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Abstract: Growing dependence on fossil fuels is one of the critical factors accelerating climate change,
a global concern that can destabilize ecosystems and economies worldwide. In this context, renewable
energy is emerging as a sustainable and environmentally responsible alternative. Among the options,
geothermal energy stands out for its ability to provide heat and electricity consistently and efficiently,
offering a feasible solution to reduce the carbon footprint and promote more sustainable development
in a globalized economy. In this work, a machine learning approach is proposed to predict the
behavior of a horizontal heat exchanger from a bioclimatic house. First, a correlation analysis was
conducted for optimal feature selection. Then, several regression techniques were applied to predict
the output temperature of the geothermal exchanger. Satisfactory prediction results were obtained in
different scenarios over the whole dataset. Also, a significant correlation between several sensors
was concluded.

Keywords: energy efficiency; geothermal heat exchanger; prediction; random forest; SVR; MLP

1. Introduction

In the last decades, climate change, global economic instability, and increasing depen-
dence on fossil fuels have become urgent challenges requiring an accelerated transition
to more sustainable and efficient energy sources [1]. In this context, renewable energy,
including geothermal energy, emerges as a promising alternative to provide a clean and
constant energy supply [2]. Unlike solar and wind energy, whose technologies have
evolved significantly due to their popularity, geothermal energy still requires technologi-
cal development and more efficient implementation [3], primarily in areas with suitable
geological conditions.

Geothermal energy is described as energy stored as heat beneath the ground in-
side the earth [4]. According to several studies, the earth’s total heat emitted is around
42 × 1012 W [4]. Only 2% of this energy is present at the crust; the other 82% corresponds
to the mantle due to the decomposition of several radioactive isotopes, and the remainder
comes from the core. Despite the large amount of available energy, its utilization is limited
to areas with specific geological conditions [5].

In recent decades, technological advances have allowed for greater efficiency in
geothermal heat extraction, reducing costs and expanding the geographic potential of
this source [6]. In addition, the focus on sustainability and reducing dependence on fos-
sil fuels has led several governments to increase investment in geothermal research and
development [7].

Energies 2024, 17, 2706. https://doi.org/10.3390/en17112706 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17112706
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0009-0003-6771-5211
https://orcid.org/0009-0001-4085-0451
https://orcid.org/0009-0004-6706-5519
https://orcid.org/0000-0002-2333-8405
https://orcid.org/0000-0002-0268-7999
https://orcid.org/0000-0002-0994-1961
https://doi.org/10.3390/en17112706
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17112706?type=check_update&version=1


Energies 2024, 17, 2706 2 of 15

Regarding electricity generation, geothermal energy’s total installed capacity in the
twenty-first century’s first decades was nearly 9 MW. Nevertheless, the power associated
with non-electrical uses was approximately 15 MW. In this sense, non-electrical applications
involve space heating, greenhouses, aquaculture, industrial activities, or heat pumps,
among others [4].

Among geothermal solutions, ground source heat exchangers, which take advantage
of the more stable subsurface temperature, are particularly promising for residential and
commercial applications [8]. This study focuses on a horizontal geothermal configuration
implemented in a bioclimatic house.

Horizontal heat exchanger geothermal energy systems harness the thermal energy
stored below the earth’s surface to provide efficient heating and cooling [9]. These systems
are mainly composed of pipes arranged horizontally at a relatively shallow depth, usually
between 1 and 2 m [10]. Although horizontal configurations are less expensive than vertical
configurations [11], their efficiency can be affected by seasonal thermal variability, which
poses significant challenges in terms of energy efficiency [12].

Different works focus on the importance of predicting thermal resistance or soil tem-
perature in geothermal systems [13,14]. On the other hand, in ref. [15], a fault detection and
recovery approach is proposed to identify a malfunctioning sensor on a geothermal system.
More specifically, artificial neural network (ANN)-based methods [16,17] or random forest
techniques [18] were applied to predict the performance of a geothermal heat pump system.
Also, ref. [19] develops a performance prediction model of an air-cooled heat pump system
using ANN, support vector machine (SVM), random forest (RF), and K-nearest neighbor
(KNN). In this sense, ref. [20] proposes linear regression, nonlinear regression, and ANN
techniques to predict the influence of the input variables on the heat transfer rate and heat
transfer rate variation of a ground source heat pump (GSHP). In addition, ref. [21] develops
a method for predicting the behavior of a horizontal geothermal heat exchanger by means
of several time series techniques.

As stated above, several approaches have been proposed for predicting the behavior
of GSHPs or geothermal heat exchangers. Nevertheless, there is not extensive work focused
on bioclimatic housing involving several renewable energy sources. In this sense, this
research deals with a multi-energy context including wind power, solar thermal, solar
photovoltaic, biomass, and geothermal energy systems. This is important to ensure an
efficient system management and optimize the energy demand. Moreover, no published
work in this context involves the use of the intelligent techniques proposed for this study.

The present research proposes a method based on intelligent regression techniques to
predict the output temperature of a geothermal heat exchanger using the input temperature
and the ground reference temperature as predictors. The exchanger includes these sensors
and several buried temperature sensors throughout its length. One of the reasons for
installing these buried sensors is to detect possible obstructions along the path. In this
sense, this approach aims not only to optimize the thermal performance of the system
and its energy demand but also to improve sensor maintenance, avoiding costly and
time-consuming interventions.

In general terms, this study aims to promote more accessible housing by reducing
the costs of sensor installation in difficult-to-access locations. It should be noted that
the replacement of a buried probe can be expensive. In addition, the optimization of
renewable energy systems by means of artificial intelligence (AI) techniques contributes to
the reduction of greenhouse gas emissions. Furthermore, this work seeks to improve the
performance of the methods used in previous work.

Satisfactory results were obtained by applying several machine learning (ML) tech-
niques, achieving a good prediction of the output temperature of the heat exchanger.
Specifically, recursive least square, K-nearest neighbors, decision tree, random forest, poly-
nomial regression, support vector regression, and multilayer perceptron techniques were
proposed for this study. In addition, several metrics were proposed for an in-depth model
evaluation. Furthermore, a statistical analysis was carried out to determine which of the
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techniques provided the best results. Furthermore, this study has evidenced a significant
correlation between different sensors of the geothermal system.

This paper is structured as follows. After the present introduction, a brief description
of the case of study is presented. Then, the methods section is exposed. Subsequently,
experiments and results are shown in the following section, and, finally, conclusions and
future work are presented.

2. Case of Study

This section describes the geothermal system under study, located in a bioclimatic
house, and the dataset obtained from periodical sensor measurements.

2.1. Sotavento Bioclimatic House

The bioclimatic house analyzed results from a project developed by the Sotavento
Galicia Foundation, which aims to demonstrate the viability of different renewable systems
and promote their use. This house is located in the Sotavento Experimental Wind Farm
facilities between the municipalities of Xermade (Lugo) and Monfero (A Coruña) in the
autonomous community of Galicia, Spain. Its geographical coordinates are 43º21′ North,
7º52′ West. It is located at an altitude of 640 m and 30 km from the sea.

The bioclimatic house’s thermal and electrical installations are supported by several
types of renewable energy systems. Wind turbines and photovoltaic panels generate
electricity. Furthermore, when these energy sources are insufficient to meet demand,
the power grid supplies electricity to the home’s lighting and power systems. In contrast,
the thermal installation manages the charge of the heating system and domestic hot water
(DHW). Solar, geothermal, and biomass energies serve to carry out this task.

The thermal installation is divided into three main sections: generation, accumulation,
and consumption.

Generation: The generation system is composed of three renewable energy sources:

• Solar thermal system: The solar panels absorb energy from the solar radiation and
heat the fluid of the primary circuit. Then, this fluid is fed into a solar accumulator.

• Biomass boiler system: a biomass boiler with a pellet yield of 90% provides hot water
to the inertial accumulator, ensuring an internal temperature of around 63 ◦C.

• Geothermal system: It combines a ground source heat pump and a horizontal heat ex-
changer. The heat exchanger consists of several pipes arranged horizontally at depth of
2 m. The warm water from the heat pump is driven directly to the inertial accumulator.

Accumulation: this group comprises two accumulation units: a solar accumulator and
an inertial accumulator for heat supply and DHW. A preheating system is also integrated
to reach the temperature setpoint if necessary.

Consumption: The inertial accumulator supplies DHW and underfloor heating. The DHW
supplies the bathroom and kitchen, dimensioning the system according to the Spanish
Technical Building Code (240 L per day). The underfloor heating system keeps the house
temperature between 18 ◦C and 22 ◦C. For this purpose, the water temperature is regulated
between 35 ◦C and 40 ◦C.

As stated in the Introduction section, this paper focuses on the geothermal energy
system described in depth in the following subsection.

2.2. Geothermal Heat Pump and Horizontal Heat Exchanger

As stated above, heat generation through a horizontal heat exchanger is among the
proposed active solutions. Figure 1 shows the topology of the geothermal system, involving
both heat pump (AT2) and horizontal heat exchanger. In this case, two circuits are connected
to the heat pump: the primary circuit, including the heat exchanger (the circuit of the right
side including S28 and S29 temperature sensors), and the second circuit (left side including
S30 and S31 temperature sensors and a flowmeter C6), connecting the heat pump to the
inertial accumulator.
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Figure 1. Geothermal heat pump system scheme.

Figure 2 shows a simplified scheme of the horizontal heat exchanger. The geothermal
heat exchanger is composed of four parallel circuits with a total length of 100 m per circuit.
Eight sensors (S3xx) are located along each circuit to measure the ground temperature in
different positions while the system operates. Also, a reference sensor (S401) is used to
monitor the ground temperature. Furthermore, the system includes input (S28 in Figure 1)
and output (S29 in Figure 1) temperature sensors for the geothermal heat exchanger. Finally,
a thermal power sensor is located at the second circuit of the heat pump.

GROUND TEMPERATURE

OUTPUT COLLECTOR INPUT COLLECTOR

Figure 2. Horizontal heat exchanger scheme.



Energies 2024, 17, 2706 5 of 15

2.3. Dataset Description

A sensor data acquisition over a 1 year period has been performed. It should be
noted that parallel circuit sensor data are only available for one of the four circuits. In this
sense, the dataset comprises a total of 52,645 observations with a sampling rate of 10 min.
The features that compose the dataset are described below:

• date-time (yyyy-mm-dd hh:mm): date-time for the corresponding observation.
• Tin (◦C): return temperature of the horizontal heat exchanger circuit to the heat pump.
• Tout (◦C): output temperature from the heat pump to the heat exchanger circuit.
• Tref (◦C): reference temperature of the ground.
• c1sn (◦C): temperature sensor n for horizontal heat exchanger circuit 1.

∀n ∈ {1, 2, 3, 4, 5, 6, 7, 8}
• Pavg (W): output thermal power of the heat pump, averaged over 10 min.

2.4. Data Preparation

First, a data exploration stage was performed where several observations were dis-
carded due to missing data. Then, from the initial 52,645 samples, the resulting number
of samples is reduced to 52,638. Next, the samples where the heat pump was turned
off, resulting in an output thermal power, or Pavg, of 0 W, were eliminated, yielding a
dataset of 4883 samples. Then, the date-time feature was removed from the dataset. Finally,
a standardization was applied to the dataset, giving a mean value of 0 and a variance of 1.

3. Methods

The following subsections describe the methods applied in this study.

3.1. Correlation Analysis

A correlation analysis was performed to optimize feature selection for model fitting.
For this purpose, a correlation matrix is obtained from all dataset features. A correlation ma-
trix is a statistical study that can determine the strength and direction of linear relationships
between variables. It represents the correlations between pairs of variables in a symmetric
square matrix [22]. The correlation values are expressed using numbers ranging from −1
to 1. Values approaching zero indicate no linear correlation. Numbers near 1 suggest a
positive, intense connection, whereas numbers near −1 imply negative, strong correlations.

3.2. Regression Techniques

The regression techniques used for this study are exposed in the following subsections.

3.2.1. Recursive Least Squares Regressor

The recursive least squares (RLS) algorithm minimizes the sum of squared errors,
which are the differences between predictions and actual values [23]. This technique uses
a linear function to model the relationship between target y and features X, using model
parameters w. This relationship can be expressed through Equation (1), with n being the
number of features.

y(x, w) = w0 + w1 × x1 + w2 × x2 + . . . + wn × xn (1)

3.2.2. K-Nearest Neighbors

K-nearest neighbors (KNN) is a well-known supervised non-linear algorithm [24,25].
When used in a regression setting, it predicts the input data value given the mean of its K
nearest neighbors of the training data. During the training stage, KNN does not build any
model but stores the training data. The algorithm can be appropriately tuned by modifying
the number of neighbors, K and the weighting scheme for each neighbor.
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3.2.3. Decision Tree Regressor

The decision tree (DT) algorithm is a non-parametric technique [26] that employs a
tree diagram to divide the data into more homogeneous and smaller groups at each node.
When the trained model reaches the final node, it predicts a numerical value. For this
purpose, the model uses if–then conditions from learned rules based on the explanatory
variables. Additionally, the model can be tuned to improve its performance by choosing
the criteria for the maximum tree depth and the best data split for each node.

3.2.4. Random Forest Regressor

In contrast to DT, the random forest (RF) technique groups various decision trees
to build the final model [27]. With the aim of obtaining different regressors, each single
decision tree is trained with slightly different datasets. In this sense, the model’s final
prediction is an average of the results of each tree.

Several hyperparameters can be used for model tuning. For instance, the maximum
depth and the criteria of the tree diagram, the number of regressors used to implement the
forest, and some specific configurations for the decision trees.

3.2.5. Polynomial Regression

Polynomial regression (PN) is a type of linear regression in which the relationship
between the independent variables and the dependent variable is modeled as polynomials
of degree n [28]. Like linear regression, it permits the restriction of coefficients to non-
negative values and includes the option to fit an intercept term—additionally, the highest
degree of the polynomial acts as a hyperparameter.

3.2.6. Support Vector Regression

The support vector regression (SVR) technique is a support vector machine (SVM)
variant used for regression tasks [29]. This generalized version adds an insensitive re-
gion wrapping the decision function of the SVM (ϵ-tube), allowing the model to return a
continuous output to be applied in regression problems. Among the configurations for
the algorithm are the regularization parameter and the kernel type, which modifies the
decision function and maps the input data into other dimensional space.

This modification generalized the classification problem, adding an insensitive region
wrapping the decision function of the SVM, called ϵ-tube, which allows the model to return
a continuous output to resolve regression problems. It is possible to set, as well as the
ϵ-tube, the kernel type used in the algorithm, which modifies the decision function and
maps the input data into other dimensional space, and the regularization parameter.

3.2.7. Multilayer Perceptron

The multilayer perceptron (MLP) is an artificial neural network composed of multiple
neuron layers, each connected to the others by weighted synapses [30]. A typical MLP
structure includes an input layer, one or more hidden layers, and an output layer. The neu-
rons from the hidden and output layers generally use non-linear activation functions, such
as the sigmoid function or hyperbolic tangent. The number of neurons for each layer is
selected individually: the input layer has as many neurons as the number of features,
the output layer has the same number of neurons as predicted values, and an arbitrary
number of neurons is selected for the hidden layers.

In this feedforward network, the data flow from the input to the output layer and
can be used for regression and classification. The learning process of an MLP is based on
the backpropagation algorithm. In this sense, the error between the predicted value and
the actual value is computed and used to update the weights of the connections within
the network.
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3.3. Statistical Analysis

With the aim of selecting the best model, a statistical analysis was conducted to
determine which regression technique achieves significantly better results. In this sense,
two different tests were executed: the Kruskal–Wallis H-test and the Tukey test.

The Kruskal–Wallis H-test is a non-parametrical test [31] that determines if significant
differences exist between the median of independent groups’ data by evaluating the null
hypothesis that the medians are equal. The Kruskal–Wallis H-test returns the p-value,
a statistical measure to determine the probability that a computed statistical value is
possible given a true null hypothesis. A significance level α is used as a threshold to
determine if the p-value is statistically significant. The null hypothesis is rejected if the
p-value is less than or equal to α. In this case, the data groups differ.

Tukey’s honestly significant difference (HSD) test [32] performs a pairwise comparison
to accept or reject the null hypothesis between two groups. This test also needs a proper
adjustment of the significance level, α.

4. Experiments and Results

The experiments setup and their results are detailed below.

4.1. Experiment Setup

In this subsection, the tools used in this research are presented. The different tested
configurations of the regression techniques, as well as the metrics used to evaluate and
compare the performance of the models, are mentioned below.

Figure 3 shows the process followed in the present research for model building. The re-
sult is a validated model capable of predicting the output temperature of the geothermal
heat exchanger.

Preprocessing Feature selection Model selection Model validation

1
Missing data 

removing
1

Missing data 
removing

2
Data selected based 

on 'Pavg'
2

Data selected based 
on 'Pavg'

3 Data standardization3 Data standardization

1 Correlation analysis1 Correlation analysis

2
Feature selection by 

threshold
2

Feature selection by 
threshold

1
Cross validation with 

train data
1

Cross validation with 
train data

2 Statistical analysis2 Statistical analysis

1
Evaluation with test 

data
1

Evaluation with test 
data

Figure 3. Model building process flowchart.

4.1.1. Regression Techniques

Different techniques’ configurations are tested to obtain the best models. Below are
the hyperparameters and values tested.

Recursive Least Squares Regressor

The model configuration affects the application of the independent term, which may
be computed or set to zero, as well as the coefficients’ sign, which can be constrained to be
positive. Consequently, this leads to four distinct models.

K-Nearest Neighbors

Various numbers of neighbors were tested to make the prediction, ranging from 1
to 41, in a 4-step number. Additionally, two methods for assigning the model’s weight
distribution were employed: a uniform function, which gives equal weight to all neighbors,
and a distance function, which assigns a weight to a neighbor that is inversely proportional
to its distance from the query point. This resulted in a total of twenty-two distinct models.
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Decision Tree Regressor

The diagram’s maximum depth was set from 1 to 10, incrementing by 1. Additionally,
various criteria for splitting were applied based on both absolute and squared errors,
resulting in twenty distinct models.

Random Forest Regressor

The identical hyperparameters and values assessed in decision tree models were
applied, including the number of regressors (trees) utilized by the model, evaluating two,
three, four, five, and six trees, yielding one hundred distinct models.

Polynomial Regression

Several polynomial equations were tested in order to enhance the prediction’s quality,
using a polynomial from the second degree to one of the tenth degree. The constant term
was either computed or set to zero to fine-tune the regression. In total, eighteen distinct
models were evaluated.

Support Vector Regression

The modified hyperparameters include the regularization coefficient, epsilon, and ker-
nel function. The first two were varied between 10, 1, 0.1, 0.01, and 0.001, while the kernel
function was tested with four different types: linear, sigmoid, radial basis function (RBF),
and a two- and three-degree polynomial. Consequently, this led to the creation of one
hundred twenty-five distinct models.

Multilayer Perceptron

The MLPs were trained using a batch size of 32 samples over 200 epochs. They were
designed with a single hidden layer, and the output layer’s activation function was linear.
The count of hidden neurons tested ranged incrementally from one to twenty neurons in a
step of one neuron. The activation functions employed were rectified linear unit (ReLU),
sigmoid, and hyperbolic tangent, culminating in sixty configurations.

4.1.2. Model Evaluation

Different metrics were used throughout the development of this research. All metrics
are found in Table 1. Lower mean squared error and mean absolute error values mean good
model performance, whereas symmetric mean absolute percentage error yields a range
from 0 to 200%, with 0% representing the ideal case. For the coefficient of determination,
values approaching 1 denote favorable model behavior, while values close to 0 indicate
poor performance.

Table 1. Employed evaluation metrics.

Metric Definition Equation

MSE Mean Squared Error 1
N × ∑N

i=1(yi − ŷi)
2

MAE Mean Absolute Error 1
N × ∑N

i=1 |yi − ŷi|

SMAPE Symmetric Mean Absolute Percentage Error 2 × 100%
N × ∑N

i=1
|yi−ŷi |
|yi |+|ŷi |

R2 Coefficient of Determination 1 − ∑N
i=1(yi−ŷi)

2

∑N
i=1(yi−ȳi)2

The evaluation of these metrics occurs in two stages. Initially, a comparison is made
from the metrics results of a 10-fold cross-validation conducted on 80% of the data samples,
reserving the remaining samples to the testing phase. After identifying the optimal model
configuration, the model is trained with that 80% (the first stage complete dataset). Then,
the remaining 20% of the samples is utilized in the testing phase to evaluate the model’s
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generalization and to validate the model’s performance. This 20% corresponds to new
observations or samples that have not been previously seen.

Following the initial step, a Kruskal–Wallis H-test will be conducted to determine if
there are significant differences in the performance of the models. Tukey’s HSD test will be
carried out if the null hypothesis is rejected. This research has set a significance level of 5%
(α = 0.05).

4.2. Results

This subsection presents the different results obtained in the correlation analysis,
model configuration selection, training phase, and validation phase.

4.2.1. Correlation Analysis

Figure 4 displays the correlation matrix for the variables measured within the geother-
mal system. One notable observation is the significant correlation value among the tem-
perature sensors for the horizontal heat exchanger, c1sn, which can be attributed to their
proximity and identical terrain conditions. Consequently, the ground reference temperature,
Tref, exhibits a high correlation with these sensors. As the primary goal of this research is
to obviate the need for horizontal sensors, they will not be utilized in the study.
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c1
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f

Tin

Tout
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-0.51 -0.18 1.00 0.05 0.03 0.04 0.05 0.05 0.04 0.04 0.04 0.06

0.67 0.79 0.05 1.00 0.99 1.00 0.97 0.95 0.99 0.99 0.99 0.84

0.64 0.76 0.03 0.99 1.00 1.00 0.97 0.95 0.98 0.99 0.99 0.82

0.64 0.77 0.04 1.00 1.00 1.00 0.98 0.97 0.99 0.99 0.99 0.86

0.64 0.76 0.05 0.97 0.97 0.98 1.00 0.99 0.99 0.99 0.98 0.93

0.63 0.76 0.05 0.95 0.95 0.97 0.99 1.00 0.98 0.98 0.98 0.95

0.65 0.77 0.04 0.99 0.98 0.99 0.99 0.98 1.00 1.00 1.00 0.90

0.65 0.77 0.04 0.99 0.99 0.99 0.99 0.98 1.00 1.00 1.00 0.89

0.65 0.77 0.04 0.99 0.99 0.99 0.98 0.98 1.00 1.00 1.00 0.88

0.57 0.69 0.06 0.84 0.82 0.86 0.93 0.95 0.90 0.89 0.88 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75
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Figure 4. Correlation matrix of the dataset variables.

The average output thermal power of the heat pump, Pavg, does not demonstrate a
linear correlation with most variables, except for the Tin sensor. A substantial correlation is
observed between the temperature sensors of the heat exchanger, Tin and Tout.

4.2.2. Regression Techniques Results

Table 2 shows the configuration that obtained the best values in the metrics for each
regression technique during the cross-validation phase.
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Table 2. Model hyperparameters with best performance.

Technique Hyperparameter Value

RLS Independent term Calculated
Positive coefficient Not forced

KNN Number of neighbors 13
Weight function Uniform

DT Maximum diagram depth 6
Criterion Squared error

RF
Number of trees 6

Maximum diagram depth 7
Criterion Squared error

PN Maximum degree 7
Independent term True

SVR
Kernel Radial basis function

Regularization coefficient 10
Epsilon 0.1

MLP Number of hidden neurons 15
Activation function Sigmoid

The independent term is calculated automatically in the RLS technique, and the
coefficient is not forced to be positive. For the KNN algorithm, a number of 13 neighbors
is used, and the weight function is uniform. In the case of the DT, the maximum depth
of the diagram is six, and the criterion used is the squared error. For the RF, six trees are
used, the maximum depth of the diagram is seven, and the criterion is also the squared
error. In the polynomial (PN) technique, the degree is set at 7, and the constant term is
determined automatically. A radial basis function kernel, a regularization coefficient of 10,
and an epsilon of 0.1 are used for SVR. Finally, in the MLP, 15 hidden neurons are used,
and the activation function is the sigmoid.

MSE, MAE, SMAPE, and R2 average values along all folds in the cross-validation
phase are represented in Table 3. The top result for each metric is highlighted in bold. All
regression techniques perform well and obtain a similar behavior. However, the SVR and
MLP achieve the best results in two metrics. SVR obtains an MAE of 0.3454 ◦C and an
SMAPE of 3.9456%, while MLP raises an MSE of 0.3080 ◦C2 and an R2 of 0.9308.

Table 3. Mean metric values in the cross-validation phase of every model. The best results for each
metric are highlighted in bold.

Technique MSE (◦C2) MAE (◦C) SMAPE (%) R2

RLS 0.4067 0.4970 5.6826 0.9086
KNN 0.3189 0.3880 4.4308 0.9283

DT 0.3506 0.4114 4.7063 0.9213
RF 0.3222 0.3884 4.4528 0.9276
PN 0.3288 0.4052 4.6277 0.9261
SVR 0.3886 0.3454 3.9456 0.9125
MLP 0.3080 0.3918 4.5197 0.9308

Figures 5–8 show, in a boxplot, the values of the MSE, MAE, SMAPE, and R2, re-
spectively, metrics obtained through the cross-validation phase. All plots are low-spaced,
meaning a low deviation was made in the calculated metric between folds. This visual-
ization establishes a similar performance between models, as Table 3, with SVR and MLP
sticking out.
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At this point, the statistical analysis is made with these models and metrics. The R2

metric was selected to determine whether there are significant differences between the results.
Firstly, the Kruskall–Wallis H-test was performed, obtaining a p-value of 0.0016. There

are significant differences, as this value is lower than the α value chosen of 0.05. To un-
derstand which differences are present, the Tukey test was carried out. This test takes
the 21 possible different pairs and evaluates their differences, rejecting or accepting the
hypothesis. The hypothesis was accepted in 17 pairs, meaning the models perform equally.
The remaining five pairs present significant differences in terms of R2, as shown in Table 4.
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Table 4. Tukey test’s p-value in the rejected cases.

Technique 1 Technique 2 p-Value

KNN RLS 0.0078
MLP RLS 0.0018
PN RLS 0.0261
RF RLS 0.012

MLP SVR 0.0171

Table 5 corresponds with the metrics validation phase results. Values show a similar
performance of every model with the training phase, indicating no overfitting. In this
case, SVR and MLP are again achieving the best results, except for the MSE metric that is
obtained by the polynomial regression, with a value of 0.3161 ◦C2.

Table 5. Mean metric values in the validation phase of every model. The best results for each metric
are highlighted in bold.

Technique MSE (◦C2) MAE (◦C) SMAPE (%) R2

RLS 0.4192 0.5079 5.8002 0.9027
KNN 0.3161 0.3845 4.4054 0.9266

DT 0.3579 0.4271 4.8597 0.9169
RF 0.3298 0.4030 4.5833 0.9234
PN 0.3388 0.4189 4.7596 0.9214
SVR 0.3981 0.3520 3.9778 0.9076
MLP 0.3887 0.4204 4.6589 0.9308

Figure 9 illustrates the values predicted by the MLP model during the validation
phase. These predicted values are plotted against the actual values, demonstrating accurate
forecasting, with all predictions closely aligning with the optimal diagonal dotted line. It is
highlighted that there is no very high residual error, the most significant error being less
than 2.7 ◦C.
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Predicted values

5.50
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11.77

14.90

18.04

Ac
tu

al
 v
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ue

s
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Figure 9. MLP prediction vs actual plot in the validation phase.

5. Conclusions and Future Work

In this paper, a machine learning-based approach has been proposed to predict the
output temperature of a horizontal geothermal heat exchanger of a bioclimatic house.
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Considering that multiple sensors are installed under the ground, this methodology aims
to reduce installation and maintenance costs by minimizing the number of sensors used to
perform the prediction. In this sense, the models could also be used to predict obstructions
inside the exchanger.

Other advantages of applying this methodology include detecting possible physical
sensor reading deviations. Furthermore, it can be used to predict the behavior of the heat
exchanger to give information to the overall energy management system of the bioclimatic
house. Moreover, the intelligent techniques proposed in this study could be deployed in an
edge computing context, thus optimizing energy resources.

The methodology proposed in this study can apply to other cases, employing a signifi-
cant dataset that represents the behavior of a different system or heat exchanger. Hence,
this approach could be used to assess the feasibility of future installations. Nevertheless,
the present research is focused on a unique installation. Thus, the modeling was carried
out for the exchanger installed in this specific bioclimatic house. In this sense, the model
validation and test stages have been conducted using the available dataset.

Several ML regression techniques were applied, and promising results were achieved.
Specifically, the MLP technique obtains a good prediction, committing only a mean absolute
error of 0.4204 ◦C and a mean squared error of 0.3887 ◦C2 while obtaining a symmetric
mean absolute percentage error of 4.6589%. The coefficient of determination also obtains a
high value of 0.9308, indicating that the regression line fits well with the ground values.

Assessing the performance of a geothermal heat exchanger is essential for optimizing
energy consumption. In this sense, several strategies can be developed to improve energy
efficiency and foster the implementation of predictive maintenance strategies. In addition,
future applications, such as proper temperature regulation or electrical smart grids, may
align with this proposal. In addition, given the multi-energy design of the bioclimatic house,
future work may focus on the overall management of the whole thermal energy system.

More specifically, other approaches could be evaluated for implementing virtual
sensors, in line with cost and maintenance optimization, focusing on sensor malfunction
detection. Furthermore, other statistical or deep learning techniques such as ARIMA,
LSTM, or GRU could be proposed to perform temperature forecasting, extending the
prediction horizon.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ARIMA AutorRegressive Integrated Moving Average
DHW Domestic Hot Water
DT Decision Tree
GRU Gated Recurrent Units
HSD Honestly Significant Difference
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory
MAE Mean Absolute Error
ML Machine Learning
MLP MultiLayer Perceptron
MSE Mean Squared Error
RBF Radial Basis Function
ReLU Rectified Linear Unit
RF Random Forest
RLS Recursive Least Squares
R2 Coefficient of Determination
SMAPE Symmetric Mean Absolute Percentage Error
SVM Support Vector Machine
SVR Support Vector Regression
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