the Tuning Parameter
Space containing all the parameter configurations to be
optimized. We call α the size of IS, and β the size of TS.

Let t ∈ TS be a multidimensional tuning parameter
configuration that is a solution to a particular input task i ∈

IS, the objective function is defined as ft : IS → R. Hence,
the target is the maximization of the objective function, so we
have to find, for each i ∈ IS, the t that guarantees:

arg maxt∈TSft (i) (1)

which, in this case-study, means the best solution in terms
of performance. Hence, a classifier will encompass the
mapping from multidimensional input description i to a
multidimensional solution t . From this point on, we will refer
to the ‘‘Oracle’’ as an ideal estimator that is able to select
the fastest configurations for every i ∈ IS. Furthermore,
as Table 3 shows, we will allude to the set of variables that
define each i ∈ IS as (task) features, and to the set of tunable
parameters for each t ∈ PS as classes.

B. TUNING PARAMETER SPACE (TS)
The definition of TS is critical in order to ensure the
adaptability of our kernels to different architectures and to
the high variability of IS in DL problems. Hence, the quality
of TS will be crucial in the final performance. Note that we
can obtain a very accurate classifier in the selection of the best
configuration within the scope of TS, but such configuration
can be far from the Oracle if TS was not carefully defined.
As we saw in previous sections, one important limitation

of existing solutions is that their TS is restricted to a small
set of classes, and each class is also limited to a small
range of possible values (see Table 2). Taking this into
consideration, we designed TS considering the casuistry of
input tasks i ∈ IS in DL problems. The set of possible
values for some parameters, such as the instruction shape,
is architecture-dependent, and is constrained to a small set
of values. However, the selection of the best configuration for
the remaining parameters is both highly tunable and sensitive.
For this reason, it tends to be hand-tuned by experts. For

VOLUME 12, 2024 70589

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 7. Overview of TS classes and their interrelationships for a
vector-wise input sparse matrix with vector-length l = 64 format.

instance, returning to Figure 1, using a too big Thread-Block
tile (BM ×BK ×BN) on a small input problem (M ×K ×N)
can cause blocks of threads to compute, in overall terms, a too
big sub-problem, damaging the Thread-Level-Parallelism.
And conversely, a too small block size can hinder thread
blocks from taking advantage of data locality, being thus
unable to hide memory latency with computation.

Figure 7, illustrates the interrelationships among TS
classes for a vector-wise pruned sparse input matrix with a
vector length l = 64. The diagram delineates two domains,
each represented by a different box, which exert mutual
influence upon one another. In this context, a domain refers
to the area each tunable parameter is related to. The first
domain (blue), referred to as the accuracy domain, pertains
to the model pruning phase, while the second, the hardware
domain (yellow), concerns itself with the execution of
the computational kernels for a given sparse model on a
specific platform. The classes stemming from each of these
environments are visually represented as ellipses within the
graphical depiction.

In this example, the outer tuning class of the hardware
domain, associated to the Thread-Block tile size, will be
influenced by the pruning technique and the configuration
used to generate the sparse input matrices during the model
sparsification process. Regarding the Warp tile size, it has
to be defined in terms of the Thread-Block tile size and
the Instruction (MMA) shape selected. Finally, the number
of memory pre-fetching stages (batch) is also dependent on
the Thread-Block tile size. Overall, all the range of possible
values will be limited by the hardware constraints of the GPU.
Some of these constraints are the SMEM size, the number of
concurrent warps per SM, the number of threads per SM, and
the number of registers per thread.

1) TUNING SPACE GENERATOR
The previous findings inspired us to create an integrated
tool that, given a GPU architecture and template-based
implementation, generates a subset ofTS, being the objective
function themaximization of theGPUoccupancy. Occupancy
represents the ratio of active warps per multiprocessor to the
maximum possible number of active warps. It is important to
note that a higher kernel occupancy does not always imply
a higher performance. However, low levels of occupancy

TABLE 4. Values considered for each class.

invariably lead to a detrimental impact on the mitigation
of memory latency, and overall, a degradation in the final
performance. This effect is particularly critical in sparse
computational problems because of their memory-bound
nature.

This component draws inspiration from [42], enabling the
computation of multiprocessor occupancy for a GPU, based
on a specified CUDA kernel configuration. This approxi-
mation serves as an initial filter to prune the TS search-
space, not only by selecting just the best configurations
in terms of occupancy but also remove combinations that
exceed the GPU resources. Thus, laying the groundwork
for subsequent autotuning steps by significantly shrinking
the number of configurations to be considered, profiled, and
evaluated.Moreover, it plays a pivotal role in the development
of a high-quality tuning space, a critical aspect, as previously
emphasized.

Following these principles, the list of configurations will
be generated trying to achieve high GPU occupancy. Table 4
shows the values supported for each parameter in TS.

As an example, for a vector-wise-based kernel [24] and one
GPU architecture (i.e., A100-40GB), this is translated into
β ≈ 400, which represents a huge number of classes to tune.
A detailed study on the impact of the TS design will be made
in Section V-B.

C. TASK PARAMETER INPUT SPACE (IS)
Another crucial aspect that must be well defined in order to
meaningfully evaluate our approach is the data that will be
used as a subset of IS to train our models. As we saw, TS can
be large due to all the variables that must be considered in
sparse problems for DL. Furthermore, supervised techniques
require datasets that map the training samples in IS to the
optimal configurations inTS. As a result, in order to build the
baseline dataset, for each input i ∈ IS used in the training,
ft (i) must be benchmarked for every t ∈ TS on each target
architecture. In that sense, the size of the dataset generated
will be crucial in the final performance of our classifier.
Furthermore, note that for our classifier to be aware of every
possible class t defined in TS, there must be at least one
input i in the training set where t shows the best performance.
In these terms, it is very important how we divide the training
and the validation set, since those classes that are only present
in the validation, will be unknown by the classifier. An
in-depth analysis of the impact that growing the dataset has in

70590 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 8. Heatmap number of configurations for sparse matrices
grouped by density and M. On top, the search-space before
normalization, and on the bottom, after normalization.

the LBPMs performance, and how it is partitioned, will be
presented in Section V-A.

D. EXPLORATION MODULE: NORMALIZING THE SEARCH
SPACE
Solving the Performance as a Classification Task problem
with the aforementioned scenario is extremely difficult
because of the large size of TS. Such a vast number of classes
allows having very fine-grained kernel configurations and
adapting to the wide range of possible inputs. However, it also
promotes the proliferation of multiple ‘‘best configurations’’,
that is, configurations that achieve the best results in at least
one scenario.

Figure 8, top side, shows this effect on a set of
∼ 600k input matrices sharing the same density (x-axis) and
the M -dimension (y-axis), which is tightly-coupled to the
pruning algorithm configuration, as we have already seen.
In this example, the total number of configurations that were
selected as the best one at least in one input problem was
φ ≈ 200. The figures in the cells stand for the number of
best configurations in at least one scenario for an specific M
and density, normalized to φ.
First of all, the denser and the larger the problem, the easier

it is to select the correct configuration. This perfectly matches
with the conclusions drawn in Section III, demonstrating why
existing autotuners work well under these circumstances.
However, the sparser and smaller, the more unstable it turns,
and thus the more difficult to predict. This way, for problems

Algorithm 1 :TSNormalization Pseudocode. TheWord ‘by’
Means ’grouped By’
1: relative_sp = compute_relative(O.time/TS.time, by=TS.classes)
2: TS_norm = TS.norm(relative_sp, threshold, by=TS.classes)
3: TS_norm.compute_popularity() ▷ repetitions per configuration
4:
5: result = { }
6: while TS_norm ̸= { } do
7: sort(TS_norm, by=’popularity’)
8: cfg = TS_norm.head() ▷ most repeated configuration
9: r = filter(TS_norm, cfg) ▷ Select inputs i ∈ IS matching cfg
10: result = concat(result, r) ▷ Update result
11: TS_norm.update(r) ▷ Remove inputs i ∈ IS selected
12: end while

with density d = 0.05, and M = 64, 47% of φ (i.e., ∼ 100)
has been selected as the best configuration at least once.

In view of this, we implemented a normalization algorithm
which aims to enhance data regularity for classification, and it
will be used as a pre-processing stage to the LBPMs training.
To that end, it replaces the ideal configurations for alternative
ones with a certain relative configurable performance but,
in contrast with the ideal, it preserve the state of best
alternative configuration across more samples of IS, thus
enhancing its regularity. Figure 8, lower side, shows TS after
a normalization considering a threshold of ≥ 0.98× w.r.t. the
Oracle. As a consequence, the total number of configurations
is reduced to φ ≈ 120.
The pseudocode of the normalization algorithm is shown

in Algorithm 1. First, it computes, for each input problem,
the relative speedup of each t ∈ TS w.r.t. the Oracle.
Then, it selects the configurations that have achieved the
minimum (threshold) relative speedup we configured (i.e.,
in our case threshold=0.98×), and computes the popularity
of each t , that is, the number of times it is repeated. Finally,
it selects the most popular configuration and assigns it to
those inputs i ∈ TS where it has fulfilled the threshold
condition. This last step is repeated until all the inputs have
been assigned a kernel configuration.

This pre-processing had a big impact on the accuracy of our
classifiers, with no to little change in performance (≤ 0.02x).
If more homogeneity is needed, the relative performance
selected (≥ 0.98×) can be reduced, but this can be in
detriment of the real speedup finally achieved, so the desired
trade-off must be found depending on the application.

V. EXPERIMENTAL RESULTS
To evaluate the effectiveness of our method, we carried
our experiments in two different NVIDIA GPUs from
different architectures, the NVIDIA T4-16GB from the
Turing architecture, and the NVIDIA A100-40GB from
Ampere. We build our IS as described in Section IV-C.
For every kernel instantiated with t ∈ TS, we conducted
50 execution iterations, locking the GPU memory and SM
clock frequency to ensure consistency in the measurements.
On top of that, we iterated this procedure 5 times for each
data point i ∈ IS, and collected the average results for each
input problem.

VOLUME 12, 2024 70591

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 9. LBPMs performance 267,541 training points from go2 dataset, except SVM, with 623,848. The coloured regions illustrate the variability
observed across 32 evaluations for every data point, while the line indicating the corresponding average value. DT: Decision Tree; RF: Random Forest;
GTB: Gradient Tree Boosting; NBC: Naive Bayesian Classifier; LoR: Logistic Regression; KNN: K-Nearest Neighbours; SVM: Support Vector Machine;
MLP: Multi-Layer Perceptron.

In order to constitute our baseline IS history data,
we defined three different datasets, one formed by real-world
matrices, and two from synthetic ones, inspired in previous
works for dense computation with LBPMs [28]:

1) Real-world dataset: sparse matrices with shapes from
popular DL architectures, such as: Convolutional Neu-
ral Networks (e.g., MobileNetV1 [23], AlexNet [26],
GoogleNet [54]) and transformers (e.g., BERTbase,
BERTlarge [12]).

2) Power of two (po2): sparse problems with shapes (M×

N ×K) considering all the combinations of values that
are powers of 2 ranging from 64 to 8,192.

3) Grid of two (go2): sparse problems with shapes (M ×

N × K) considering all the combinations of values
ranging from 256 to 8,192 with a step of 256, plus
64 and 128. This set of matrices is the largest and it
contains 786,080 samples.

Note that the shapes included in the synthetic datasets
have been chosen based on their prevalence in Machine
Learning architectures. As the synthetic matrices are intended
for benchmarking purposes, they have been populated with
random values. For each of these inputs sets, different density
levels (d ∈ {0.05, 0.10, 0.20, 0.30, 0.50, 0.09}), and pruning
configurations of vector-wise [24] (l ∈ {16, 32, 64, 128}) and
VENOM [5] (V ∈ {32, 64, 128}) formats were considered.

A. LEARNING-BASED PREDICTIVE MODELS EVALUATION
In order to evaluate the selected LBPMs, first, we partitioned
IS into training, validation and test sets to train, tune
the hyperparameters, and evaluate the selected models,
respectively. All the entries i ∈ IS belonging to the
test set have been removed from the train and validation
sets, so that model evaluation has been conducted on
unseen inputs. The accuracy evaluation (e.g., learning curves)
has been performed through 25-fold cross-validation. This
method is commonly used to assess model’s generalization

performance. The accuracy of each LBPM is calculated
w.r.t. the Oracle which always selects the best configuration
according to the objective function. It is important to
highlight that achieving a correct prediction in this context
entails identifying the exact optimal configuration, a notably
ambitious objective. However, it is worth noting that in many
instances, even selecting a configuration that deviates slightly
from the optimal choice results in minimal to negligible
performance impact, as we will see in the following sections.

Figure 9 shows the learning curves for each model. At the
beginning, the training score starts at a higher accuracy
in comparison with the cross-validation score because the
number of samples is low, and it is easier to memorize a small
dataset. As more samples are added to the training set, the
training score generally starts to decrease because it becomes
more challenging to fit a larger dataset. The cross-validation
score has the opposite behavior. Generally, it starts at a lower
accuracy, because models are not able to generalize well to
unseen data when there is only a small amount of samples
to learn from. But when the sample size increases, the curve
also does, indicating that the model’s ability to generalize
is improving with the training set size. The first conclusion
here for all the models considered is that ≈ 200,000 points
seems to be enough to make them converge, and none of them
suffers from underfitting, so adding more samples will not
significantly improve the accuracy obtained.

More specifically, DT, RF, and MLP converge to high
accuracy on predicting new data (around 0.85 − 0.9), and
the distance between training and cross-validation curves is
small. However, we should remind that the number of classes
in TS is much larger than the number of features in IS. The
complexity of this classification problem is reflected in NBC,
LoR, and SVM classifiers, demonstrating that there is not
a simple way of cutting the input feature space to properly
separate the classes. Regarding NBC, LoR, and GTBmodels,
there are no performance improvements by increasing the
number of samples beyond 50,000. On the opposite, SVM

70592 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 10. LBPMs performance 267,541 training points from go2 dataset grouped by the M-dimension of the product (M × K × N).

shows a slight increase in the accuracy achieved with the
number of samples, so we decided to increment them to
623,848. However, both training and cross-validation scores
plateau around 0.55, so adding more data will not improve its
performance significantly beyond this point, considering the
training time and also the cost of generating such amount of
samples.

This study presents a significant finding by contrasting the
requisite number of samples for classifier convergence with
those reported in previous dense computation research for
linear algebra kernels [28]. Whereas prior studies in dense
computation demonstrated that 4,000 samples were sufficient
to achieve convergence in models like DT, RF, MLP, our
investigation reveals a starkly different scenario. There
is a noticeable gap between training and cross-validation
scores until the sample size reaches 50,000, were both
start to approach. This substantial disparity underscores
the heightened complexity inherent to this classification
challenge.

Overall, in terms of accuracy, DT, RF and MLP seem the
most promising alternatives for this case study, and thus they
are the ones selected from this point on.

1) MICROBENCHMARKS
The next step is to evaluate how the accuracy numbers
previously described translate into computational time, but
also the impact of misclassifications, that is, the cost of
a wrong kernel configuration selection. Once again, this
evaluation has been carried out on inputs from the test set,
which the models have not seen before. The boxplot in
Figure 10 shows, for the three selected models, the relative
speedup, normalized between 0 ∼ 1, of the configuration
predicted for each classifier against the performance using
the configuration selected by the Oracle. The results in
this plot are grouped by the M-dimension of the problem,
the outermost of the LHS operand. For the sake of
readability, we have represented a subset of the results for the
M -dimension. However, it is important to note that results for
other values of M exhibit similar trends. The overall result
numbers of the whole dataset will be presented in Tables 6,
and 7. For each M-value, we are evaluating matrices with all
the combinations of different N , K , densities d , and pruning
configurations (l, in the case of vector-wise pruning, and V ,
in the case of VENOM).

As we can see, on average terms (red line), the three
methods provide good results, achieving relative speedups
very close to 1× (the Oracle). The interquartile range (box
extremes) is generally between ∼ 0.98-1×. The minimum of
the boxplot (lower whisker) for both DT and RF is always
> 0.95×, while for MLP it is sometimes in the range
0.90 ∼ 0.95×. The outliers are anomalous single data points
(matrices) represented by circles that are out of the main
probability distribution of the results. We can see that, for
both DT and RF, the outliers are generally above 85% relative
performance. That would mean that even for those worst case
scenarios, we would be able to achieve 85% of the peak
performance. For MLP, in general terms, the outliers are
above 0.80×. The number of samples that fall bellow such
limits represent < 1% of the total number of samples for the
three classifiers.

These results are in accordance with the previous accuracy
numbers. Overall, the threemethods provide good predictions
and, as a consequence, good relative performance numbers.
However, MLP is slightly less accurate than DT and RF,
which translates into slightly worse relative speedups and
more unstability, which can result in a higher impact of
missclassification.

2) RELATIVE IMPORTANCE OF FEATURES IN THE SPMM
TASK
One relevant aspect to analyze is the importance of each
feature in IS. Since this is a new input classification problem,
different from those previously covered in dense and sparse
computation for HPC problems, this is still an open question.
The feature importance is defined as a metric that quantifies
the contribution of each feature to the prediction of the model,
for which a number of techniques can be applied [46]. Table 5
shows an example of this for the two most accurate models
previously shown, DT and RF. Feature importance has been
calculated following the Gini importance [33]. In practice,
and particularly for these two tree-based models, it represents
the influence that each feature had in the decision-making
process considering that both focus on traversing if-then-
else rules.

As we can see, format-specific parameters, such as l
or V for vector-wise and VENOM-based sparse matrices,
respectively, have the greatest influence, followed by the
N and M dimensions of the product, which are the outer

VOLUME 12, 2024 70593

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

TABLE 5. Feature importance. Format-specific parameters refers to
parameters tailored to a specific sparse matrix format, such as l
(vector-wise) or V (VENOM).

FIGURE 11. Average inference overhead of each model.

dimensions. On the contrary, the density of the model is
the input feature with the smallest influence overall. This
represents a very interesting finding, since it enlightens
one of the reasons why general methods do not fit well
sparse computational problems for DL. The influence that the
configuration of the DL-friendly sparse formats can have in
the classification problem demonstrates why general methods
for sparse computation or unstructured formats cannot fit DL
workloads.

3) INFERENCE OVERHEAD
The overhead of the model’s execution is a key factor to be
taken into account. This overhead includes the time spent
between the feature extraction and the selection of the best
kernel configuration.

In order to measure the inference overhead of each
classifier, we have used the same matrices referenced in
Figure 10 and calculated the relative amount of time that the
model’s inference represents in the overall SpMM execution
time. Figure 11 shows the results obtained in average terms,
where the Oracle is the ideal scenario, with no overhead.
DT has the lowest inference overhead since it only focuses on
traversing if-then-else rules. In general, all the models
show a low overhead with the exception of RF, which in
average requires 10% of the total training time, its maximum
overhead being 135%. This overhead depends on the number
of trees that compose the model, which in this case provided
the best accuracy for 300 estimators (trees), with a total size of
44GB. While the number of trees of RF can be pruned to find
a performance-accuracy trade-off, the excellent performance
of DT both in terms of accuracy and performance makes this
model the most suitable one for this case study. A second
noteworthy aspect is the disparity in training duration among
the models: MLP can require days, RF minutes, and DT

TABLE 6. DTs statistics on the NVIDIA T4 from the Tesla architecture, and
trained on different input datasets independently.

TABLE 7. DTs statistics on the NVIDIA A100 from the Ampere
architecture, and trained on different input dataset independently.

models seconds. This significant variation in training time
facilitates the retraining process with new historical data
as needed, streamlining updates and enhancements to the
models with efficiency.

4) CONCLUSIONS
DTs have emerged as the most robust, precise, and
lightweight approach for sparse GPU kernels in DL. Detailed
results are presented in Tables 6, and 7 for the Turing and
Ampere architectures, respectively. Each row in these tables
represents the number of samples, and the performance evalu-
ation of the best DT model found when trained independently
on one of the three-defined datasets: real-word, po2, and go2.
This evaluation intends to demonstrate the importance of the
synthetic datasets defined. The ‘‘Raw dataset’’ set of columns
represents the usage of raw historical data for training,
without any preprocessing, while the ‘‘Norm dataset’’ ones
denotes results achieved after normalizing the data before
the training process (Exploration Module, Section IV-D).
For each of these scenarios, the column ‘‘#classes’’ denotes
the total number of kernel configurations selected as the
best one at least once, while the ‘‘accy’’ column indicates
the accuracy achieved by the best DT configuration. Such
configuration is represented in the ‘‘h,L’’ column, where
L represents the minimum number of samples required
for a kernel configuration (class) to be a leaf node, and
h is the maximum height of the DT. In practical terms,
regarding L, split points in the DT are considered at any
depth only if they ensure a minimum of L training samples in
both resulting branches. This criterion serves to potentially
enhance model smoothness. With regard to h, if h = +∞,
nodes are expanded until either all leaves are pure, which
means that all feature values within the node belong to a
single class, or until they contain fewer than 2L samples.
Following previous studies about LBPMs for dense linear
algebra kernels [28], we defined h ∈ {1, 2, 4, 8, +∞}, and
L ∈ {1, 2, 4, 0.1, 0.2, 0.4, 0.5}. Finally, the ‘‘HIM’’ column
represents the Highest Impact of Misclassification, that is,
the lowest relative performance of the predicted configuration
w.r.t. the Oracle (0 ∼ 1×, the higher the better), which
has been achieved by averaging the biggest misclassification
impact for each M problem dimension present in the test set
(in-depth analysis of Figure 10 evaluations).

70594 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 12. Speedup results obtained by using the kernel configurations provided by STuning-DL w.r.t. the configurations extracted from the
NVIDIA-heuristics on matrices from DLMC dataset and two different Llama 2 models. The benchmarks have been performed on the NVIDIA
T4-16GB GPU. The kernels used belong to the Shfl-BW implementations. The notation l_x represent the vector-length x used for the vector-wise
sparse matrices.

In accordance with the results shown in Figure 9, the
number of historical data samples used for training is crucial
in the performance of the classifier. In general terms, the
number of samples in the real-world and po2 datasets is
insufficient, and the models trained just using one of these
datasets suffer from poor generalization. A remarkable aspect
in that sense is the number of classes, which increases the
larger the dataset, demonstrating why existing auto-tuners
fail to adapt to this kind of DL workloads, since the
total number of classes defined is, generally, very limited.
However, a wide range of kernel configurations helps to adapt
each implementation in accordance with the properties of
the input matrix, which can vary drastically. One important
aspect to remark here is the difference in the number of
classes before normalization between the Ampere and the
Turing architecture. This is due to the difference between
both architectures in terms or resources and tunability (e.g.,
the Ampere architecture supports more instructions shapes).
Another important reason for this is that VENOM is only
supported in the Ampere architecture (and newer ones), so the
configurations associated with this format are not included
in the Turing total count of classes. Finally, it is worth
noting the boost in terms of accuracy that the proposed
normalization module introduces in the final results, as not
only the models are more accurate, but also the impact of
misclassification is significantly reduced. In these terms,in
the worst possible scenario, our predictor will be able to
provide more than 80% of the ideal performance achievable.
However, as showed in Figure 10, the average performance is
always > 0.97×.

B. PERFORMANCE EVALUATION ON REAL USE-CASES
In this section we evaluate STuning-DL on real use-
cases, and compare the performance achieved w.r.t. the
corresponding kernel configurations selected by the NVIDIA
heuristics for the same inputs. For vector-wise sparsity (i.e.,
Shfl-BW [24] kernels), we selected the baseline configura-
tions from the NVIDIA cuSparse+BlockedELL implemen-
tation, both using the same block-length l. In the case of
V:N:M sparsity (i.e., VENOM [5] kernels), we extracted
the configurations from the vendor-library implementation
for N:M sparsity, NVIDIA cuSparseLt. To extract such

information we have used NVIDIA Nsight Compute [43] to
profile, for each input problem, the selected SpMM kernel
and extract the configuration information from the demangled
method name .2 Such information includes the following
parameters: (BM ×BN ×BK), (WM ×WN ×WK), (MM ×

MN × MK),NSTAGE (or Batch size). Both STuning-DL
and NVIDIA-based configurations must be constrained in the
BM value, which cannot exceed the vector length (l or V ,
depending on the sparse format selected) of the sparse input
matrix in the third-party implementations selected.

In order to evaluate the performance of STuning-DL,
we have used the sparse matrices extracted from the models
included in the DLMC dataset [17], and two different
versions of the Llama 2 model (13B and 33B parameters).
We conducted the experiments on NVIDIA T4-16GB and
NVIDIA A100-40GB GPUs. The sparse matrices have been
pruned to three different vector lengths of l = 16, 32, and
64 in the case of Shfl-BW, and V = 32, 64, and 128 for
VENOM. Sparsity levels of 50%, 70%, 80%, 90%, and 95%
have been considered.

The DLMC dataset is formed by sparse matrices from
extensively used models, such as ResNet-50 [19] and the
Transformer architecture [60] on the WMT 2014 English-to-
German dataset. The problem shapes (M ×K) in this dataset
(weights) go from small to medium-size. In the second use-
case, the Llama 2 model is an LLM whose layers represent
an scenario with large matrices, with dimensions that largely
exceed the ones considered before (e.g., 13,824 elements).
Note that STuning-DL has not been trained on any matrix
with such size, since the maximum value considered was
defined in the synthetic dataset with 8,192 elements.

This evaluation allows us to asses the models’ performance
across previously unseen combinations of (M , N , K , d , l/V),
akin to scenarios encountered with DLMC extracted matri-
ces. Furthermore, it enables the evaluation of the model’s
behavior when encountering significant disparities with the
cases considered during the LBPMs training. Hence, one of
the objectives of this study is to showcase our detailed and

2An example of such kernel name is the following: sm80_xmma_sparse_-
gemm_f16f16_f16f32_f32_tt_t_tilesize128 × 64x64_stage4 _warpsize2 ×

2x1_sptensor16 × 8x32_execute_kernel_cusparse

VOLUME 12, 2024 70595

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 13. Speedup results obtained by using the kernel configurations provided by STuning-DL w.r.t. the configurations extracted from the
NVIDIA-heuristics on matrices from DLMC dataset and two different Llama 2 models. The benchmarks have been performed on the NVIDIA
A100-40GB GPU. The kernels used belong to the Shfl-BW implementations. The notation l_x represent the vector-length x used for the
vector-wise sparse matrices.

transparent guideline for creating LBPM-based autotuners
for third-party implementations tailored to sparsity in Deep
Learning. This is particularly important as existing autotuners
often lack the capability to effectively adapt to the unique
characteristics of sparse DL problems, or operate generally
as black boxes.

Figures 12, 13, and 14 show the speedups of the con-
figurations selected by STuning-DL w.r.t. to those selected
by the NVIDIA libraries heuristics on the selected datasets
for Shfl-BW kernels in the NVIDIA T4-16GB, and in the
NVIDIA A100-40GB, and for VENOM in the NVIDIA
A100-40GB, respectively. Remind that VENOM cannot be
executed on the NVIDIA T4-16GB because it requires Sparse
Tensor Cores (SPTC), available since the Ampere architec-
ture. The solid lines represent the average performance of
the configuration provided by STuning-DL, while the dotted
lines represent the average performance of the configurations
provided by theOracle. To attain such optimal configurations,
we benchmarked all configurations within TS for each
input problem. It is worth noting that the entire Tuning
Space comprises hundreds of potential kernel configurations
(see Tables 6, and 7). For instance, in Figure 12, even
constraining the search process to the matrices included in
these datasets, it required approximately 2-3 days for each
sub-figure, that is, one of the four defined datasets, for a
single kernel implementation and GPU architecture. This
underscores the challenge and resource-intensive nature of
maintaining specialized databases like SAMPL [52], which
are prohibitively expensive and impractical for sparse Deep
Learning problems. In contrast, STuning-DL offers a promis-
ing approach to swiftly deliver near-optimal configurations in
real-time.

Starting with the results on the T4, Figure 12, we can
see that, in average terms, STuning-DL outperforms
NVIDIA-heuristics in all the scenarios. In general terms,
there are some input problems in DLMC-RN50 where it
selects a worse configuration. However, this only represents a
residual 2% of the matrices present in the DLMC-RN50 test-
set. Overall, the NVIDIA-heuristics in this GPU architecture
behave significantly better for l = 16, and 32 than l = 64.
Hence, despite STuning-DL nearlymatching the performance
of the Oracle for l = 16, and 32, the speedups achievable

have an upper limit (Oracle), typically ranging from 20% to
50% on average, depending on the sparsity level and test-
set. It is worth noting also that these speedups compare
the performance of the same template kernel using two
different hyperparameter configurations. Thus, considering
the speedup relative to the dense version (i.e., cuBLAS),
a performance improvement of 20% can determine whether
the sparse implementation is faster or slower than its dense
counterpart.

As a real example extracted from these evaluations,
for an input problem of size (5,120 × 13,824 × 2,048),
with 70% sparsity, and l = 32, the NVIDIA-heuristics
configuration achieves an speedup w.r.t. cuBLAS of 0.94×,
whereas the STuning-DL configuration achieved a 1.20×
improvement. This enhancement could potentially allow the
use of lower sparsity levels, which may better preserve the
original accuracy. To provide further context, a performance
improvement of 3× implies that a kernel running 2× faster
than its dense counterpart would now run 6× faster, so small
improvements here can have a huge overall impact.

However, the STuning-DL’s performance improvement
becomes evident in scenarios where the NVIDIA-heuristics
fail to align well with the sparse input matrix format. In such
cases, where the Oracle diverges notably from the baseline,
we observed speedups of up to 5.42× for l = 64. It is
important to note that the most influential parameter in a
sparse problem, as extracted from previous studies (Table 5),
was the format-specific feature; in this case, the l value.

These results strongly support our hypothesis that
while general kernel configurations for sparse matrices
may work in certain scenarios, they lack robustness when
confronted with the diverse range of custom sparse formats.
STuning-DL emerges as a solution that offers the potential to
achieve near-optimal configurations, elevating performance
even in situations where generic configurations may suffice.
However, its primary strength lies in its robustness, capable
of significantly and consistently enhancing performance in
cases where generic configurations struggle to adapt to the
intricacies of the input problem.

Continuing our analysis, Figure 13 repeats the pre-
vious evaluations but on the A100-40GB GPU. In this
GPU architecture, there is more room for performance

70596 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

FIGURE 14. Speedup results obtained by using the kernel configurations provided by STuning-DL w.r.t. the configurations extracted from the
NVIDIA-heuristics on matrices from DLMC dataset and two different Llama 2 models. The benchmarks have been performed on the NVIDIA
A100-40GB GPU. The kernels used belong to the VENOM implementations. The notation V _x represent the vector-length x used for the V:N:M
sparse matrices.

improvement through tuning compared to the T4-16GB GPU
(as evidenced by the classes in Table 6 vs. Table 7). Overall,
the performance of configurations provided by STuning-DL
surpasses that of NVIDIA-heuristics in all cases, with only
a few exceptions in the DLMC-RN50 dataset, accounting for
less than 1% of the total matrices in this set of problems.More
specifically, the average speedup ranges from approximately
1.50 − 2× faster, with some cases reaching up to about 3×.
Similarly, for the DLMC-transformer dataset, the average
performance improvement ranges between approximately
1.75 − 2.2×. As problem sizes increase (Llama2-13B, and
33B), there is also an increment in the average speedups
obtained, with improvements of up to 3.5×.

In comparison with the results on Figure 12, in this
architecture, the performance improvement w.r.t. the
NVIDIA-heuristics occurs at approximately the same ratio
for all three l configurations. This uniformity is likely due to
the broader range of tunability available in this architecture,
as mentioned earlier.

Once again, across all four datasets, the predicted config-
urations achieve speedups that closely approach those of the
Oracle, indicating that STuning-DL is capable of providing
near-optimal configurations on the A100 GPU as well.

Finally, we have evaluated STuning-DL on the VENOM
format, depicted in Figure 14. It is important to note that
cuSparseLt, the NVIDIA library from which the heuristics
for this format were extracted, demonstrated the most robust
behavior in Section III (Figure 4). So we should expect a
good kernel configuration selection in this library. However,
cuSparseLt is designed for sparsity in DL but is limited to the
2:4 format, equivalent to 50% sparsity. In contrast, VENOM
is an adaptation of the 2:4 format that overcomes this
limitation, allowing for the utilization of arbitrary sparsity
levels. The parameter V , configurable in this format, is only
applied for sparsities > 50%.
During our evaluations, we observed that cuSparseLt

heuristics, overall, do not adapt properly to small input
problems, such as those present in the DLMC dataset,
probably because of the low tunability we saw in Table 2.
In average terms, STuning-DL provides better configurations
in all the scenarios. There are instances in the DLMC-RN50
dataset where STuning-DL selects a worse configuration

than cuSparseLt heuristics. However, this accounts for only
4% of the matrices in this sub-dataset. However, there is a
significant performance improvement for sparsities greater
than 50%, precisely where the V value is applied. Since
this is a custom variable related to VENOM, STuning-DL
demonstrates better adaptability to such input problems,
achieving speedups of up to 2.4×.

For larger problem sizes, where cuSparseLt exhibits its
best behavior, the performance improvements becomes more
limited. Similarly to what occurred with l = 16 and
32 on the T4, NVIDIA heuristics select decent configurations
for V = 32 and 128 in the case of Llama-2 models.
However, for V = 64, we once again observe a significant
performance improvement, in average terms, of around 1.5×
for Llama-2 13B and 1.7× for Llama-2 33B, specifically
for sparsities exceeding 50%, where V can be used.
Crucially, STuning-DL consistently provides near-optimal
configurations.

In addition to these performance improvements, it is
worth to remind, as detailed in Section III-B, that the
cusparseLtMatmulSearch autotuning function within
cuSparseLt can take hours to find the optimal NVIDIA
kernel configuration for just onematrix. In contrast, STuning-
DL can operate in real-time, as demonstrated in Figure 11,
with negligible overhead (i.e., ∼ 0.01%). This characteristic
broadens its applicability to various domains, including
AutoML.

1) CONCLUSIONS
Overall, STuning-DL has proven to be a robust auto-
tuner capable of maximizing the performance of sparse
kernel implementations for Deep Learning, approaching
the near-optimal performance (Oracle) achieved by tuning
their hyperparameters. It consistently outperforms generic
existing approaches, showcasing its effectiveness across var-
ious GPU platforms, sparse implementations, compression
formats, configurations, problem sizes, and sparsity levels.
Therefore, this paper represents a detailed and transpar-
ent guideline for developing or customizing LBPM-based
autotuners tailored to sparsity in Deep Learning, partic-
ularly for third-party implementations lacking autotuning
capabilities.

VOLUME 12, 2024 70597

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

VI. CONCLUSION
The high variability in the matrices present in modern
Machine Learning models can significantly undermine the
efficacy of existing GPU kernels if they are not meticulously
tuned.This challenge is further compounded in scenarios
involving sparse computations, requiring adaptations of
kernels to diverse sparsity levels, non-zero distributions, and
sparse compression formats, among other factors. In this
paper we have presented STuning-DL, which as far as we
know, is the first autotuner uniquely tailored to CUDA
C++ template-based sparse linear-algebra kernels for Deep
Learning workloads, spanning from high-level aspects down
to GPU-native instructions specifics. It stands as the first
solution that accounts for pruning dependency while being
aware of hardware details down to ptx-code level. STuning-
DL has demonstrated its effectiveness in adapting each
kernel configuration to the input dynamics across various
GPU platforms, kernel implementations, sparse formats, and
a broad spectrum of sparsity levels. STuning-DL achieves
speedups of up to 5.42× on T4-16GB GPU and 4.98×
on the A100-40GB GPU compared to the configurations
extracted from the NVIDIA sparse libraries cuSparse and
cuSparseLt on the same input problems. This underscores the
capability of STuning-DL both to deliver high-performance
kernels as well as to consistently approximate near-optimal
configurations across diverse scenarios. Furthermore, this
paper delineates a detailed guideline that can be easily applied
to new implementations, sparse compression formats and
hardware architectures that may arise within the community.
By doing so, STuning-DL not only presents a robust solution
but it also seeks to contribute to the broader advancement
and accessibility of optimized sparse linear-algebra kernels
for Deep Learning.

REFERENCES
[1] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,

‘‘Language models are unsupervised multitask learners,’’ OpenAI,
San Francisco, CA, USA, Tech. Rep., 2019, vol. 1, no. 8, p. 9.

[2] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
‘‘A survey on compiler autotuning using machine learning,’’ ACMComput.
Surv., vol. 51, no. 5, pp. 1–42, Sep. 2019.

[3] T. B. Brown, ‘‘Language models are few-shot learners,’’ in Proc. NIPS,
2020, pp. 1877–1901.

[4] R. L. Castro, D. Andrade, and B. B. Fraguela, ‘‘Probing the efficacy of
hardware-aware weight pruning to optimize the SpMM routine on ampere
GPUs,’’ in Proc. Int. Conf. Parallel Archit. Compilation Techn., Oct. 2022,
pp. 135–147.

[5] R. L. Castro, A. Ivanov, D. Andrade, T. Ben-Nun, B. B. Fraguela, and
T. Hoefler, ‘‘VENOM: A vectorized N:M format for unleashing the power
of sparse tensor cores,’’ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., New York, NY, USA, Nov. 2023, pp. 1–14.

[6] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin, and
A. Krishnamurthy, ‘‘Learning to optimize tensor programs,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 31, 2018.

[7] Z. Chen, Z. Qu, L. Liu, Y. Ding, and Y. Xie, ‘‘Efficient tensor core-based
GPU kernels for structured sparsity under reduced precision,’’ in Proc.
SC21, Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2021,
pp. 1–13.

[8] J.W. Choi, A. Singh, andR.W.Vuduc, ‘‘Model-driven autotuning of sparse
matrix-vector multiply on GPUs,’’ ACM SIGPLAN Notices, vol. 45, no. 5,
pp. 115–126, May 2010.

[9] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, pp. 273–297, Sep. 1995.

[10] G. Dai, G. Huang, S. Yang, Z. Yu, H. Zhang, Y. Ding, Y. Xie, H. Yang,
and Y. Wang, ‘‘Heuristic adaptability to input dynamics for SpMM on
GPUs,’’ in Proc. 59th ACM/IEEE Design Autom. Conf., New York, NY,
USA, Jul. 2022, p. 595.

[11] T. A. Davis and Y. Hu, ‘‘The university of Florida sparse matrix
collection,’’ ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, Nov. 2011.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[13] Y. Ding, Y.Wu, C. Huang, S. Tang, F.Wu, Y. Yang,W. Zhu, and Y. Zhuang,
‘‘NAP: Neural architecture search with pruning,’’ Neurocomputing,
vol. 477, pp. 85–95, Mar. 2022.

[14] A. Dosovitskiy, ‘‘An image is worth 16×16 words: Transformers for image
recognition at scale,’’ in Proc. Int. Conf. Learn. Represent., 2020.

[15] Z. Du, J. Li, Y.Wang, X. Li, G. Tan, and N. Sun, ‘‘AlphaSparse: Generating
high performance SpMV codes directly from sparse matrices,’’ in Proc.
SC, Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2022,
pp. 1–15.

[16] T. Gale,M. Zaharia, C. Young, and E. Elsen, ‘‘Sparse GPU kernels for deep
learning,’’ in Proc. SC, Int. Conf. High Perform. Comput., Netw., Storage
Anal., Nov. 2020, pp. 1–14.

[17] Deep Learning Matrix Collection, Google Research, Atlanta, GA, USA,
2020.

[18] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Con-
denseNet: An efficient DenseNet using learned group convolutions,’’ 2017,
arXiv:1711.09224.

[19] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[20] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad,
M. M. A. Patwary, Y. Yang, and Y. Zhou, ‘‘Deep learning scaling is
predictable, empirically,’’ 2017, arXiv:1712.00409.

[21] T. K. Ho, ‘‘Random decision forests,’’ in Proc. 3rd Int. Conf. Document
Anal. Recognit., Aug. 1995, pp. 278–282.

[22] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, ‘‘Sparsity in
deep learning: Pruning and growth for efficient inference and training in
neural networks,’’ J. Mach. Learn. Res., vol. 22, no. 241, pp. 1–124, 2021.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neural
networks for mobile vision applications,’’ 2017, arXiv:1704.04861.

[24] G. Huang, H. Li, M. Qin, F. Sun, Y. Ding, and Y. Xie, ‘‘Shfl-BW:
Accelerating deep neural network inference with tensor-core aware weight
pruning,’’ in Proc. 59th ACM/IEEE Design Autom. Conf., New York, NY,
USA, Jul. 2022, pp. 1153–1158.

[25] J. Kaplan, ‘‘Scaling laws for neural language models,’’ 2020,
arXiv:2001.08361.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012.

[27] E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran,
M. Goin, and D. Alistarh, ‘‘The optimal BERT surgeon: Scalable
and accurate second-order pruning for large language models,’’ 2022,
arXiv:2203.07259.

[28] P. S. Labini, M. Cianfriglia, D. Perri, O. Gervasi, G. Fursin, A. Lokhmotov,
C. Nugteren, B. Carpentieri, F. Zollo, and F. Vella, ‘‘On the anatomy of
predictive models for accelerating GPU convolution kernels and beyond,’’
ACM Trans. Archit. Code Optim., vol. 18, no. 1, pp. 1–24, Jan. 2021.

[29] F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, ‘‘Block pruning for
faster transformers,’’ 2021, arXiv:2109.04838.

[30] M. Li,M. Zhang, C.Wang, andM. Li, ‘‘AdaTune: Adaptive tensor program
compilation made efficient,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, 2020, pp. 14807–14819.

[31] X. Li, Y. Liang, S. Yan, L. Jia, and Y. Li, ‘‘A coordinated tiling and batching
framework for efficient GEMM on GPUs,’’ in Proc. 24th Symp. Princ.
Pract. Parallel Program., Feb. 2019, pp. 229–241.

[32] M. Lin, Y. Zhang, Y. Li, B. Chen, F. Chao, M. Wang, S. Li, Y. Tian,
and R. Ji, ‘‘1xN pattern for pruning convolutional neural networks,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 3999–4008,
Apr. 2023.

[33] W.-Y. Loh, ‘‘Classification and regression trees,’’ Wiley Interdiscipl. Rev.,
Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 14–23, 2011.

[34] R. Malouf, ‘‘A comparison of algorithms for maximum entropy parameter
estimation,’’ in Proc. 6th Conf. Natural Lang. Learn. (COLING), 2002,
pp 1–7.

70598 VOLUME 12, 2024

R. L. Castro et al.: STuning-DL: Model-Driven Autotuning of Sparse GPU Kernels for DL

[35] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh, C. Yu,
and P. Micikevicius, ‘‘Accelerating sparse deep neural networks,’’ 2021,
arXiv:2104.08378.

[36] T. Mohammed and R. Mehmood, ‘‘Performance enhancement strategies
for sparse matrix-vector multiplication (SpMV) and iterative linear
solvers,’’ 2022, arXiv:2212.07490.

[37] I. Nisa, C. Siegel, A. S. Rajam, A. Vishnu, and P. Sadayappan, ‘‘Effective
machine learning based format selection and performance modeling for
SpMV on GPUs,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
Workshops (IPDPSW), May 2018, pp. 1056–1065.

[38] C. Nugteren, ‘‘CLBlast: A tuned OpenCL BLAS library,’’ in Proc. Int.
Workshop OpenCL, New York, NY, USA, May 2018, pp. 1–10.

[39] NVIDIA PTX, NVIDIA, Santa Clara, CA, USA, 2024. Accessed: Apr. 1,
2024. [Online]. Available: https://docs.nvidia.com/cuda/parallel-thread-
execution/index.html

[40] Exploiting NVIDIA Ampere Structured Sparsity With CuSPARSELt,
NVIDIA, Santa Clara, CA, USA, 2020.

[41] NVIDIA. (2023). The Cusparse Library. Accessed: Oct. 6, 2023. [Online].
Available: https://docs.nvidia.com/cuda/cusparse/index.html

[42] Exploiting NVIDIA Ampere Structured Sparsity With cuSPARSELt,
NVIDIA, Santa Clara, CA, USA, 2024. Accessed: Apr. 1, 2024.

[43] NVIDIA. (2024). Nsight Compute. Accessed: Apr. 1, 2024. [Online].
Available: https://docs.nvidia.com/nsight-compute/NsightCompute/index.
html

[44] S. M. Omohundro, Five Balltree Construction Algorithms. Berkeley, CA,
USA: International Computer Science Institute Berkeley, 1989.

[45] S. K. Pal and S. Mitra, ‘‘Multilayer perceptron, fuzzy sets, and
classification,’’ IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 683–697,
Jan. 1992.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[47] A. Peste, E. Iofinova, A. Vladu, and D. Alistarh, ‘‘AC/DC: Alternating
compressed/decompressed training of deep neural networks,’’ inProc. Adv.
Neural Inf. Process. Syst., vol. 34, 2021, pp. 8557–8570.

[48] A. Rasch and S. Gorlatch, ‘‘ATF: A generic directive-based auto-
tuning framework,’’ Concurrency Comput., Pract. Exper., vol. 31, no. 5,
Mar. 2019, Art. no. e4423.

[49] I. Rish, ‘‘An empirical study of the naive Bayes classifier,’’ in Proc. IJCAI
Workshop Empirical Methods Artif. Intell., vol. 3, no. 22, 2001, pp. 41–46.

[50] J. Ryu and H. Sung, ‘‘MetaTune: Meta-Learning based cost model for fast
and efficient auto-tuning frameworks,’’ 2021, arXiv:2102.04199.

[51] S. R. Safavian and D. Landgrebe, ‘‘A survey of decision tree classi-
fier methodology,’’ IEEE Trans. Syst. Man, Cybern., vol. 21, no. 3,
pp. 660–674, May 1991.

[52] SAMPL. (2024). Tophub Autotvm Log Collections. Accessed:
Mar. 31, 2024. [Online]. Available: https://github.com/tlc-pack/tophub

[53] B. Singer and M. M. Veloso, ‘‘Learning to predict performance from
formulamodeling and training data,’’ inProc. 17th Int. Conf. Mach. Learn.,
2000, pp. 887–894.

[54] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[55] S. Tavarageri, A. Heinecke, S. Avancha, B. Kaul, G. Goyal, and
R. Upadrasta, ‘‘PolyDL: Polyhedral optimizations for creation of high-
performance DL primitives,’’ ACM Trans. Archit. Code Optim., vol. 18,
no. 1, pp. 1–27, Mar. 2021.

[56] V. Thakkar, P. Ramani, C. Cecka, A. Shivam, H. Lu, E. Yan, J. Kosaian,
M. Hoemmen, H. Wu, A. Kerr, M. Nicely, D. Merrill, D. Blasig,
F. Qiao, P. Majcher, P. Springer, M. Hohnerbach, J. Wang, and M. Gupta,
‘‘CUTLASS,’’ NVIDIA, Santa Clara, CA, USA, Jan. 2023. [Online].
Available: https://github.com/NVIDIA/cutlass

[57] P. Tillet, H. T. Kung, and D. Cox, ‘‘Triton: An intermediate language
and compiler for tiled neural network computations,’’ in Proc. 3rd ACM
SIGPLAN Int. Workshop Mach. Learn. Program. Lang., New York, NY,
USA, Jun. 2019, pp. 10–19.

[58] J. O. Tørring and A. C. Elster, ‘‘Analyzing search techniques for autotuning
Image-based GPU kernels: The impact of sample sizes,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), May 2022,
pp. 972–981.

[59] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou,
‘‘Training data-efficient image transformers & distillation through atten-
tion,’’ in Proc. Int. Conf. Mach. Learn., 2021, pp. 10347–10357.

[60] A. Vaswani, ‘‘Attention is all you need,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 30, 2017.

[61] Z. Wang, ‘‘SparseRT: Accelerating unstructured sparsity on GPUs for
deep learning inference,’’ in Proc. ACM Int. Conf. Parallel Architectures
Compilation Techn., Sep. 2020, pp. 31–42.

[62] J. Won, C. Mendis, J. S. Emer, and S. Amarasinghe, ‘‘WACO: Learning
workload-aware co-optimization of the format and schedule of a sparse
tensor program,’’ in Proc. 28th ACM Int. Conf. Architectural Support
Program. Lang. Operating Syst., vol. 2, Jan. 2023, pp. 920–934.

[63] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo, ‘‘Transfer learning with
neural AutoML,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018.

[64] J. Xing, L. Wang, S. Zhang, J. Chen, A. Chen, and Y. Zhu, ‘‘Bolt: Bridging
the gap between auto-tuners and hardware-native performance,’’ Proc.
Mach. Learn. Syst., vol. 4, pp. 204–216, Apr. 2022.

[65] Z. Xu, J. Xu, H. Peng, W. Wang, X. Wang, H. Wan, H. Dai, Y. Xu,
H. Cheng, K. Wang, and G. Chen, ‘‘ALT: Breaking the wall between data
layout and loop optimizations for deep learning compilation,’’ inProc. 18th
Eur. Conf. Comput. Syst., May 2023, pp. 199–214.

[66] D. Yan, W. Wang, and X. Chu, ‘‘Simplifying low-level GPU programming
with GAS,’’ in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., New York, NY, USA, Feb. 2021, pp. 469–471.

[67] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, ‘‘Stochastic gradient boosted
distributed decision trees,’’ in Proc. 18th ACM Conf. Inf. Knowl. Manage.,
Nov. 2009, pp. 2061–2064.

[68] Z. Ye, R. Lai, J. Shao, T. Chen, and L. Ceze, ‘‘SparseTIR: Composable
abstractions for sparse compilation in deep learning,’’ in Proc. 28th ACM
Int. Conf. Architectural Support Program. Lang. Operating Syst., vol. 3,
New York, NY, USA, Mar. 2023, pp. 660–678.

[69] M. Zhang, M. Li, C. Wang, and M. Li, ‘‘DynaTune: Dynamic tensor
program optimization in deep neural network compilation,’’ in Proc. Int.
Conf. Learn. Represent., 2020.

[70] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, and K. Sen, ‘‘Ansor: Generating $high − performance$ tensor
programs for deep learning,’’ in Proc. 14th USENIX Symp. Operating Syst.
Design Implement. (OSDI), 2020, pp. 863–879.

[71] N. Zheng, B. Lin, Q. Zhang, L. Ma, Y. Yang, F. Yang, Y. Wang, M. Yang,
and L. Zhou, ‘‘Sparta: Deep-learning model sparsity via tensor-with-
sparsity-attribute,’’ in Proc. 16th USENIX Symp. Operating Syst. Design
Implement. (OSDI), 2022, pp. 213–232.

ROBERTO L. CASTRO received the bachelor’s
degree in computer science and the master’s
degree in high-performance computing from the
University of A Coruña, Spain, in 2019 and
2020, respectively, where he is currently pursuing
the Ph.D. degree with the Computer Architec-
ture Group. His research interests include high-
performance computing, sparse computation for
machine learning (ML), GPGPU programming,
and automated machine learning (AutoML).

DIEGO ANDRADE received the M.S. and Ph.D.
degrees in computer science from the University
of A Coruña, A Coruña, Spain, in 2002 and
2007, respectively. He is currently an Associate
Professor with the Departamento de Enxeñaría de
Computadores, University of A Coruña, where
he has been a Faculty Member, since 2006. His
research interests include performance evaluation
and prediction, analytical modeling, and compiler
transformations.

BASILIO B. FRAGUELA received the M.S. and
Ph.D. degrees in computer science from the
University of A Coruña, Spain, in 1994 and 1999,
respectively. He is currently a Professor with the
Departamento de Enxeñaría de Computadores,
University of A Coruña, where he has been
a Faculty Member, since 1995. His primary
research interests include programmability, high-
performance computing, heterogeneous systems,
and code optimization.

VOLUME 12, 2024 70599

