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ABSTRACT 
 
Modern portfolio theory (MPT) stands as a widely accepted methodology to meet the challenges associated with the 
definition of energy planning for a particular territory or region. Energy planning is thus framed as an investment selection 
problem. MPT is characterized by having a wider capacity and conceptual richness than the other previously used 
methodologies, such as the individual least cost alternative. The portfolio approach is based on solving for an objective 
function that seeks to minimize either the cost or the risk of the portfolio,  subject to different constraints, considering that 
real electricity generation assets can be defined in terms of cost  or return and economic risk for each alternative 
technology. The relevant portfolios are the result of solving the optimization model, to determine the efficient cost-risk 
frontier. The work presented here consists of an exhaustive review of the literature in relation to the application of MPT 
methodology to the field of energy planning and electricity production. A new classification is proposed from a financial 
perspective of the selection of investments from the preceding studies. It delves deeper into the explanation of the limits to 
the methodology and into the concept of risk, which is key from both a financial and an energy perspective. The main 
methodological contributions found in the literature are examined that are aimed at improving the capacity of  the model 
and adjusting it to the reality of the electricity market, Finally, conclusions are provided from the works analyzed in terms of 
renewable technologies and the policy implications derived from them. In most studies, a preference has been shown for the 
inclusion of renewable technologies in the efficient portfolios. However, in order to implement the decision to increase the 
share of renewable technologies, greater flexibility in the interconnection capacity between states and in storage capacity is 
needed. 
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1. Introduction 
 

The design of the portfolio of technologies used to generate 
electricity takes on special importance in the context of energy and 
environmental planning. It is a matter of defining the how electricity 
should be produced over the medium-long term in a territory. The 
production cost is not the only consideration; also important are the level 
of outside dependence on resources, the corresponding energy security 
and efficiency of the territory and the social and environmental impact 
that the use of the available technologies might entail [1–3].  The aim is 
to form a diversified portfolio in terms of not only non- renewable and 
renewable energy sources (hereinafter, RES), but also combinations of the 
latter. Diversification even applies to the optimal location of RES plants, 
in order to maximize efficiency [4–6]. 

 
Energy planning, understood as a problem of investment selection 

[7], facilitates the long-term design of the electricity generation mix that 
best reconciles security of supply, sustainability (economic, social and 
environmental) and competitiveness [8,9]. The horizon subject to analysis 
is conditioned by the long service life of the power generation assets and 
by a high level of uncertainty, which affects the different variables of the 
selection problem, which are a combination of technological, economic, 
regulatory and environmental variables. In this sense, the planning 
process makes it possible to reduce the uncertainty associated with the 
required assets in the future and favors the laying of a foundation for 
increased energy supply security, access to the lowest possible cost 
(economic, social and environmental), the efficient use of resources and 
environmental sustainability. 

This work reviews the application of Markowitz's modern portfolio 
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theory (hereinafter, MPT) [10] to energy planning. This methodology 
attempts to solve the long-term investment selection problem by defining 
the share of each of the real power generation assets (technologies) 
found in a territory's energy portfolio. To achieve this, MPT assesses both 
the cost (or return) and the economic risk (defined as variability of cost) 
of each technology and set of technologies (portfolio). The quadratic 
optimization approach with restrictions makes it possible to formulate the 
problem with the prime objective    of either maximizing the return or 
minimizing the cost of the portfolio, subject to a given risk level; or 
secondarily, with the objective of minimizing the risk of the portfolio, 
subject to a set level of return or cost. In this manner, the efficient 
portfolio obtained would fulfill the requirements of optimization of the 
cost-risk pair. The set of the different efficient portfolios that can be 
obtained by solving the optimization equation for the different levels of 
restriction  are found on what is known as the efficient portfolio 
frontier. 

This work represents an exhaustive review of the previous studies 
based on the application of MPT to energy planning on a regional level. 
This review intends to help readers understand the state of the art in 
terms of this methodology, originally applied in the financial sector. It has 
now also been widely accepted in the field of energy planning, as this is 
understood to be a long-term investment selection problem. 

In this sense, the objectives sought by this study are the following: 
 

• To conduct an in-depth analysis of the MPT methodology in the 
context of energy planning, including its limitations when applied to 
power generation assets. 

• To propose a new classification for the grouping of the different 
approaches based on MPT, from the perspective of selecting long- 
term financial investments. An attempt has also been made to provide 
a compendium of relevant information in relation to the data sources, 
the regions studied, the technologies analyzed and the restrictions 
contemplated in the proposed models. 

• To examine the concept of risk in greater depth, as a key component 
of any portfolio theory approach and energy planning. To this end, 
the concept of portfolio diversification will be reviewed, highlighting 
the important role of the renewable technologies in reducing the risk 
of the energy portfolio. 

• To highlight the most relevant conclusions in terms of policy 
implications for renewable energies, taken from the studies re- 
viewed. 

 
The work is organized as follows: the following section presents an 

explanation of why portfolio theory is preferred over the previous widely 
used methodology, i.e., the least cost alternative. The third section 
examines in greater depth the different approaches proposed by the 
many works that apply MPT to the problem of power generation assets. 
In order to facilitate the comprehension of the review, the analysis is 
based on the study of two different types of approaches: those using 
economic criteria and those using power production criteria. The fourth 
section presents and discusses the main limitations to the model, the 
concept of risk in terms of MPT and energy, the main methodological 
contributions and the main results of the works analyzed, particularly 
those related to renewable energies. Finally, some conclusions are 
presented. 

 
2. Mean-variance portfolio theory vs. the least-cost 
alternative 

 
In the field of energy planning, the least-cost alternative approach 

stands out as the methodology most commonly used to select power 
generation assets in the energy sector from the perspective of a single 
criterion [7]. This methodology is based on evaluating each alternative 
technology according to its levelized cost of electricity (hereinafter, 
LCOE). The chosen technology would be that with the lowest value for 
the cost and production coefficient. In spite of its widespread applica- 

tion, this methodology has been called into question. The criticisms are 
centered around the fact that the selection of the technology focuses 
solely on the criterion of lowest individual cost. Therefore, this 
methodology would give preference to those technologies that use  fossil 
fuels over RES1 [11–14]. This circumstance is seen in those cases in 
which externalities [18], such as environmental costs, were not included 
in the technology cost structure, resulting in an underestima- tion of the 
total costs for conventional pollutant technologies as compared to RES 
[19–21]. 

Modern portfolio theory makes it possible to analyze the technolo- 
gical alternatives from the two-part perspective of either cost-risk or 
return-risk. In this manner, when risk was considered, RES were favored 
over non-RES. Awerbuch and Berger [11] define these as technologies 
with fixed costs that are invariable and uncorrelated with fossil fuel 
prices; this leads to a much lower risk than that associated with the cost 
of non-RES [22,23]. 

With the change in portfolio methodology, the “individual technol- 
ogy” focus is abandoned in favor of another that is focused on the 
“alternative resource portfolio” as a whole. A vision focused solely on the 
investor side (lowest cost alternative) is also abandoned. Another long-
term vision is adopted that includes both the investor and the regulator 
(since the efficient mix allows for the diversification of risk) [12,24–26], 
as well as society, thanks to a perspective that minimizes the assumed 
power generation costs or risks [9,11,19,26]. 

Among the strengths of MPT is the fact that the approach has a 
greater ability and conceptual richness than that provided by the 
perspective of the simple individual lowest cost of each technology, 
thanks to the double analysis of both cost and risk. Likewise, the 
portfolio model enables the incorporation of characteristic elements of 
energy analysis: the risk related to the variability of the cost of electricity 
generating technologies, the benefits  of the portfolio effect  in mitigating 
risk, and the risks of intermittency that are associated with RES 
production. 

 

3. Review of the literature on modern portfolio theory, as 
applied to power generation 

 
The application of MPT to energy planning was first proposed in the 

study by Bar-Lev and Katz [27], who analyze the relationship between 
the U.S. Power generation industry and fossil fuel resources. The studies 
by Humphreys and McClain [28] and Awerbuch [7,11,12,29,30] later 
served as a basis for numerous subsequent works that provide great 
diversity in terms of the definitions of the objective function and efficient 
frontiers, the types of restrictions addressed, variables studied and time 
horizons analyzed [20,25,31–34]. 

When undertaking a review of the literature, it is mandatory to 
acknowledge those reviews that already exist, such as those found in the 
works by Roques et al. [32], Allan et al. [14], Delarue et al. [33] and Jano- 
Ito and Crawford [35], as they are particularly exhaustive and complete. 
These are supplemented by the works by Awerbuch and Berger [11], 
Awerbuch and Yang [30], Gökgöz and Atmaca [36], Bhattacharya and Kojima 
[37], Kumar et al. [38], which provide an accurate explanation of portfolio 
theory methodology. 

We personally found it interesting to consider a classification of the 
different works from a financial perspective, which furthermore, is 
characteristic of MPT. This proposal is based on the understanding of 
energy planning as a problem of long-term investment selection 
[7,11,21,30]. Below is a comprehensive review of the works found in 

 
1 In this regard, authors like Jäger-Waldau [15] and Cuixia et al. [16] opt for a certain 

reduction of renewable energy costs in the case that learning curves and scale economies are 

considered. Along with this, we must also consider the indications of Del Río and Mir- 
Artigues [17], who opt for the application of corrective measures in the European Union until 

2030, according to which the system promoting renewable technologies would increase the 

cost-effectiveness of these energies and mitigate the distortions affecting competition among 

power generation technologies. 
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the literature, based on the study of two different types of approaches: 
those based on economic criteria or on power production criteria. 

 
3.1. Approaches based on economic criteria 

 
3.1.1. Return as the inverse of generation cost 

Awerbuch [11,29] provides the theoretical bases for this perspec- 
tive. This approach, similar to that proposed by Humphreys and McClain 
[28]2, considers the overall profitability of  the  portfolio  as the weighted 
sum of the profitability of each generation technology, according to MPT 
proposal. 

The expected return for each technology is obtained based on the 
sum of the inverse of each type of cost. The expected return on the 
portfolio, E (rp), is estimated based on the mathematical calculation of the 
expected return on each technology share in the portfolio. This is 
determined by the following expression (Eq. (1)): 

n 

The model thus generates an efficient portfolio frontier according to 
the return-risk pair. Other authors who have also opted for this pair 
include [13,31,39,40] (Table 1). 

Hickey et al. [9], Jansen et al. [19], Roques et al. [26] and Delarue et 
al. [33] frame this proposal within the perspective of maximizing social 
welfare. This qualification owes to the aim of the approach, which is 
based on obtaining the efficient technology portfolio that implies 
exposing society to the minimum level of cost and risk necessary that are 
associated with the generation of electricity. 

There are different points of view on how to handle the economic 
risk associated with RES. For instance, Awerbuch and Berger [11] 
identify the RES technologies as being risk-free. They would assimilate 
them into the behavior of risk-free assets in portfolio theory, as they 
have no fuel costs (except for biomass) that are subject to high price 
volatility [4,14,16,35,41,42]. In general, RES technologies use freely 
available natural resources [22,43] and have zero availability cost 
(wind, sea currents, precipitation or solar radiation). Furthermore, they 

E (rp) = x1E (r1)+x2 E (r2) + … + xnE (rn)= ∑ xi E (ri ) 
i=1 

 
 
 

(1) 

do not incur costs related to CO2 emissions, as they are not sources of 
emissions – except in the case of biomass technology and RES, which are 
only subject to investment and O & M costs. It is for this reason that 

where xiis the share of each of the    technologies i in the portfolio p and 
E (ri) is the expected return for each technology i. The authors opt for a 
definition of return as the amount of generation output produced (in kW 
h) per monetary unit spent. This thus can be interpreted as the inverse 
of a cost measured according to monetary units spent per unit of energy 
generated. As a result, a lower cost would equal better return. Awerbuch 
and Berger [11] measure the risk of each technology by means of the 
standard deviation of the relative variations in its cost per period.3 These 
changes per period correspond to a measure similar to that of the 
calculation of the per period return. This calculation considers historical 
data for the different generation costs per technol- ogy,  for  which  
normality  is  assumed.  This  is  determined  by  the 

following expression (Eq. (2)): 

Holding Period Returns = 
(costt1 − costt0) 

costt0 (2) 

The risk of each technology would be calculated based on the 
standard deviation (or variance) of the time series that results from 
applying Eq. (2) to each cost component of the technology. Specifically, 
they propose the calculation of the technology risk as the sum of the 
risks for each cost component, weighted by the share that each 
component has in the total cost of the technology. 

Portfolio risk (σp) is a function of the individual risks of each 
technology and any relationship that may exist between the costs of the 
different technologies considered (Eq. (3)): 

n      n n n 

a lack of correlation is assumed between fuel costs and fuel CO2 
emissions [14,30,38], something which reinforces the positive role of 
RES in the portfolio, reducing the risk if there are technologies that use 
fossil fuels. Awerbuch and Berger [11] indicate that since the potential 
year-on-year variation experienced by these costs can be considered null, 
these technologies present no risk. Escribano et al. [4] follows this same 
consideration of free-risk assets for RES. 

Alternatively, Arnesano et al. [39] opt to characterize RES as 
technologies with an economic risk (Table 1). Accordingly, they link  the 
capacity factor of the technologies to the real availability of the natural 
wind or solar PV “fuel”. They thus equate the value of the capacity factor 
for each technology with the variability in the price of fuel for the RES. 

The unlikely availability of series of historical data on the different 
types of generation costs in relation to the different technologies 
conditions most of the studies in this field. The real costs of the different 
electric companies is a very sensitive subject, and thus difficult to access. 
To make up for the lack of data, many authors turn to those collected in 
previously published works, international agencies, such as the IEA, or 
simulations (Table 1; Tables 2–4). 

 
 

3.1.2. Earnings calculated based on NPV and IRR values 
In  the   literature,   we  find  works   based  on   the calculation   of the 

expected mean value and standard deviation (risk) of the  net  present value  
(NPV)  and  the  internal  rate  of return  (IRR)  associated with each 

σp = ∑∑ xi xj σij = 
i=1 j=1 

n n 

∑∑  xi xj ρij σi σj 
i=1 j=1 

n 

power generation asset or technology (Table 2). These analyses propose the 
estimation  of the free cash  flows for each  power  generation  asset  as 
receipts   (from   the  sale  of  the  electricity   produced)   minus   payments 

= ∑ x 2 σ 2 + 
i=1 

∑ ∑ xi xj ρij σi σj 
i=1 j=1 

i≠j    

 
 

(3) 

(costs). In particular,  NPV is obtained by discounting  free cash  flows at  a 
discount rate, usually the weighted average cost of capital (WACC)4. 

Roques et al. [26] propose an approach based on the risks 
Where xi represents the share as a percentage of the technology i in the 
portfolio, σi the risk of technology i calculated as explained above and ρij 
is the linear correlation coefficient between the costs of the technologies 
i and j. A normal distribution of the calculated percent changes is 
assumed [11]. 

 
2 They propose the dynamic selection of portfolios with the aim of reducing the impact of 

energy price volatility on the generation portfolio and reducing the impact of sudden 

changes in energy prices. 
3 The Holding Period Return [11] does not express return, as it is not based on the 

associated with plant performance. Investments in new base-load plants 
are evaluated from the perspective of private investors and their 
incentives. The goal is to obtain maximization of the financial returns of 
the investors, given determined risk levels (in relation to the variability in 
the price of electricity, certain fuels and CO2 emissions). The authors 
propose the function of average utility-variance as a standard  model  of  
balance  between  risk  and  return.  Its expression 
would be defined by: U = E (rp)– 1 λσ 2 , where U is the generation utility 
of the portfolio being considered; E (rp), the expected return in terms of 

variation in asset prices, but rather on their costs. It therefore offers information about    

the percent changes in the cost, but not the return. For this reason, Jansen et al. [19] 

propose that the measure of risk should contain a monetary value dimension, in which the 

production costs are expressed (instead of their inverse, as an expression of profitability), 

and should consider cost-risk instead of return-risk frontiers. 

4 Roques et al. [26] use a discount rate of 10%, as they consider that it is the most 

representative of the investment conditions on the free markets; they also present a 

sensitivity analysis using the discount rate of 5%. Muñoz et al. [45] propose a lower discount 

rate of 4%, however. 



 

 

 
 
 

Table 1 
Studies based on profitability as the inverse of generation cost. 

 

Author Objective function Constraints Horizon Territory Data origin-source Analyzed technologies 

Awerbuch and Return maximization Technologies limit 2000 and 2010 European Union IEA Coal, Nuclear Energy, Natural Gas, Oil 

Berger [11]  shares  (EU-15)  and Wind Energy 

Kienzle et al. [31] Return maximization Inexistent 2007 BKW Company IEA; BKW Company Data Nuclear Energy, Hydro, Pump Hydro, 
    (Switzerland)  Natural Gas and Coal 

Rodoulis [13] Return Maximization Technologies Limit 2010 Cyprus IEA; Awerbuch and Berger [11]; Awerbuch and Yang [30] Oil, Coal, Natural Gas and Wind 
  Shares     

Arnesano et al. [39] Return Maximization Technology Limit 2009, 2020 and Italy Centro Elettrotecnico Sperimentale Italiano; European Natural Gas, Coal, Hydro, Wind, Solar 
 (inverse of the cost) Shares 2030  Commission; Awerbuch and Yang [30] PV, Biomass and Nuclear Energy 

Cuixia et al. [16] Return Maximization N/A 2020 and 2030 China British Petroleum; China National Petroleum Corporation; Zhu Oil, Natural Gas, Coal, Wind energy, 
 (inverse of the cost)    and Fan [25]; Natural Development and Reform Commission Biomass, Solar power 
     for China  

 
 
 
 
 
 
 
 

Table 2 

Studies that propose the definition of earnings based on the NPV and IRR values of the technologies. 
 

Author Objective function Horizon Territory Data origin-source Analyzed technologies 

Roques et al. [26] Utility maximization/ N/A Liberalized Markets (United IEA Base Load Plants: Nuclear Energy, Coal and Natural Gas. 
 Performance maximization  Kingdom)   

Muñoz et al. [45] Sharpe Index Maximization 2005 and Spain Spain-Portuguese Energy Market Operator RES: Wind, Solar PV, Small Hydro and Thermoelectric 
  2010  (OMEL)  

Westner and Return Maximization (NPV) 2010 and Germany, Italy, United Kingdom and European Energy Exchange (EEX) and Combined-cycle gas turbines and engine Combined Heat and Power 

Madlener [46]  2020 France Energy exchange of the respective countries. technologies 

Lynch et al. [44] Return Maximization (NPV) N/A Single Electricity Market (SEM) EIA; IEA; Roques et al., 2008; NREL; SEMI Coal (Sub-Super and Advanced Super Critical Coal), Combined Cycle Gas 
   -Republic of Ireland and Northern  Turbine, Advanced Combined Cycle Gas Turbine, Aero-derivate Gas Turbine 
   Ireland  and Open Cycle Gas Turbine. 

Cuchiella et al. [47] Sharpe Ratio Maximization N/A Italy Awerbuch and Yang, 2007 [30]; GSE RES (Biomass, Hydro, PV and Wind) 
 (NPV)   (Energy Services Operator) and other own  

    authors sources.  
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Table 3 
Studies considering the profitability based on prices and costs of electricity generation. 

 

Author Objective function Constraints Horizon Territory Data origin-source Analyzed technologies 

Gökgöz and 

Atmaca [36] 

Gökgöz and 

Utility maximization 

 
Utility maximization 

Investment capacity in spot 

market 

N/A 

2006 and 

2011 

2009 and 

Turkey 

 
Turkey 

Turkish Electricity 

Market 

Turkish Electricity 

Hydro, Coal and Natural Gas 

 
Hydro and thermal power plants (lignite fired 

Atmaca [50]   2012  Market thermal, natural gas combined cycle) 

 

the NPV of the portfolio p containing assets i; λ the risk aversion 
coefficient; and σ 2 is the variance of the portfolio return. 

The process starts with an estimate made through a Monte Carlo 
simulation of the mean and variance of the NPV for each technology in a 
cash flow discount model. The NPV distributions are obtained for the 
plants based on their free cash flows and their correlations, which are the 
calculation basis for portfolio optimization. The efficient frontier 
corresponds to the NPV-risk pair. These authors propose the study of 
three scenarios: the absence/existence of a correlation between the fuel, 
CO2 emissions and electricity prices, and where fixed prices are linked to 
long-term contracts. They conclude that the model is very sensitive to the 
degree of risk aversion considered, due to the strong correlation among 
the prices on the free markets. One of the limitations of this study 
indicated by Lynch et al. [44] is that the proposed model cannot be used 
to evaluate mid-merit and peaking technologies or for systems that 
include the penetration of renewable energy generation. 

Muñoz et al. [45] propose a portfolio model based on maximizing 
the IRR value of a portfolio consisting solely of RES technologies (Table 
2). The expected IRR is calculated as the sum of the average IRR for each 
technology, weighted by the share of each technology in the portfolio. 
The cash flows from which the IRR is obtained would consist of receipts 
(annual production, average market price, reactive energy supplement, 
regulated price, deviation in production and premiums) and payments (O 
& M, service costs, fuel, etc.). The risk would be defined by the standard 
deviation of the IRR, depending on the variability of each of the 
aforementioned elements (receipts and payments). The authors use the 
simulation to generate the data on    the mean and standard deviation of 
the variables, thus calculating the stochastic distribution of the IRR. 
Janczura [48] presents a study on the composition of the U.S. Portfolio, 
based on a proposal similar to that of Muñoz et al. [45], considering the 
minimization of the portfolio risk and the maximization of the Sharpe 
Ratio for technologies in the 
U.S. portfolio (Oil, coal, natural gas, nuclear energy and RES). The cost 
structure includes external costs derived from carbon intensity. 

They establish the Sharpe index as the measurement of return in 
relation to risk. With this, they jointly achieve the minimization of risk and 
the maximization of return for a portfolio consisting of RES in Spain. The 
model has the following objective function (Eq. (4)): 

expected NPV for the assets considered, weighted according to their 
portfolio share, and the risk defined by the standard deviation of the 
portfolio NPV. 

Different cogeneration (CHP) technologies are compared to create 
better, more robust portfolios for 2010 and 2020. Westner and 
Madlener [46] seek portfolios capable of generating steady incomes, 
independently of the behavior of external elements, such as electricity 
prices, regulatory changes, technical changes, etc. The correlation 
coefficients are calculated based on the econometric model of regres- 
sion analysis, which includes the prices for electricity, natural gas and 
CO2 emission permits from the different member states. 

 
3.1.3. Return based on prices and costs of power generation 

Gökgöz and Atmaca [36] present a model of mean-variance 
optimization that incorporates restrictions related to the non-conges- 
tion of the electric system (Table 3). The objective focuses on the efficient 
assignment of electricity generation assets (plants), taking into account 
both generation costs and spot5 and contract prices. These are used to 
calculate the return value, which is determined by the following 
expression, previously used by Liu and Wu [49]: 

Rate of return = 
(spot pricet − generation costt) 

generation costt (5) 

The risk would affect both the costs and the prices per hour6 on the 
spot market. The electricity sales prices through bilateral contracts are 
assumed to be risk-free, as they have fixed or non-variable values for 
specific periods of time and are guaranteed by the regulating body. 

The authors propose the existence of a single hourly behavior pattern 
for the demand on standard working days and for daily spot schedule 
prices, with a normal distribution of the mean. Based on this pattern, they 
define a total of 24 assets with a risk, one for each hourly spot price. The 
vectors obtained (an,m) include 1710 prices (days from 57 months) for 
each of the 24 h  in relation to marginal prices from   the system and 
“day-ahead” prices. 

The authors obtain data on the average return rate and its standard 
deviation. They propose three models in which the objective function is 
the maximization of the utility7 (similar to Roques et al. [26]). The first 
considers the existence of the aforementioned 24 assets (hourly sales 

 
 

Max [(IRRP – rf )/σP] (4) alternatives) associated with risk, while the second includes restrictions 
related to the real sale of electricity,8 and the third would incorporate 

where IRRP is the internal rate of return expected from the portfolio p 
(average profitability), rf the rate offered by a risk-free asset and where σP 
expresses the portfolio risk in terms of standard deviation of the IRR. 

Westner and Madlener [46] find support in the study by Roques    et 
al. [26] to defend the applicability of their approach. The assets subject 
to analysis are different Combined Heat and Power technolo- gies 
(hereinafter, CHP). The proposed NPV calculation includes the flow of 
investments throughout the construction phase and the annual free cash 
flows during the plant operation phase. They provide the NPV 
distribution through a Monte Carlo simulation and define electricity, fuel 
and CO2 prices as random variables. In order to calculate the flows, the   
financial   model   incorporates   the   price   of   the   products,  the 
operating and technical costs and the costs of CO   emissions according 

the possibility of contracting the risk-free asset. 
In a recent study, Gökgöz and Atmaca [50] demonstrate the 

applicability of the portfolio optimization techniques based on the mean-
variance and the lower partial moments on the Turkish Electricity Market. 
They also observe the impact of the degree of risk aversion by the 
investors on the composition of efficient portfolios. They conclude that 
the mean-variance methodology presents less 

 
5 In Turkey, spot prices are used as the sole market prices. The authors rely on historical 

data regarding the Turkish marginal market system schedules, as well as the “day-ahead 
hourly” data between 2006 and 2011. 

6 The generating agents have 24 sales alternatives (one per hour), and they can opt to 

either sell their production at different hours or sell it through bilateral contracts that avoid 
risk. 1 

 
 2 7 U = E (rp)− λσ 2, with λ as the risk aversion coefficient, which has a value of 3. to the permits obtained by the plants for the years 2012 and 2013, 8 2 p

 

among others. The return measurement is defined by the sum of the 
It adopts the form of maximum investment constraint on the same asset (hourly price). 

 



 

 

 
 
 
 

Table 4 

Studies with a cost-risk approach. 
 

Author Objective function Constraints Horizon Territory Data origin-source Analyzed technologies 

Delaquil et al. [55] Risk Minimization Technology Limit shares 2015 Common-wealth EIA, Electric Power Research Institute, Coal, Oil, Natural Gas, Nuclear, Hydro, Wood Residue, 
    of Virginia Department of Energy; Awerbuch and MSW, Landfill Gas, Other Biomass, Wind, Solar PV 
     Berger, 2003 [11].  

Doherty et al. [52,53] Least-Cost Optimization Net-Load Duration, Plant 2020 Ireland Commission for Energy Regulation; Coal, Natural Gas, Wind Energy, Biomass and Biogas. 
  utilization and generation adequacy   European Commission; ESB National Grid  

  criteria     

Jansen et al. [19] Risk and Cost Technology Limit Shares 2030 The Netherlands Energy Research Center of The Netherlands; Coal, Nuclear Energy, Natural Gas, Biomass, Wind 
 minimization    Awerbuch and Berger [11] Energy and other RES 

White et al. [54] Risk and Cost Technology Limit Shares 2020 California (U.S.) EIA (U.S.); California Energy Commission Coal, Hydro, Natural Gas, Nuclear Energy, Wind 
 minimization     Energy, Biomass, Solar Thermic and PV, Biogas and 
      Geothermal 

Awerbuch and Yang [30] Risk and Cost Technology Limit Shares 2020 EU-27 European Commission; EIA (U.S.); Coal, Natural Gas, Nuclear Energy, Hydro, On-shore 
 minimization    California Energy Commission; TECHPOLE and Off-shore Wind Energy, Biomass, Solar PV and 
      Geothermal 

Awerbuch et al. [12] Cost Minimization Technologies Limit Shares 2010 Scotland Airtricity Nuclear Energy, Coal, Natural Gas, Hydro, On-shore 
      and Off-shore Wind 

Krey and Zweifel [20] Cost Minimization Risk Level 2003 U.S. and EIA (U.S.) Coal, Nuclear Energy, Natural Gas, Oil and Wind 
    Switzerland  Energy (U.S.) 
      Nuclear Energy, Hydro (run of river), Pump Hydro and 
      Solar PV (Switzerland) 

Huang and Wu [56] Cost minimization Installed capacity related to 2006 and Taiwan Taiwan Power Company Coal, Nuclear Energy, Natural Gas, Oil, Wind Energy, 
 balanced by risk demand side 2025   Hydro, Solar PV, Biomass and Geothermal 

Zhu and Fan [25] Risk Minimization Technology Limit Shares 2005 and China EIA (U.S.) Coal, Hydro, Natural Gas, Nuclear Energy and Wind 
   2020   Energy 

Marrero and Ramos [23] Cost Minimization Technical 2006 Canary Islands Spain Government, IEA, OECD Oil, Diesel, Natural Gas, Solar PV and Wind 
    (Spain)   

Allan et al. [14] Risk and Cost Technology Limit Shares 2020 Scotland Awerbuch and Yang [30]; Digest of United Coal, Natural Gas (with/without CCS), Nuclear Energy, 
 minimization    Kingdom Energy Statistics, Eurotom On-shore and Off-shore Wind, Hydro, Marine (Wave 
      and Tidal) and Biomass 

Delarue et al. [33] Risk and Cost Load Factors (Power) N/A N/A IEA; Danish Operator; Belgian TSO; Nuclear Energy, Coal, Natural Gas, Oil and Wind 
 minimization Technology Production Ramp Rates   Awerbuch and Berger [11]; White et al. [54]  

De Jonghe et al. [40] Cost Minimization Load Factors and Wind Power N/A N/A TSO Energinet Base Load, Mid Load, Peak Load, High Peak Load 
  reduction. Technology Production     

  Ramp Rates     

Bhattacharya and Kojima Risk Minimization (with Technology Limit Shares and 2020– Japan Awerbuch and Yang [30] and Simulation Oil, Coal, Natural Gas, Nuclear Energy, Wind Energy, 

[37] cost and return Carbon Price 2030  techniques Large Hydro, Small Hydro, Solar PV, Biomass and 
 perspective)     Waste 

Guerrero-Lemus et al. [57] Volatility minimization for Feasibility constraints according to 2011; 
2050 

Road transport IEA, EIA (U.S.), OECD, United Kingdom, Gaso-diesel, Sugar cane ethanol, Rapeseed biodiesel, 

 a given level of the average short and long-term scenarios  sector Government Department, Joint Research Cellulosic ethanol, Blt biodiesel and Electricity 
 cost (bound restrictions-share limits)  EU-27 Center  

Peerapat Vithayasrichareon Cost minimization Installed capacity related to 2030 Thailand IEA, Electricity Generating Authority of Coal, Nuclear Energy and Natural Gas. Hydro, small 

and MacGill [58]  demand side   Thailand, Thailand's Energy Policy and power producers –RES- and foreign power purchases 
     Planning Office, Massachusetts Institute of are considered fixed. 
     Technology  

DeLlano et al. [42] Risk Minimization Technology Limit Shares and 2030 EU-27 Awerbuch and Yang [30]; Jansen et al. [19]; Nuclear Energy, Natural gas, Natural Gas with Carbon 
  Pollutant Emissions Limit (CO2, 

SO2, NOX, Particulates Matter). 

  Awerbuch et al. [12]; IEA; IPCC. Capture and Storage (CCS), Coal, Coal with CCS, Oil, 

On-shore wind, Off-shore wind, Large Hydro, Small 
      Hydro, Biomass, Solar PV 

Marrero et al. [59] Risk Minimization Technology Limit Shares N/A N/A IEA, Guerrero-Lemus et al. [57], Lazard, Technologies: Base Load (Coal, Combined Cycle Gas, 
     World Bank Commodity Price Data and IMF Nuclear, Gas peak); RES (on-shore wind, Solar PV, 
     Commodities Unit Research Department. Solar-Thermal). Road transport fuels: (Gasoline-diesel, 
      Sugar cane ethanol, rapeseed biodiesel). 
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Fig. 1. Efficient portfolio frontiers. 

 
aggressive optimal solutions (lower profitability and less risk) than those 
of the lower partial moments (down-side and semi-variance) methods. 
Furthermore, they also find that, even with a low level of risk aversion, 
these solutions are divergent, with greater aversion levels that tend to 
converge. 

 
3.1.4. Cost-risk models 

Where WRis the weighted risk of the generation cost (Cg), PV is the 
Present Value and λ is the parameter that expresses the risk aversion. If 

this has a value of 0, the risk associated with the generation costs would 
not be incorporated in the analysis. The greater the value, the greater 
the risk aversion is for the investor (according to the proposal by Van 

Zon and Fuss [60]). The intent is to obtain the total cost value by 
considering the costs along with the risk weighted by an aversion factor. 

The authors used a load curve to establish different packages of 
demand, studying the impact of different levels of risk on the portfolio. 

Delarue et al. [33] based their proposal on one by Jansen et al. [19] and 
present a quadratic programming optimization model with built-in 

restrictions. They consider two objective functions: minimum cost and 
minimum risk. They seek to determine the optimal technology portfolio 
(installed power) for a specified production and cost. The impact of 
including wind technology10 in the portfolio is contemplated, along with 
restrictions on imbalances in terms of non-RES technology plants for an 

hourly load profile of one year (8760 h). The objective function 
would be (Eq. (7)): 

Cost Minimization = ∑ Fi capi + ∑ gij vi 

The authors of numerous works have opted to define models based 
i i,j  (7) 

on the costs of the technologies and the risks associated with them 
(Table 4). This is why the efficient portfolio frontier they generate is cost-
risk [12–14,25,30,37,51–54]. Fig. 1 below shows the two different 
types of efficient portfolio frontiers, depending on whether a return- risk 
or cost-risk approach is followed. 

In the cost-risk approach, the expected cost value of the portfolio is 
obtained as the sum of the total cost per technology, weighted by the 
share of each technology in the portfolio. The risk value of the portfolio 
is a function of the risk for each technology, the share of each technology 
and the correlation factors among the different types of cost (investment, 
O & M, fuel, etc.) associated with the different technologies. 

Doherty et al. [52,53] propose a minimum cost algorithm that 
optimizes both the installed capacity for each technology in the portfolio 
and the mode of plant use, according to the load needs in Ireland. The 
main technology analyzed is wind energy. A previous study [51] also 
analyzes the diversification of the portfolio through MPT and the 
Shannon-Wiener index. By not requiring any forecast of the future in 
terms of probability, the latter index enriches the robustness of the 
model, in the opinion of the authors. 

Krey and Zweifel [20] and Kienzle et al. [31], drawing from a 
proposal focused on MPT similar to that of Awerbuch and Berger [11], 
propose different approaches. Accordingly, Krey and Zweifel [20] 
establish the alternative objectives of minimizing the expected rate of 
cost increase per unit of electricity generated, expressed as c$/kW h,9 
and minimizing risk. They apply Seemingly Unrelated Regression 
estimation to the systematic components of the covariance matrix for the 
returns of the technologies in the United States and Switzerland. The 
estimation errors of the variances-covariances are studied through the 
degree of correlation among the regression errors for the expected 
return. In other words, those correlations between unexpected changes 
(e.g. those related to the weather) were examined for the returns of the 
technologies in order to improve the estimates. In turn, Kienzle et al. 
[31] seek to maximize the expected return, calculated as the least 
increase in cost per unit of electricity generated. 

Huang and Wu [56] propose the aim of minimizing the current value 
of the total generation costs, plus their risk, weighted by the aversion 
factor. This measurement maximizes the utility, in this case, applied to 
costs (Eq. (6)): 

 
9 Return = − 

(Yt − Yt−1) 
. This is a negative index of change in production costs. An increase 

in them would represent a negative return. The objective is to minimize said increase. 

where capi expresses the optimal installed capacity of the technology i, gij  
expresses  the electricity  generation  of technology i  during  the period j, 
and thus ∑i,j  gij  =  dj, where dj  represents the electricity demand during the 
period j. Fi represents the fixed cost of technology i and  i  is the  variable cost 
of technology i. Technical restrictions are also included in the form of limits 
(coefficients) for each technology. 

De Jonghe et al. [40] apply two methodologies for portfolio 
optimization: projection of the load duration curve and linear pro- 
gramming. The objective is to attain the maximum return for the different 
types of load plants by minimizing costs and the maintenance of the 
optimal number of generation units. By using the curve projection 
methodology, they are able to determine the optimal mix   of 
technologies over the long-term. As part of this methodology, they 
calculate the optimal number of operating hours in terms of costs, and 
combine these with the shape of the load duration curve. This provides 
the shares of the different technologies in the portfolio. These authors 
also propose using linear programming methodology to obtain a second 
result for the technology shares in the portfolio.  They  start with the 
assumption of a heavy future weight for wind technology in the portfolio 
to justify the need for incorporating restrictions in the model related to 
system flexibility, which include restrictions on regular maintenance 
operations, generation fluctuations and balance requirements. In its basic 
definition, this model is similar to that proposed by Delarue et al. [33] 
and Jansen et al. [19]. With this focus, they are able to incorporate both 
the variability on the net demand side11 and operational restrictions on 
the offer side, within the scope of long-term planning. 

 
3.2. Approaches based on electricity production criteria 

 
The literature includes an alternative proposal that differs from the 

others by focusing on the maximization of the electricity generated, 
subject to a specified level of variability. The model goes from being 
focused on a value measured in monetary units to using physical units of 
production. The analyzed portfolio still consists of production 

 
10 The unmanageable nature of wind energy would cause it to be considered a negative 

load factor, and one to be subtracted from the total demand. Once subtracted, we would 

have the net demand, which must be covered by non-renewable energy plants. 
11 Net demand: total demand minus wind generation. They follow the proposal by 

Delarue et al. [33] and consider wind production as a negative demand, due to the fact  that 

it has zero marginal costs of generation. Wind energy has a negative load. Variability passes 

from the offer side to the demand side. 



 

 

 
Table 5 

Approaches based on electricity production criteria. 

Author Objective function Constraints Horizon     Territory Data origin-source Analyzed 

technologies 

 
Roques et al. 

[32] 

 
Return of production 

Maximization 

 
National wind resources: 

potential and transmission 

 
2020 Austria, Denmark, 

France, Germany and 

Spain 

 
OeMAG; REE; ERDF; TSO Energinet; TSO 

ENBW; TSO RWE; TSO EON; 

TSO Vattenfall 

 
Wind Energy 

Rombauts et al. 

[34] 

Return Maximization and 

Risk Minimization 

Cross-border transmission- 

capacity 
N/A N/A KNMI (Danish Operator) 

 
 

 

technologies, and the studies usually incorporate restrictions related to 
the amount of production generated and the production that can be 
assimilated by the system. One of the earliest works in this line is that by 
Dunlop [61], who studies the possible diversification of a wind farm 
portfolio for the European Union and the United States. There are two 
recent studies that stand out in this category: one by Roques et al. [32] 
and another by Rombauts et al. [34], both linked to wind energy 
production (Table 5). 

The model proposed by Roques et al. [32] seeks to identify the 
portfolio consisting of those European plants (inter-State12) that minimize 
the variability of the wind production output for a specific production 
level. They propose an alternative definition for return, referring to it as 
the mean capacity factor for the different locations. Risk is defined as the 
hourly variability of production [34]. 

The proposal lies in optimizing the balance between maximizing wind 
energy production (the capacity factor) and minimizing the variability of 
production associated with this type of technology through geographical 
diversification. The authors suggest two objective functions: one 
minimizing the variability of electricity production or a certain level of 
production, and another maximizing the contribution made by wind 
energy to system reliability (per unit of installed capacity), only 
minimizing variability during peak hours of demand. 

Both propositions incorporate the correlations between countries in 
relation to wind energy production, which makes it possible to diversify 
the portfolio by combining wind energy production locations with a weak 
positive and/or negative correlation.13 For each of the two models, two 
alternatives are established: one without restrictions and another with 
restrictions on capacity per country (the member state's technical wind 
energy potential) and grid interconnection limitations. They propose an 
improvement based on the work of Drake and Hubacek [62], 
contemplating the variability of hourly wind production instead of 
obtaining this from data time series directly. 

The authors draw from the important problem of intermittency costs 
to propose a focus centered on geographical diversification as a tool to 
find the portfolio that maximizes electricity production through the 
inclusion of wind energy and minimizes the variability of the production, 
thus attaining the least intermittency of production. 

Rombauts et al. [34] attempt to explicitly measure14 the effect of the 
restrictions derived from the Cross-border transmission (capacity 
constraints), exclusively available for wind energy flows. The objective 
focuses on the definition of efficient wind energy locations that reduce 
variability to minimal levels. They propose three models of inter-state 
wind energy transmission capacity: unlimited, zero and limited. Each 
model is applied to three sample member states. They base their model 
on the proposal made by Roques et al. [32], according to which the 

 
12 The entire set of generation plants in the Member States constitute a single wind 

park. 
13 They point out the decisive role played by the inter-state wind energy production 

correlations previously identified by Drake and Hubacek [62]. Accordingly, a lower or 

negative degree of correlation among states would lead to a reduction in the variability of 

the portfolio, as the result of the production balance provided by the different geographical 

regions. The counterpart would be the increase in system maintenance- reliability costs. 
14 It differs from the proposal made by Roques et al. [32] in that the limitation is 

included in the form of a restriction. 

expression of production is determined by the mean capacity factor for 
each of the countries and the risk is the function of the variability in 
hourly production. They expand the capacity of the model by Roques  et 
al. [32] based on the inclusion of cross-border transmission capacity 
constraints in order to better assess the management of electricity 
derived from wind energy. The portfolio risk is calculated according to 
the different shares of the countries, along with their respective standard 
deviations and the correlation coefficients of their produc- tions. An 
attempt is made to find the combination of shares from the countries that 
minimize the risk of the hourly differences in output. 

 
4. Discussion 

 
The intent of this section is to examine in greater depth the 

contributions made by the literature reviewed, through the analysis    of 
the following aspects of interest: the main limitations to the application 
of MPT methodology to the energy planning problem; the concept of risk 
and its definition as an essential part of all MPT planning; the most 
salient methodological contributions and the most relevant conclusions 
from the studies in relation to the importance and the positive impacts of 
including RES technologies in the portfolio, such as the reduction of risk; 
and the system requirements in order to incorporate them. 

 
4.1. Limitations to the application of MPT methodology to energy 
planning 

 
The limitations of this type of methodology, as applied to energy 

planning, lie in the different nature of the assets: real assets (power 
plants), as opposed to financial assets. The definition of the energy asset 
selection problem as seen through Markowitz's [10] original approach 
requires certain conceptual adaptations to be made. The portfolio model 
requires less-than-strict compliance with the portfolio theory hypotheses 
regarding market efficiency [9,11,14,16,19,29,30,38,63–65]. It is thus 
assumed that there are discontinuities in the power generation markets, 
problems with the liquidity of generation assets and the length of time 
required to recover the investment. There are also difficulties related to 
the different degrees of replacement in terms of the fuels and technol- 
ogies, the divisibility of the investments in the field of energy, the 
inefficient operation of the electricity markets, the indivisibility of the 
assets, the non-existence of taxes and commissions for transactions and 
the failure to incorporate the costs related to changing over from an 
inefficient portfolio to an efficient one. In spite of the existence of the 
aforementioned limitations, a proper definition of the problem, the 
restrictions or objective functions considered by the model, and the 
processing of data from quality, internationally relevant sources, govern- 
mental bodies and system operators could partially overcome the 
aforementioned limitations. 

Hickey et al. [9], Kruyt et al. [63] and Kumar et al. [38] refer to the 
critique of the portfolio approach by Stirling [64,66]. According to 
Stirling [64–66] in an environment predominated by a lack of knowl- 
edge that affects the diversification and security of supply, using only 
historical data to support the portfolio model might lead to erroneous 
results. Portfolio theory, a probabilistic technique, is based on the 
capacity of the numeric model to explain future events. However, 



 

 

Stirling defines the energy problem based on two elements: the lack of 
knowledge (regarding possible benefits) and uncertainty. Both ele- ments 
are indications of a situation in which it is impossible to assign 
probabilities or to establish future collections. This is the reason why 
portfolio theory is only accepted by Stirling in the context of risk 
mitigation in which the probabilities and returns are defined and known 
and all the information available would be used to identify the optimum 
portfolio. Based on Stirling's indications, Hickey et al. [9] propose 
evaluating the reliability, security and flexibility of the electricity offer 
portfolio based on three possible methodologies: portfolio theory, real 
options theory and diversity measurements (Shannon-Wiener and 
Herfindahl-Hirschman indexes). The authors defend the application of 
portfolio theory for its capacity to mitigate the risk of the portfolio, which 
leads to greater reliability, minimizing the possibility of supply 
disruptions. The real options methodology, in turn, is contemplated as a 
financial tool that complements the evaluation of the energy asset 
investment problem, based on dis- counted cash-flows. It could provide 
flexibility in the case of invest- ments in capital-intensive infrastructures. 
Roques et al. [26], however, see less potential for this methodology, 
ensuring that the flexibility that it provides is less (in terms of an asset) 
than that which comes from applying portfolio theory (a set of assets) 
and an optimum portfolio approach. Kumar et al. [38] later define a 
proposal focused on the total risk of power generation, assuming the 
limitation that the probabilistic model does not take into account 
possible negative events that cause interruptions in the system. In spite 
of these conditioning factors indicated for MPT, which uses past events 
to explain the future when defining the expected return-risk pair, it 
stands out as a relevant methodology in the literature. 

It has also been observed that Portfolio Theory has a certain 
limitation when it comes to assessing the impact of the inclusion of 
renewable technologies in the portfolio. Even though RES are char- 
acterized within the portfolio approach according to their economic cost-
risk, there are other relevant attributes that must also be included. 
Among them are the environmental contribution, job stimulation and the 
economic development of rural areas and improved energy 
independence of the region [2,4,42,43,55,67]. The difficulty in model- 
ing cash-flows for the environmental and energy security dimensions 
makes it difficult to include them in the models [2,42,68]. 

One of the options to overcome this limitation could be the inclusion of 
externalities in the technology cost structure. This would permit reducing part 
of the cost distance between polluting technologies and renewable energies 
[3,21,39,42]. Numerous articles have included both carbon dioxide emissions 
costs [16,19,25,26,35,37–39,42,44,46,48,52,53,57,58,69–71] 
and externalities [20,21,28,39,42]. In particular, Arnesano et al. [39] 
distinguish between direct emissions  costs  linked  to  power  generation and 
indirect costs incurred during the construction process and the elaboration of 
the materials used for the  installation.  In  addition,  there are studies that 
propose considering the CO2 emission limits for the portfolio [35,38] and 
those of this and other pollutant gases and particles (SO2, NOx, PM) [42]. 
Lucheroni et al. [71] define a portfolio CO2 emission rate in order to compare 
the emission levels of the portfolios. It has thus been confirmed that by 
introducing cost or quantity variables related to CO2 emissions and 
externalities, renewable technologies become more attractive through the 
approximation of costs to those of non-renewable sources and the non-
polluting nature when meeting emissions reduction objectives. 

When calculating the risk of a technology or portfolio, it is necessary 
to estimate the standard deviation, variance and covariance values. This 
can be done based on historical data from statistical series related to 
asset performance, assuming future representativeness based on past 
events. This way, the means, variances and covariances for the population 
will be estimated based on available sample values. However, the 
application of portfolio theory to real power generation assets 
encounters certain limitations in terms of the availability of series of 
historical data on the types of costs for each technology [11,21]. To 
remedy this, some authors opt to set proxy variables [11], 

while others [14,21,33,39] choose to assume the data proposed by 
Awerbuch and Yang [30] related to correlations between O & M cost 
types. Yet another group of authors turn to simulation to infer the 
subjective probability distributions of the asset costs [71], returns 
[26,44] and power production [33,34,40], as well as the set of variables 
considered in the model [37]. 

 
4.2. Risk management in energy portfolios 

 
The agents who participate in the electricity market are subject to 

uncertain factors that determine their situation (costs, demand func- tion, 
prices, system operation, regulatory measures, etc.). From the perspective 
of investors (electrical companies), the risks affect different elements in 
the form of uncertainty and variability, including financial and regulatory 
aspects, those related to climate change, the social acceptance of certain 
technologies, conditioning factors related to energy security and 
transaction costs [35]. Allan et al.  [14] point  to the existence of other 
types of risk, such as those related to uncertainty in relation to demand 
management when incorporating electricity generated in a non-
manageable, intermittent manner through renew- able sources, the high 
costs of incorporating renewable energy into the system and the risk 
derived from regulatory or policy changes. Along these lines, Hernández-
Escobedo et al. [72] indicate the presence of risk in relation to the 
difficulty to make short and long-term predictions with regard to RES. 
Other authors like Huang and Wu [56] opt for a more reduced 
classification of the risk, consisting of only three elements: fuel price 
volatility, the uncertainty of technological change and capital cost cuts. 
Cuixia et al. [16] opt to present a double definition of risk for technology 
portfolios: in the traditional sense, derived from cost and price 
fluctuations and that corresponding to new technologies defined based 
on the fluctuation in the volatility of the feed-in tariffs for RES 
technologies. Van Zon and Fuss [60] indicate that the elements 
determining the risk (cost volatility) of the portfolio in the electricity 
sector are the price of the energy resources and the uncertainty 
regarding technological evolution. Escribano et al. [4] propose an 
interesting diagram divided into three overarching concepts to define 
energy risk: primary risks (geopolitical and technological), secondary risks 
(price variability, supply disruptions, environmental risk and the risk to 
society) and vulnerabilities that affect the energy intensity, the energy 
mix, suppliers, users, etc. These proposals go beyond that initially made 
by Awerbuch and Berger [11], which was based solely on the variability 
of the technology costs (investment, fuel and O & M). 

Risk management consists of reaching the desired equilibrium 
between return and risk through a negotiation strategy Liu and Wu [73]. 
In light of these risks, agents may opt for one of two types of actions 
when it comes to risk management: risk control and risk assessment [73]. 
Risk control is achieved by taking coverage actions that permit 
compensating for or hedging the risk in the event of a possible loss (with 
forward or future contracts) or through an optimization of the portfolio 
that achieves better diversification [21,30,35,36,42,47,73,74]. The 
optimization problem, in turn, can be solved using the Decision Analysis 
or Modern Portfolio Theory technique. Alternatively, risk assessment can 
be carried out through Asset Valuation (financial option model and real 
options model) and Risk measurement measures, such as Value at Risk 
(VaR), which measures the expected value of the loss for the portfolio, 
taking into account a certain level of confidence for a set time horizon. 

As indicated, the MPT methodology allows the risk of the portfolio of 
power generation assets to be controlled based on the maximization of 
return or the minimization of risk or cost. Authors such as White     et al. 
[54] and McLoughlin and Bazilian [75] choose to include MPT 
methodology in the long-term energy planning of the resources in order 
to control the overall risk of the portfolio. 

Portfolio analysis is based on the individual study of each financial 
asset and ends with the selection of the portfolio that best matches the 
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profile of the investor (characterized by differing levels of risk aversion) 
from among all the portfolios proposed by the model. The study of the 
assets is based on the analysis of the past behavior of each asset in the 
market and on the estimated future behavior performed by analysts and 
experts. This analysis is characterized by the uncertainty regarding the 
future behavior in the market of each asset, as well as the correlation 
between assets. Both aspects make up the portfolio risk, which can be 
reduced, thus achieving greater diversification. 

The initial approach of portfolio theory analyzes the financial assets, 
characterized by the ease of exchange, through the prism of profit- 
ability and risk. In the latter case, the correlations between the 
profitability of the assets are especially relevant. In the area of financial 
investment, portfolio theory considers the historical behavior of the 
variables to be a useful indicator of future volatility. Therefore, in its 
application  to  the  field  of  energy,  risk  would  be  determined  by the 
variability in the expected values for the parameters considered to define 
each technology and is expressed through the variance σ 2 or standard 
deviation σp of the returns or past periodic costs of the technologies 
[11,19,75].  The inclusion  of the relationships  among   the 
different parameters of alternatives through the covariance matrix results 
in an improvement in the model estimate, which increases the robustness 
of the solutions as compared to the arbitrary combination of alternative 
technologies [7]. This is demonstrated in the variance formula for the 
portfolio return shown below: 

management of systematic risk. Although they present a mean-variance 
model of optimization, they also base it on CAPM, a model according to 
which the market only compensates for the systematic risk assumed by 
the investor, as measured by the portfolio beta, βp 15. The authors 
determine the systematic risk, taking into account time varying betas. 
This allows them to analyze the trade-offs in risk management from an 
energy policy perspective. 

Alternatively, Gökgöz and Atmaca [50] indicate the suitability of 
opting for methods with lower partial moments to measure risk, which 
contemplate only negative deviations from the objective (variance also 
takes into account positive deviations). They observe that the mean- 
variance methodology presents less aggressive optimal solutions (lower 
profitability and less risk) than those using lower partial moments (down-
side and semi-variance) methods. 

As previously mentioned, diversification of the technology portfolio 
will make it possible to minimize its non-systemic risk as a means to 
prevent or minimize the negative consequences derived from it 
[11,14,19,21,30,38,58]. This comes from the idea that a diversified 
portfolio would lead to more robust solutions and a greater level of 
supply security, and with this, to a lower risk of supply disruption 
[22,37,38,42]. Bhattacharya and Kojima [37] stress the positive effect of 
diversification over the short term in the form of a lower risk of supply 
disruption, and in the long term, as a facilitator of greater 
macroeconomic stability, if the region is highly dependent on fossil 

n      n fuels (as in the case of Japan). 
σ 2 = ∑∑ Xi Xj σij 

i=1  j=1 (8) 

Where σij represents the covariance of the returns of the assets i and j, 
and ρij (Eq. (8)) is the linear correlation coefficient for the returns of the 
assets i and j. This correlation coefficient has a value between −1 and , 
with intercorrelated variables having the value 0. Accordingly, the 
investor will be able to diversify the risk of its portfolio more effectively if 
the expected returns of the assets of which it consists are not highly 
correlated with one another. 

Recently, some authors [50,59] have opted to approach the study of 
technology portfolio risk based on the proposal made by Sharpe [76] 
and his market model. According to Sharpe's [76] proposal, the variance 
formula (Eq. (9)) for the return of a financial asset with a 
risk (σ 2) would be determined by two risk components: the systematic 

Stirling [65] defines diversification as an “irreducible property of a 
system” or as “a system attribute that can be divided into categories”. 
There are three properties to characterize the diversification of a system: 
variety –the number of different categories that the system being 
analyzed divides in–, balance –the number of different elements in each 
one of those categories– and disparity –the number of differentiated 
elements–. Each one of these categories is necessary but not sufficient 
[66] and they are interrelated. 

When measuring portfolio diversification, some authors [20,69] 
propose using the Shannon-Wiener and Herfindahl-Hirschman in- dexes 
to evaluation supply security. Stirling [65] and Chuang and Ma 
[22] provide good reviews of the concept and the different indexes of 
portfolio diversification. 

It is possible to improve diversification by including RES technol- 
i 

component (β2 σ 2 ), determined by the market in which the asset is 
ogies in a portfolio [11,19,21,25,30,35,38,39,42,47,69]. This would 
increase the level of potential diversification and would make it 

traded, and the non-systematic or specific component of the asset, 
which is influenced by fluctuations from outside the system and 
specifically related to each of the assets that makes up the portfolio: 

possible to distribute the risks among a larger number of alternatives 
[42]. One of the main causes determining portfolio risk comes from the 
strong correlation between fossil fuel prices and their variability 

σ 2 = β2 σ 2 + σ 2 = systematic risk + specific 
risk 

(9) [26,30,59]. In this context, Escribano et al. [4] stress that the flow of 
electricity produced by RES contributes to the increase in the diversi- 

The specific risk can be reduced or eliminated through diversifica- tion 
based on the distribution of the investment budget among several assets 
instead of dedicating it to a single asset [76]. The reduction in the case 
of the systematic component, in turn, is lower and cannot be canceled 
out. For this reason, the relevant risk to evaluate is no longer the overall 
risk, rather the non-diversifiable or systematic risk. This is a move away 
from the perspective of a portfolio composition based on a single asset 
and opts for its combination with other securities. 

In this context, according to [24,37,59], it would be possible to 
propose a classification of the different risks related to the investment in 
power generation assets according to the MPT proposal regarding 
systematic and specific risks. In this regard, systematic risk is under- 
stood to be that derived from economic growth and regulatory-political 
factors, as well as those associated with electricity market operations and 
technological factors associated with the systems supporting the 
development of certain technologies. Specific risk, on the other hand, 
refers  to  those  factors  related  to  the  size  of  the  portfolio  and  
the 
diversity of the technologies present in it, with control over the costs 

fication of the sources of the internal portfolio, to the geographical 
diversification of energy suppliers to the extent that a good intercon- 
nection system is achieved among the states, and to the increase in the 
means of electricity transport (alternating current and high voltage direct 
current lines). It would be a matter of taking advantage of the lack of 
correlation between the fuel costs for technologies that use fossil fuels 
and those that use renewable sources, the production of which depends 
on solar, hydro and wind energy sources [22]. This would reduce the risk 
of the portfolio [14,38,39]. In this manner, the introduction of RES in the 
portfolio makes it possible to reduce exposure to geopolitical risk and 
with it, possible supply disruptions. 

Authors such as [4,11,29] stress the benefit of including RES in the 
portfolio, considering them to be risk-free technologies, since they have 
fixed costs with no standard deviation: their beta and specific risk would 
be zero. Thus, by including RES technologies in the portfolio, it 

 
 

15 The beta of portfolio p is defined as βp  = 
σp,M  

= 
σpσM ρpM  

= 
 σp ρpM . It is calculated 

and cost overruns derived from power generation. In this sense, σM2 σM2 

p 
σM σ ), 

based on the relationship between the covariance of portfolio and the market ( c,M  

Marrero et al. [59] propose an approach intended to provide better and the risk associated with the market itself, expresses in terms of variance: σ 2 . 



 

 

would be possible to reduce the risk through appropriate diversifica- tion. 
However, other authors propose the characterization of renewable 
technologies as assets that entail a risk derived from the market [54] or 
risks derived from the physical availability of the renewable flow used 
[39]. Another type of risk that these technologies would present is that 
related to the level of technological dependence on production factors 
[43]. 

However, the introduction of RES in the portfolio is not free of 
difficulties. The intermittent and non-manageable nature of RES 
technologies results in instabilities for the system and higher costs [32]. 
Rombauts et al. [34] propose in their study improving the cross- border 
transmission capacity among states to reduce the variability- 
intermittence of wind energy. Roques et al. [32] therefore opt to assign 
the locations of the wind farms in a more efficient and coordinated 
manner among the European states, in order to minimize the negative 
impact of the variability of wind production in Europe. Johansson [43] 
adds the improvement of the transmission grid, the installation of 
capacity reserves and increased storage (batteries or pumping). In any 
case, any of the options proposed would lead to higher portfolio costs in 
the form of maintenance costs to ensure the reliability of the system and 
its equilibrium [4,32]. At any rate, we are warned that as a type of 
technology that is different from the rest of the portfolio, the 
participation of RES technologies would be subject to diversification and 
optimization criteria. Accordingly, it has been shown that the 
participation of the different RES is preferable [55], but with limita- tions, 
if the aim is to minimize the risk [30,42]. 

In addition to the optimization technique on which the portfolio 
theory methodology is based, there is another technique very com- 
monly used in the electricity markets, related to risk control by private 
investors: the so-called hedging technique [36,49,77,78]. Price risk 
hedging in the spot market is carried out through the acquisition of 
derivatives (forward-contract purchases, futures, options, etc.) to 
compensate for possible losses that might occur. These contracts allow 
the investor to cover the risk related to the unavailability and/or high 
prices by establishing the price before the moment of availability. This 
allows the portfolio risk to be reduced. Safarzynska and Van den Bergh 
[79] reiterate the idea that the existence of a futures market makes it 
possible to maintain the benefits of the plant and reduce the volatility of 
spot prices. With it, it is possible to reduce the extent to which both 
production and the use of inputs are affected by fuel prices. Woo et al. 
[78] propose the hedging of the risk derived from the volatility of spot 
prices and the uncertain behavior of demand . They seek to determine 
the composition of the optimal portfolio of forward-contract purchases 
from local distribution companies. They attempt to answer three 
questions: how to obtain the best price, when to buy (contract) and how 
much to buy. Huisman [77] proposes a one-period framework to evaluate 
the optimal purchase locations for the both peak and off-peak forward 
contracts of a rational electricity purchaser who wishes to take a hedging 
position for price and risk. 

As previously indicated, portfolio optimization attempts to find the 
assignment of energy assets that permits maximizing benefits and 
minimizing risks through diversification. In this alternative focus on 
optimization, two approaches are combined: those based on the physical 
delivery of the product (market contracts, operation of a spot market, 
etc.) and those that contemplate financial hedging (forwards, futures, 
options, etc). 

 
4.3. Main methodological contributions 

 
Different lines can be found in the literature in relation to the new 

methodological proposals that complement the application of MPT to the 
energy asset portfolios. In particular, methodological contributions have 
been made after the publication of the proposal by Awerbuch and Berger 
[11], although the literature generally considers the initial work to be 
that by Bar-Lev and Katz [27]. 

Awerbuch and Yang [30] point to a line of research that involves 

establishing a possible measurement of risk for individual technologies 
through the CAPM beta. This would attempt to index the risk of each 
technology in relation to the set of technological alternatives available. 
Marrero et al. [59] have done work along these lines, establishing how to 
obtain the betas by Rolling-OLS. They study the relationships between 
technologies and fuels and each market risk. These authors allege that 
oil prices condition the volatility of the electricity portfolios and 
transport, as they have found differences in volatility according to the 
systematic risk derived from commodity prices. Along these same lines, 
but beyond the scope of CAPM, Humphreys and McKlein [28] are 
concerned with measuring the impact of fossil fuel (oil, natural gas and 
coal) price shocks on the portfolio through a GARCH model. Dunlop 
[61] proposes another perspective on the variability of the Beta 
connections of the natural resource (wind), with its availability in specific 
locations (small and large wind farms). 

Doherty et al. [51] try to evaluate the usefulness of MPT in producing 
diversified portfolios in light of the variability in fuel prices. To do this, 
they compare the results of the diversification concept study, using two 
approaches: portfolio theory and the Shannon-Wiener index. The 
consideration of this diversification index came about based on the 
critique by Stirling [66], who denied the capacity of MPT to evaluate 
diversification on the grounds that it is not appropriate when fluctuations 
occur and there is no well-defined explanatory pattern. Stirling [66] 
further indicated that diversification is a response to a lack of knowledge 
instead of a quantifiable risk. Doherty et al. [51] concluded that the 
solution provided by portfolio theory and the SW index can be 
considered to be similar. Chuang et al. [22] proposed using indexes that 
have evolved from the SW and Herfindahl- Hirschman indexes to measure 
the degree of diversification of the portfolios that make up the efficient 
frontier of an MPT model for Taiwan. 

Some authors have attempted to incorporate improvements in their 
studies in terms of the estimates of the variables considered to generate 
the portfolios analyzed. Accordingly, Humphreys and McClain [28] 
proposed using time-varying variances and covariances estimated with 
generalized autoregressive conditional heteroscedastic models when 
developing their model. Krey and Zweifel [20] incorporate the correla- 
tions between unobserved changes, which improve the estimates of 
efficiency and influence the cost of the power-generating technologies. 
Krey and Zweifel [20] stress the importance of deriving estimates from 
the covariance matrix that are reasonably invariable over time. An 
attempt is made to ensure that the time series for the generation costs 
considered do not contain systematic changes when estimating the 
prediction values. They follow a Seemingly Unrelated Regression that 
consists of estimating the regression equations (one for each technol- 
ogy) and performing an OLS contrast, which is appropriate whenever 
there is a correlation among the errors of the different technologies. The 
method permits the simultaneous estimate of the expected returns of the 
generation technologies of a regression, taking into account the possible 
correlation of the leftovers of the equations (unobserved change 
components), and seeks to increase the efficiency of the estimate. 
Marrero et al. [59] estimate by rolling-OLS a CAPM model based on 
which they obtain efficient estimates and more robust constant betas. 
They also indicate how to proceed when analyzing the results, depending 
on whether it is energy technologies or commodities are considered, for 
which the time-varying estimation may result more or less appropriate. 

A group of works use simulation in the absence of historical return or 
generation cost data [26,37,44,71] or as a measure to estimate the 
behavior of demand [26,33,34,40,70]. Bhattacharya and Kojima [37] 
highlight the potential provided by simulation, as it offers the option to 
generate multiple scenarios for analysis and makes it possible to work 
with variables, even if they are subject to uncertainty, given that it 
approximates their real values. From a methodological perspective, 
Roques et al. [26] use the Montecarlo simulation applied to a discount 
model of cash flows for investments in combined cycle plants using coal 



 

 

and nuclear energy to calculate the distribution of the profitabilities of 
the plants and their correlations. Previously, Rombauts et al. [34] based 
their work on the model proposed by Roques et al. [26] and added 
cross-border transmission capacity constraints to assess in greater depth 
the management of electricity derived from wind power. De Jonghe et al. 
[40] use simulation to obtain the Load Duration Curve within a Screening 
Curve methodology and to find the optimum mix of generation 
technologies in the context of perfect competition. Delarue et al. [33] 
demonstrate the application of the integrated investment model they 
propose through simulation. To do this, they use an algorithm that 
selects a number of weeks to generate the yearly load profile of the 
demand, and later use these data to apply the MPT optimization model. 
Bhattacharya and Kojima [37] include simulation within the process of 
optimizing the electricity supply portfolio in terms of expected risk and 
cost and when generating the share limits for the RES technologies in the 
model. Lynch et al. [44] propose a minimum cost approach for system 
maintenance, backed by simulation when obtaining the unit commitment 
and economic dispatch, instead of assuming the capacity factor. 
Lucheroni and Mari [71], in turn, use simulation to obtain the individual 
distributions of each LCOE per technology and for the portfolio within 
the proposed analysis. They base their decisions on fully stochastic LCOE 
theory in order to analyze the impact on the diversification of the price 
volatility for CO2 emissions when deciding on the composition of the 
portfolio. They include the study of the impact of uncertainty on nuclear 
energy costs. This methodology represents an improvement when 
determining the LCOES, as it makes it possible to manage the risk 
derived from uncertainty in relation to the variables that determine the 
LCOES. 

Likewise, a series of works can be found that propose a dynamic 
analysis of portfolio formation, as an alternative to the individual analysis 
of a static portfolio not subject to variations in production or demand. 
These works incorporate concepts related to the behavior of demand, the 
formation of the Load Duration Curve (LDC) within the power generation 
and management process [32–34,40,44,56,58,60,70] propose a model 
based on the demand side and use the Load Duration Curve to establish 
different demand blocks. Along these lines, De Jonghe et al. [40] establish 
a static linear programming investment model which includes operational 
constraints. Their proposal falls within Screening Curve Methodology. 
They propose an example of a portfolio that includes ramp rates, 
transmission interconnections and storage possi- bilities. They calculate 
the optimal number of hours of operation combined with the load 
duration curve. The generation input through wind energy is assumed as 
a negative load. These authors also evaluate the impact of the variability 
in the availability of this technology on the system. Delarue et al. [33] 
propose a dynamic multiple time-period approach from the perspective 
of power generation (dispatch power generation delivery). They base 
their work on an integrated investment model that includes actual load 
patterns based on both hour-by-hour loads and multiple time-period 
loads, as well as restrictions related to dispatch and ramp rates. The 
model optimizes the generation portfolio for a specified load period. In 
spite of it being a very complete approach, Lynch et al. [44] indicate that 
the approach used by Delarue et al. [33] does not allow for considering 
the commitment of generating units, and thus the model does not 
consider the variable costs derived from operations in the power 
generation plant, which is particularly relevant in the case of RES. In fact, 
Lynch et al. [44] offer an improvement in this sense, as they do not 
consider the production factors by default and they simulate unit 
commitment and economic dispatch based on a least-cost system 
approach. In this same vein, Peerapat and MacGill [58] establish an 
approach very similar to that of Delarue et al. [33] in order to 
incorporate into the proposed model the action electricity generated via 
renewable sources (wind, solar, run of river hydro) of a variable, non- 
storable and unmanageable-intermittent nature. Their aim is to deter- 
mine the existing capacity and the new capacity required for each of the 
portfolios generated. Finally, the works by Roques et al. [32] and 
Rombauts et al. [34] can be framed within another line of work related 

to the management of the electricity produced by wind energy and the 
evaluation of the system capacity to integrate it and minimize variability. In 
this manner, Roques et al. [32] propose a complementary approach to 
conventional system-planning models. They propose an improvement 
based on the work of Drake and Hubacek [62], contemplating the 
variability of hour by hour wind production instead of obtaining this from 
data time series directly. They focus on evaluating the impact of 
interconnection among the EU member states in terms of wind energy 
production. Rombauts et al. [34] use the model by Roques [32] as a 
basis, and include cross-border transmission capacity constraints to 
assess wind energy production. 

When establishing what could be the current line of study, we could 
highlight the interest in including the decision-maker's perspective 
regarding the level of risk assumed. Accordingly, two of the latest works 
published in 2017 [35,50] attempt to incorporate the preferences of 
decision-makers through Multi-attribute Utility Theory Model [35] and 
Utility Function Maximization [50]. This is joined with previous studies 
[26,36,60] that work with different risk profiles of investors through the 
measurement of the risk aversion factor and its impact on the results of 
the utility function. In this function, the value of the return (or cost) of the 
investment is diminished (increased) by the risk, expressed in the form of 
variability (variance or standard deviation), weighted by the aversion 
factor to said risk. The intent is to maximize the utility function, thus 
obtaining results that contain information about the two main variables 
of the MPT model at the same time. 

 
4.4. Main conclusions regarding the inclusion of RES in the portfolio 

 
The literature review backs the hypothesis that RES participation 

contributes to reduced portfolio risk (to the lowest level) and improved 
portfolio diversification, without any increase [11,14], with an increase 
[37] or even a decrease in total portfolio cost [39]. Other studies add the 
improvement in energy density per unit of capacity and the conversion 
efficiency due to the inclusion of RES [56], derived from      a high RES 
portfolio share. These authors confirm that the greater the aversion risk, 
the greater the positive effect is by introducing RES. 

The reduction in the expected portfolio risk (and greater energy 
security) due to the inclusion of or increase in RES is related to a greater 
degree of diversification [2,4,30,38,42,43,67], as well as the non-
existence of any relationship between the price change for fossil fuels 
and RES [11,30]. Studies relate the reduction of portfolio risk by means 
of an increased share of renewable energies to a reduction in foreign 
dependence of the analyzed region [23,42,48]. In fact, the combination 
of alternative technologies with negative correlation coefficients and/or 
those that are risk-free (non-correlated) [25] enables us to achieve lower 
portfolio risks associated with the volatility (fluctuations) of the price of 
imported fossil fuels and/or as the result of geopolitical events that might 
interrupt the supply [4,22]. 

There are a great many studies that confirm the possibility of 
achieving portfolio efficiency by means of a greater share of wind or 
other RES [11–13,20,30,33,35]. Indeed, incorporating wind energy 
reduces the expected risk [13,35] and even portfolio cost [12] in 
addition to increasing a portfolio's return [45]; it also permits the 
reduction of portfolio CO2 emissions [30]. The incremental RES 
technology selected depends on the study: 

• Wind energy in the U.S. and solar and hydro in the case of Switzerland 
(2003) [20]; 

• Wind and biomass energy in the Netherlands (2030, reducing the 
risk by up to 20%, and the cost by 4%) [19]; 

• Wind for EU-2020 [30]; 

• Wind for China in 2020 [25]; 

• Wind power and hydro power up to the limit for the EU-27 (2030) 
[42], with wind technology in a high wind availability simulated 
scenario [33]; 

• Marine technologies in the Scottish (2020) portfolios that have a 



 

 

lower share limit for on-shore wind energy [14]; 

• Wind and mini-hydro energies (high prices scenario) or solar PV 
(reduced prices scenario) and thermoelectric technologies in a 
Spanish RES portfolio case (2010) [46]; 

• Solar PV with an 8–12% increase in the Chinese Portfolio (2020– 
2030) [16]; 

• Solar PV in Japan's portfolio [37]; 

• Geothermal and Wind in Mexican´s portfolio [35]. 

Additionally the maximum limit for RES in efficient portfolios also 
depends on the analyzed territory and the horizon: 

• For Japan, the limit is between 1.37% and 9% [37]; 

• For the EU in 2030, this limit is between 34.5% and 43% [42]; 

• For Scotland in 2010, the share limits would reach 31% for on-shore 
wind energy and 5–10% for off-shore wind technology [12]; 

• For California in 2020, it would be possible to increase the share of 
RES from 20% to 45% without increasing the portfolio cost, with a 
maximum RES share of 64% [54]. 

 
Alternatively, in other studies, authors suggest the removal of some 

technologies from the portfolio, such as biomass and solar energies, the 
shares of which would not be guaranteed in terms of efficiency in the 
2030 European portfolio [42]. 

In some cases, the increase in the RES share depends on additional 
aspects of energy policy, based on continued support in the form of 
governmental policy. In this way, different policy and regulatory actions 
have been proposed in order to  achieve  diversification  [52,53], to 
promote off-shore wind energy in  the  Netherlands  [19]  and to 
promote solar energy in China, so that it reaches the expected level of 
development [16]. Among the measures to adopt to reduce the 
investors' risk [26], the following have been proposed: establishing rates 
or premiums, credit guarantees for investing and mechanisms to reduce 
the capital cost of investment. Bhattacharya and Kojima [37] suggest that 
the policies must seek to control the variability of fuel prices, rather than 
to reduce prices, as they condition the portfolio risk. For this reason, 
certain regulatory policies are needed in order to regulate government 
price support for fossil fuel procurement, fuel price protection and 
subsidies. Along these lines, other authors [47,55] indicate the need for 
support from the authorities in the form of legislation to achieve the 
effective incorporation of RES in the portfolio. Cuchiella et al. [47] 
advocate the continuity of the support for Solar PV in order to achieve its 
profitability. Guerrero-Lemus [57] observe complementarity among the 
energy policies for fossil technologies, biofuels and electricity in the 
transport sector. Their combination should permit some reduction in 
dependence and increase diversifica- tion, while reducing pollutant 
emissions. Kumar et al. [38] indicate the need to include a measure in 
MPT studies that takes into account the complementary costs or barriers 
to configuring technology portfolios. These costs would include the 
availability of space, resources and infrastructures and the impact of 
public policies. 

In other cases, CO2 emission prices are fundamental in the con- 
struction of efficient portfolios, the inclusion of non-pollutant technology 
shares and the achievement of emission reduction goals [58,70]. Some 
studies relate the increase in the wind energy share (limit of 22%) to the 
inclusion of emissions costs in the model [52,53], or claim that the 
position of RES and natural gas depends on a high CO2 price, as well as 
security of supply [19]. In Scotland, a 5% share of off-shore wind energy 
would reduce the risk, without increasing the total cost in the case of the 
high gas prices scenario [12]. Arnesano et al. [39] indicate a €35 limit for 
CO2 cost in order to achieve no variation in the portfolio shares. 
Likewise, some studies alert that failing to incorporate RES leads to 
greater risks (10%) [19], and that an excessive increase in the share of 
RES leads to an increase in the portfolio risk [54]. Bhattacharya and 
Kojima [37] claim just the opposite, confirming that the price of carbon 
has not influenced the decision to invest in RES. 

Nuclear energy is an available alternative among the different 
technologies in the portfolio. Its non-pollutant emissions and its 
consistent cost structure (without considering externalities) make this 
controversial technology a preferred option [25,30,35,42]. Moreover, 
this technology presents the minimum economic risk, as in the case of 
China [25]. In the case of Taiwan [56], nuclear energy is the best 
alternative to reduce the portfolio risk related to the limitation on the 
development of RES, while in Italy, the inclusion of nuclear energy (with a 
limit of 36%) would result in a reduction of 66% in the installed capacity 
linked to fossil fuels [39]. Lucheroni and Mari [71] indicate that the 
volatility of CO2 prices is what encourages investors to increase the share 
of nuclear energy in portfolios with coal and gas. For the EU- 27, nuclear 
energy is considered a preferential technology (even including externality 
costs), as its shares reach the maximum possible limits [42]. In order to 
minimize the risk, the share of nuclear energy must be increased in the 
Swiss and U.S. portfolios [20]. 

Many studies include comments about system requirements in order 
to take on increased RES production. In fact, the increase in the wind 
portfolio share necessitates a greater degree of flexibility and the 
appropriate development of technical requirements [32–34,40]. Delarue 
et al. [33] indicate that the introduction of wind energy must be 
accompanied by additional rampable technologies. Roques et al. 
[32] propose a combined production from among the different EU 
member states, as well as a coordinated European action in terms of 
policies and systems of incentives: wind farms must be installed in the 
best geographic locations identified on a European level. Following this 
idea, Rombauts et al. [34] confirm that the increase in inter-State 
transmission capacity shifts the efficient frontier to the left, which leads to 
a lower overall risk and increases the diversification effect on the 
portfolio. However, the optimal transmission capacity to be maintained 
will depend on the return-risk and cost-benefit balance that this capacity 
returns. In this case, De Jonghe  et al.  [40]  point out  that  it is possible 
to adapt the total installed capacity to the optimal capacity needed, 
thanks to a greater capacity for interconnection and energy storage. The 
base-load plants should be gradually replaced with medium-load plants, 
which have a lower impact from the starting factor. In another case, 
Roques et al. [32] focus their study on the role of wind power. They 
propose minimizing the variability of wind power or maximizing the 
contribution of wind energy production in order to achieve greater 
system reliability during peak demand hours. 

The assessment of the portfolio efficiency includes the  combination 
of RES with conventional fossil fuel technologies. In fact, natural gas is 
presented as a preferred conventional technology [13,26,31,33,52,53] 
and it  complements the  share  of RES in the  portfolio.  Doherty et   al. 
[53] point out that the combined gas cycles are the least expensive 
alternative for both low and high emissions cost, while Roques et al. 
[26] associate a high share of natural gas (100%) with an intermediate 
degree of aversion and a correlation greater than 70% between the price 
of electricity and natural gas. Marrero and Ramos [23] confirm that the 
minimum risk portfolio for the Canary Islands should be formed mainly by 
natural gas as the main source, and a share of wind energy up to its limit. 
This combination permits a decrease in costs, risks, dependency and 
emissions. However, other authors identify this technology as one of the 
riskiest technologies, due to price volatility and higher related costs than 
nuclear energy [25]. 

 
5. Conclusions 

 
The work presented here consists of an exhaustive review of the 

literature in relation to the application of MPT methodology to the field of 
energy planning and electricity production. In line with the objectives set 
out in the first section, a new classification has been proposed, from a 
financial perspective, based on the selection of long- term investments 
from the preceding studies. It delves deeper into the explanation of the 
limits to the methodology and into the key concept of risk, from both a 
financial and an energy perspective. The main 



 

 

methodological contributions found in the literature have been re- 
viewed, indicating the conclusions of the works analyzed in terms of RES 
technologies and the policy implications derived from them. According to 
our findings, and as a corollary, the following conclusions can be drawn 
from our study: 

• The MPT methodology stands out for being simple to apply and for 
the characterization of the variables based on a trade-off that 
includes risk. This constitutes an undesirable variable, and thus 
decision-makers, with differing degrees of aversion, try to reduce it or 
minimize it through the portfolio optimization process. As a risk- 
control methodology, MPT attempts to achieve the best diversifica- 
tion possible among the alternatives analyzed, and therefore, to find 
efficient portfolios. 

• A review of the literature shows that there is no single focus in terms 
of defining the type of efficient frontier. Studies can be found that 
are based on economic criteria and on electricity production criteria. 

• The studies that are based on the application of economic criteria 
produce both return-risk frontiers (return measured as the inverse 
of cost, NPV, IRR) and cost-risk frontiers. Risk is expressed through 
the variability of the returns/costs for the set of technologies. The 
models based on production criteria consider the expected value of 
average production and variability of electricity production 

• The application of modern portfolio theory (MPT) to energy plan- 
ning has been widely accepted, and confirmed by numerous studies. 
However, its limitations in terms of the different nature of the assets 
analyzed (financial vs. real) are accepted by the authors. The 
contributions of the studies have attempted to improve their 
adaptation to the field of energy through demand-side models and 
simulation techniques. Likewise, the inclusion of externality costs and 
portfolio emission factors favor the correct characterization of the  
technologies  in  the  models  and  approaches  with  a  social 
dimension. 

• The studies generally consider that the inclusion of RES technolo- gies 
favor the reduction of the portfolio risk; to the extent that their 
geography and the system capacity to integrate the electricity 
generated by them so permit. The introduction of RES technologies in 
the portfolio is conducive to approaching efficiency. By incorpor- ating 
them, the economic risk of the portfolio is reduced, as are the risk of 
supply disruptions -as the result of greater diversification-, and the 
environmental risk -due to a reduction in pollutant gases-. 

• There are two main points of view on how to handle the risk 
associated with RES technologies: as risk-free technologies, since 
they do not use fuel, or technologies with economic risk, expressed 
through intermittency costs or incomplete availability due to climate 
and weather behavior. 

• The decision to incorporate RES technologies (essentially, wind 
energy) in the portfolio implies giving the system greater flexibility. 
Power plants must lean towards those with a lesser impact on the 
starting factor. A commitment is made to greater flexibility in 
interconnection capacity between states, and to storage in order to 
increase the share of RES technologies in the portfolio. However, it has 
been seen that an excessive share of this type of technology could 
increase the portfolio risk through instability or system imbalances. 

• In scenarios characterized by high fossil fuel prices or CO2 emission 
prices, the introduction or increase in the share of RES do not 
necessarily lead to an increase in the cost of the portfolio, in spite of 
high individual costs for RES technologies. In these scenarios, nuclear 
energy tends to be considered the technology with the  lowest cost, 
and thus an alternative to RES to reduce emissions. 

• The technologies with the greatest risks are those that are based on 
the use of fossil fuels: natural gas, petroleum and derivatives are 
usually subject to a high degree of price variability. Coal and natural 
gas have the lowest costs (as the most widely used technologies), as 
long as emissions costs are not included. 

• The studies agree that the increase in the RES share depends on 
additional energy policy aspects (normally based on a continued 
governmental policy support); for example, giving premiums or credit 
guarantees for investment, controlling the variability of fuel prices and 
establishing a coordinated policy in order to position RES 
technologies in the best places. 
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