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A B S T R A C T   

Climate change and geopolitical risks call for the rapid transformation of electricity systems worldwide, with 
Europe at the forefront. Wind and solar are the lowest cost, lowest risk, and cleanest energy sources, but their 
variability poses integration challenges. Combining both technologies and integrating regions with dissimilar 
generation patterns optimizes the trade-off between maximizing energy output and minimizing its variability, 
which respectively give the lowest levelized cost and lowest integration cost. We apply the Markowitz mean- 
variance framework to a rich multi-decade dataset of wind and solar productivity to quantify the potential 
benefits of spatially integration of renewables across European countries at hourly, daily and monthly timescales. 
We find that optimal cross-country coordination of wind and solar capacities across Europe’s integrated elec-
tricity system increases capacity factor by 22% while reducing hourly variability by 26%. We show limited 
benefits to solar integration due to consistent output profiles across Europe. Greater wind integration yields 
larger benefits due to the diversity of regional weather patterns. This framework shows the importance of 
considering renewable projects not in isolation, but as interconnected parts of a pan-continental system. Our 
results can guide policymakers towards strategic energy plans that reduce system-wide costs of renewable 
electricity, accelerating the clean energy transition.   

1. Introduction 

The urgency to mitigate climate change [1], combined with the 
European energy crisis [2] calls for a rapid transition from fossil fuels to 
renewable energy sources [3]. The main challenge to achieve this rapid 
transition is the integration costs caused by the variability of wind and 
solar power [4,5]. There are three main mechanisms to integrate higher 
shares of variable renewables: energy storage [6–8], demand manage-
ment [9] and spatial integration [10,11]. We focus on the potential 
benefits of spatial integration and deployment coordination of variable 
renewable energy (VRE) technologies across countries to optimize the 
trade-off between achieving the maximum possible capacity factor (CF) 
energy output with the lowest possible variability. 

We exploit a rich dataset of simulated wind (onshore and offshore) 
and solar photovoltaics (PV) hourly CF for 30 years for European 
countries to explore the potential benefits of optimally deploying 

variable renewable energy capacities across countries. We use the 
Markowitz mean-variance model to calculate optimal portfolios of 
shares of installed capacities per country and technology that can ach-
ieve the highest possible capacity factor (CF: energy generated per unit 
of installed capacity) per unit of variability (here measured as the 
standard deviation (SD) of the CF). This allows us to identify and 
quantify benefits in three dimensions: spatial (across countries), tem-
poral (at different timescales) and technological (solar, onshore and 
offshore wind). We evaluate the benefits of integrating electricity sys-
tems, from autarky to a pan-European system, at three different time-
scales: hourly, daily and monthly. Likewise, we assess the effects of 
optimizing the capacity shares of each renewable energy technology 
both across countries of integrated electricity systems and within 
countries in autarky. We exclude dispatchable (such as biomass) and 
baseload (such as geothermal) technologies as their CF is controllable 
and not spatially-dependent on the weather. Whereas there may be other 
variable renewable energy technologies, such as wave and tidal, we 
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exclude them because they have not achieved market maturity and they 
are expected to represent a marginal share of electricity demand ac-
cording to the International Energy Agency [12]. 

We find that solar and wind technologies are complementary, and 
optimizing their relative shares helps optimize the CF-SD trade-off. The 
integration of solar power across European countries does not provide 
significant benefits because generation patterns within the continent are 
homogeneous and the Southern countries have both higher and more 
consistent solar resource. However, the benefits of wind integration 
across countries are large thanks to its more heterogeneous generation 
patterns across countries, and it provides additional benefits when 
optimally combined with solar resources. 

Finally, we create a European Union (excluding Malta and Cyprus 
and including Great Britain) case study to quantify the potential benefits 
of optimizing the shares of variable renewable installed capacities across 
countries and show that the EU reference scenarios for decarbonization 
until 2050 do not seem to take these potential benefits into account. 
Because higher CF translates into lower unit costs and lower variability 
translates into lower integration cost (ceteris paribus), our framework 
may help design a lower-cost Europe-wide electricity system that can 
speed up the adoption and integration of variable renewables. Addi-
tionally, because we provide the optimal portfolios as well as the effi-
cient frontiers, we shed light on potential near-optimal solutions that 
may be more feasible in real life when integrating a variety of other 
allocation criteria, such as transmission cost, landscape conservation, 

interregional equity, etc [13]. 
The remainder of the paper is structured as follows. Section 2 reviews 

the background on renewable energy complementarities and modern 
portfolio theory. Section 3 presents the data sources, their main char-
acteristics and descriptive statistics. Section 4 explains how we apply 
modern portfolio theory to the optimization of renewable energy ca-
pacities across technologies, countries and timescales. Section 5 presents 
the results, focusing first on the benefits of spatially integrating indi-
vidual variable renewable energy resources, to then combine the 
different technologies. Finally we build a case-study for the European 
Union comparing the actual current situation and the plans of the EU 
reference scenarios with the current and future optimal solutions. We 
provide potential benefits both in terms of the CF-variability trade-off 
and unit generation costs (LCOE: levelized cost of electricity). Section 6 
concludes and discusses implications for policy and research. Fig. 1 
summarizes the structure of the analysis. 

2. Background 

2.1. Renewable energy complementarities 

Wind and solar complementarities have been studied from several 
perspectives and at different temporal and spatial scales. Some studies 
focus on the potential of spatial integration of different regions for a 
single technology: for wind at continental [14] [15,16] and interconti-
nental levels [17] and for solar at interhemispheric level [18]. Other 
papers study the complementarity between wind and solar in Germany 
[19], China [20], Rusia [33], Europe [21], North America [22] and even 
at global level [23]. All these studies find that integrating locations and 
technologies provides complementarities in terms of lower variability. 

Weschenfelder et al. [24] provides a review of recent literature 
identifying correlations and standard deviations as the main methods to 
quantify complementarities. Whereas correlations are well studied in 
the literature, few papers consider the trade-offs of achieving a flatter 
generation profile by combining technologies and locations, namely, the 
reduction of potential capacity factors. For this reason, we propose a 
comprehensive framework to assess the trade-off between achieving the 
maximum possible capacity factor and the minimum possible variability 
by combining technologies and regions at different spatial and time 
scales using modern portfolio theory in Europe. 

2.2. Modern portfolio theory applied to energy planning 

Modern Portfolio Theory (MPT) is a quadratic optimization meth-
odology, initially suggested by Markowitz [25] and widely developed in 
the field of finance, to solve the trade-off between an investment’s 

Abbreviations 

*2-letter country codes according to the ISO 3166 standard 
CF capacity factor 
CRF capital recovery factor 
CV coefficient of variation 
CVaR conditional value at risk 
CWE Central West Europe (Benelux, France and Germany) 
IC installation cost 
IPCC International Panel for Climate Change 
LCOE levelized cost of electricity 
NWE North-Western Europe (CWE, Great Britain, the Nordics 

and the Baltics) 
MPT Modern Portfolio Theory 
O&M operation and maintenance 
SD standard deviation 
PV photovoltaic 
VRE variable renewable energy  

Fig. 1. Structure of the analysis for assessing the trade-offs between mean capacity factor (CF) and its standard deviation (SD). Figures in the paper relating to each 
stage of the analysis are denoted by “F” in brackets. 
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portfolio risk and return. The optimization process may consist of either 
maximizing the expected return for each level or risk, or equivalently 
minimizing risk for each level of expected return, subject to a number of 
technical constraints. Whereas in financial applications the portfolio is a 
combination of different financial assets, we here optimize the alloca-
tion of wind and solar capacities across countries. We use hourly CF 
instead of daily returns and their SD is our measure of risk. 

For the last twenty years, MPT has also been used as a tool to design 
efficient portfolios of different electricity generation technologies. Since 
the first studies using this approach [26], electricity system capacity 
planning has been addressed as a decision-making problem about future 
real asset investment. The first adaptations of MPT to energy planning 
defined the return of the energy portfolio as the inverse of the generation 
cost [26]. Since then, other alternatives have been proposed, such as the 
cost-risk models based on the calculation of LCOEs for each electricity 
generation technology [27–29], discounted cash flows approaches 
through net present value and internal rates of return criteria [30], or 
considering power generation prices and costs of specific markets [31]. 

Because VRE technologies have no fuel costs, including them in a 
portfolio decreases the risk compared to fossil fuels in approaches that 
use any variant of cost as the return indicator [28,29]. Among renewable 
sources, wind energy stands out because its deployment results in a very 
positive impact in terms of return and expected risk reduction [32,33]. 
By using this methodological approach, some authors have already 
highlighted potential benefits of combining wind and solar to reduce the 
probability of supply disruption and therefore achieve a lower level of 
risk [33–36]. Including some methodological innovations to solve in the 
original problem, Garcia et al. [37] focus on the application of a con-
ditional value at risk (CVaR) measure from the point of view of the 
market performance of a utility portfolio. Finally, Unni et al. [35] and 
Castro et al. [38] implement the CVaR to minimize the risk of supply 
disruption. 

Specifically addressing the problem of setting the geographical 
location of wind farms using MPT, Roques et al. [39] estimate the 
optimal allocation of wind capacity in 5 European countries. Likewise, 
Nishiyama et al. [40] study the optimal siting of wind farms within three 
prefectures of northern Japan at high resolution. Shahriari and Blum-
sack [41] estimate the capacity values of VRE when optimally deploying 
capacity across the USA. Most similar to our study, Hu et al. [42] analyse 
the complementarities of wind and solar installations across China. 
Finally, it is worth mentioning a number of outstanding works focusing 
on the best location and distribution for wind farms in order to optimize 
production and reduce the intermittency of production [43–45]. Scala 
et al. [34] conclude that the study of time series may also help in 
decision-making for the location of energy storage facilities, necessary to 
compensate for the variability of renewable energies. 

We build upon this previous literature (summarized in Table 1) and 
present a comprehensive study of wind-solar complementarity in Europe 
combining three dimensions: (i) three technologies (wind onshore and 
offshore and solar photovoltaics), (ii) three timescales (hourly, daily and 
monthly) and (iii) different levels of spatial integration from countries in 
autarky to a pan-European system, finishing with a more realistic EU 
(plus Great Britain minus Malta and Cyprus) case-study. Our contribu-
tion is therefore twofold: we provide a detailed analysis of wind-solar 
complementarity in Europe across these three dimensions (spatial, 
temporal and technological); and we show potential pathways of 
sequential integration from autarky to a pan-European electricity system 
through increasingly larger spatial configurations. 

3. Data 

3.1. Renewables.ninja data on wind and solar power output 

We use the Renewables.ninja models to simulate the CF of wind and 
solar PV farms across Europe. These provide hourly time-series of the 
power produced from individual wind and solar installations by 

Table 1 
Modern portfolio theory for energy planning literature review summary.  

Authors Year Region Highlights 

Awerbuch and 
Berger [26] 

2003 European Union Renewable technologies are 
defined as real assets without 
risk, as costs can be established a 
priori. They establish the 
optimal mix of technologies for 
the EU by 2010. Return is 
defined as the inverse of cost 
and the aim is to maximize the 
overall return of the energy 
technology portfolio. 

Awerbuch and 
Yang [28] 

2007 European Union The authors shift to a cost-risk 
approach to technologies. They 
consider renewable technologies 
as risk-free assets and emphasize 
the importance of risk 
diversification due to the 
existence of zero and negative 
correlation coefficients. 

Muñoz et al. 
[30] 

2009 Spain The model maximizes return, 
which is based on cash-flows 
calculations. Using an economic 
model, the authors calculate the 
distribution of the Internal Rate 
of Return (IRR). They also 
highlight the relevance of 
negative correlations between 
the risks of technologies to 
minimize the portfolio risk. 

Roques et al. 
[39] 

2010 Austria, Denmark, 
France, Germany 
and Spain 

Portfolio theory is implemented 
in order to identify the 
composition of the portfolios of 
five European countries. The 
aim is to minimize the total 
variance of wind production for 
a given output level. If no 
technical constraints are 
included in the model, Spain and 
Denmark are preferred as in 
these two countries the best 
wind resource is available or the 
variability of production is 
clearly reduced by size. By 
including constraints, the results 
confirm the need for greater 
cross-border interconnection 
capacity as well as designing 
and implementing incentives for 
wind farm siting at the European 
level to reduce the associated 
costs of balancing and system 
reliability. 

Allan et al. 
[27] 

2011 Scotland Optimization approach based on 
minimizing cost and risk. 
Stemming from the correlation 
of fuel costs and renewables 
costs, the benefits of 
diversification are highlighted. 
They also confirm the benefits of 
including renewables in the 
portfolio in terms of risk 
reduction, without increasing 
costs. 

Delarue et al. 
[32] 

2011 Theoretical model A portfolio theoretical model 
making an explicit difference 
among installed capacity 
(power), electricity generation 
(energy) and real instantaneous 
power supply is proposed. They 
also include the variability of 
wind power and the ramp limits 
of traditional power plants. The 
results confirm that introducing 
wind power in the portfolio can 
reduce the risk in the cost of 

(continued on next page) 
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Table 1 (continued ) 

Authors Year Region Highlights 

generation, although at lower 
levels than those usually 
reported in the literature. In 
addition, technologies that 
cover its intermittency in the 
system are required. 

Gökgöz and 
Atmaca [31] 

2012 Turkey Focuses on electricity 
generation assets allocation 
when implementing bilateral 
contracts (forward contracts and 
daily spot market). It is based on 
portfolio optimization in 
electricity market using spot 
market hourly prices separately 
as risky assets, considering no 
transmission congestion in the 
system 

deLlano-Paz 
et al. [29] 

2015 European Union Includes the concept of 
externality in the cost-risk 
portfolio model based on 
minimizing the risk of the cost of 
the different technologies. 
Including externalities in the 
model leads to a greater 
importance of renewable 
technologies, as they contribute 
to risk minimisation. 

Joubert and 
Vermeulen 
[43] 

2016 South África Optimizes the location and size 
of wind farms to reduce their 
variability. The authors also 
confirm the usefulness of using 
clustered datasets to minimize 
variability and increase the 
energy yield of a set of wind 
farms by finding their best 
location and size. 

García et al. 
[37] 

2017 PJM Market Analyzes the optimal allocation 
of a utility’s energy portfolio in 
daily unregulated electricity 
markets. They propose two MPT 
models (mean-variance and 
Conditional Value at Risk). 
Combined with a GARCH 
prediction technique, the day- 
ahead electricity prices are 
forecasted. The results confirm 
that the higher the investor’s 
risk aversion, the lower the 
participation of the spot market 
in the portfolio, due to its 
volatility. 

Sosnina and 
Shalukho 
[33] 

2017 Technical model Proposes an operational risk 
indicator to manage operational 
risk in power systems with RES. 
It is calculated using Portfolio 
Theory. Variables considered 
are type, production and 
capacity of power plants. Results 
of 360 combinations confirm the 
decrease of the value of this 
indicator if the correlation 
factor between renewable 
energy power plants is negative. 

Sabolić et al. 
[44] 

2017 Croatia Seeks to reduce the variability of 
wind power using portfolio 
theory. As the wind power data 
sample do not follow a Gaussian 
distribution, some different 
distributions are used. The aim 
is to minimize the variability of 
wind power generation using 
the optimization model. They 
highlight that location of new 
plants should take into account 
previous geographical locations 
and the importance of using  

Table 1 (continued ) 

Authors Year Region Highlights 

optimization models that enable 
the removal of inefficiencies. 

Zhang et al. 
[36] 

2018 China Focuses on the optimal 
composition of the Chinese 
technology portfolio for 2030 
under different scenarios. The 
conclusion is that the 
advantages of fossil generation 
technologies get reduced when 
technical constraints are 
included in the model. The 
introduction of policy targets as 
well as cost and risk reduction 
and diversification objectives 
lead to a stronger presence of 
renewables. 

Shahriari and 
Blumsack 
[41] 

2018 Electric grid in the 
Eastern United 
States of America 

Incorporates portfolio theory to 
analyse the diversification 
benefits by quantifying the 
influence of spatial and 
temporal scale aggregation of 
wind power. They conclude that 
the greater the geographic 
diversification, the lower the 
risk. Adding solar technology to 
wind portfolios increases the 
availability factor of the 
portfolio by over 40%. Finally, 
they found that the greater the 
temporal disaggregation, the 
greater the availability of the 
renewable resource. 

Baeza and 
Farías [45] 

2018 Chile Proposes a mean-variance 
model to allocate the 
installation capacity among 
wind farms. It aims to minimize 
the overall variability of wind 
power for given average power 
levels. They suggest using the 
average daily standard deviation 
of wind power generation as a 
measure. They work with four 
wind power scenarios for Chile 
2030. For the same nominal 
capacity, higher production and 
lower variability is obtained as 
compared with the base 
scenario. 

Nishiyama 
et al. [40] 

2019 Japan Proposes an automated site 
selection model for new wind 
farm installations. The analyzed 
area is one square kilometer. 
Using geographic features such 
as altitude and wind speed, they 
identify feasible regions to host 
wind farms in the 
aforementioned area. The model 
includes constraints that seek to 
maximize the average annual 
wind speed (production 
optimization) or minimize the 
covariance between the 
production of each cell 
(production stabilization). 
Portfolio theory is used to 
evaluate the efficiency of site 
portfolios. Clustering of zones 
maximizes the average wind 
speed and reduces the 
variability of output per site. 

Hu et al. [42] 2019 China Focuses on the variability of 
renewable production, the need 
for greater backup and reserve 
capacity. They propose 
combined portfolios including 
wind and solar technologies due 

(continued on next page) 
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combining historical weather data with physical models of wind turbine 
and solar cell operation. The simulations used here represent power 
production from the current installed fleet of wind and solar power, and 
a potential future fleet for wind farms, if they had operated through 30 
years of historical weather. Simulations were made at the individual 
farm scale, and aggregated up to national scale for the 27 countries of 
the EU plus Norway, Switzerland and Great Britain. 

We extracted meteorological variables for air temperature, solar 

irradiance (at the surface and top of atmosphere), and wind speed (at 
three heights above ground) from the MERRA-2 reanalysis [46] for the 
years 1980–2019. These were converted to capacity factors (defined as 
the ratio of instantaneous power output to installed capacity) using the 
Global Solar Energy Estimator [47] and Virtual Wind Farm [48] models, 
which are available open source.1 

For solar PV, there are no consistent data on the spatial distribution 
of Europe’s utility and rooftop PV systems. We therefore modelled a 
single crystalline PV installation in each grid cell of MERRA-2, specified 
at a resolution of 0.5◦ latitude and 0.625◦ longitude, and assigned each 
cell to its respective country. Panels were assumed to have a fixed 
orientation, with tilt and azimuth drawn from normal distribution ac-
cording to the known panel angles from a database of PV installations in 
Europe [21]. 

For wind, we simulated the output of each wind farm over 1 MW in 
capacity installed as of 2019, using the 10,189 farms (119 GW of ca-
pacity) listed in “The Wind Power” database [49]. The specific location 
and characteristics of each wind farm (installed capacity, turbine model 
and hub height) were accounted for in the simulations, and any missing 
meta-data were inferred using multivariate regression as in Staffell and 
Pfenninger [50]. For the potential future fleet of wind farms (c. 2030) we 
also included the pipeline of offshore wind projects under commercial 
consideration (an additional 478 farms and 101 GW of capacity). Sim-
ulations of this future fleet account for three factors which can increase 
capacity factors: location, hub height and turbine model. First, as this 
fleet is composed of specific projects which are in the planning pipeline, 
it explicitly represents the move towards offshore locations with higher 
wind resources which are typically further from coastlines, with a con-
centration of planned wind farms in the Dogger Bank area of the North 
Sea [51]. Secondly, these planned projects have 14% taller hub heights: 
with a mean of 109 m compared to 81 m for offshore wind farms in the 
current fleet. As wind speeds increase approximately with the logarithm 
of height, this confers slightly higher capacity factors which are 
accounted for in the simulations. Finally, the future wind fleet contains 
meta-data on the turbine models that developers plan to use, which are 
on average 70% larger (in terms of MW generator capacity) than the 
current fleet of offshore farms. This includes next-generation turbines 
such as the GE Haliade-X and MHI-Vestas V164, which are anticipated to 
offer higher capacity factors. Turbine models such as these which were 
at the prototype stage (and thus did not have published power curves) 
were modelled using power curves simulated using the WTPCM model 
[52]. 

A key advantage of our data is that its accuracy and robustness have 
been verified through validation against historical metered power 
output data across European countries [47,48]. Capacity factors are 
bias-corrected to remove systematic over-estimation of wind speed and 
irradiance in the input meteorological data, and the lack of microscale 
spatial resolution which prevents MERRA-2 from capturing local terrain 
effects on airflow. Previous work has shown that Renewables.ninja can 
simulate the hourly capacity factors for the national renewable fleets 
with a root-mean squared error (RMSE) of 1.4% for wind and 3.3% for 
solar across Europe [47,48]. The dataset used here is available to 
download with an open-access license on www.renewables.ninja. 

3.2. Descriptive statistics 

The hourly CF is an essential parameter for VRE technologies. The 
mean CF indicates how much electricity the specific technology can 
generate in a given location per unit of installed capacity, which de-
termines its unit cost (LCOE) given installation cost. Additionally, the 
variability of the hourly CF (measured here as its standard deviation, 
SD) determines the amount of flexible capacity necessary to integrate 
higher shares of VRE and therefore the integration cost they cause to the 

Table 1 (continued ) 

Authors Year Region Highlights 

to their better performance 
compared to portfolios 
consisting entirely of one of 
them. As renewable 
technologies are deployed over a 
wide area, the variability 
associated with their 
intermittency is reduced. They 
suggest that when not including 
restrictions on the participation 
of renewables, the model leads 
to better result than when they 
are included. Therefore, they 
conclude that the outcomes of 
works or models including such 
restrictions tend to bear higher 
levels of inefficiency. 

Scala et al. 
[34] 

2019 Italy Puts forward a portfolio model 
based on Gaussian fluctuations 
with tunable correlations. They 
seek an efficient trade-off 
between production and 
production variability. 
Including time series analysis in 
the model may help make 
decisions on the size and 
location of energy storage 
facilities. 

Unni et al. [35] 2020 India Seeks to set the optimal 
combination of renewable and 
hydro technologies in the 
production mix. They carry out 
the optimization process by 
including economic and energy 
production parameters through 
a fuzzy generated index. They 
propose a multi-objective 
approach considering the 
investor’s degree of risk 
aversion. Including solar, wind 
and hydro technologies, two 
different magnitudes are 
considered: average monthly 
energy produced and profit to 
obtain the index. They conclude 
that mean-CVaR optimization 
improves mean-variance 
allocation. 

Castro et al. 
[38] 

2022 Brazil Highlights that many of the 
portfolios obtained from a 
mean-variance optimization 
model have a high probability of 
underproduction in those 
locations with low or high 
standard deviation. They 
confirm that diversification 
plays an important role in 
stabilizing the production of 
portfolios based on variable 
renewable sources. In the 
proposal, they include the 
correlation between demand 
and generation profiles and limit 
break risks thanks to the 
consideration of CVaR.  

1 See https://www.renewables.ninja. 
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electricity system. Fig. 2 summarizes these properties showing the 
average CF and the coefficient of variation (CV = SD/ CF) for solar, 
onshore wind and offshore wind for European countries. In most coun-
tries, onshore wind has a higher CF than solar, and in the countries 
where offshore wind is available, this is the highest of the three (Fig. 2a). 
Norway, France and Sweden present particularly high offshore wind CF 
above 45%, whereas in all the other countries, offshore wind CF ranges 
between 30 and 40%. Solar CF is more homogeneous across European 
countries ranging mostly between 10 and 20%, and being consistently 
higher at lower latitudes. The CF of onshore wind is more diverse across 
countries, ranging between 10 and 30%. The variability of solar is 
determined by its diurnal and seasonal cycles, both of which are ho-
mogeneous within the same hemisphere, but stronger at higher lati-
tudes. Countries farther away from the equator tend to have higher 
coefficients of variation (Fig. 2b), ranging between 1.3 and 1.7. Wind 
has softer diurnal and seasonal cycles, and more heterogeneity across 
countries. Variability is therefore usually lower for wind than for solar. 

Wind power technologies are developing, both by introducing new 
turbine designs that provide higher CF, and by expanding to new areas 
in seas and oceans that were previously beyond reach [53]. For this 

reason, we combine the current data presented in section 3.1 and Fig. 2 
with projections of future wind CF according to these expected de-
velopments. Fig. 3 shows the current and expected future CF and coef-
ficient of variation for wind power across countries. Wind CF are 
expected to remain constant or increase in all countries except Finland 
and Romania that will experience a slight decline. Likewise, the coeffi-
cient of variation remains constant or decreases for all countries except 
Finland and Poland. 

In summary, we work with 4 different datasets of simulated hourly 
capacity factors for 30 years in European countries: (i) current solar, (ii) 
current aggregated wind, (iii) current wind disaggregated into onshore 
and offshore, and (iv) future aggregated wind. The full dataset contains 
more than 21 million observations. We exploit the richness of these data 
to derive insights about renewable energy complementarities across 
three dimensions: spatial, temporal and technological. The data and 
replication code are publicly available (see Data availability section). 

3.3. Technological and geographical complementarity 

Different regions have different generation patterns. For this reason, 

Fig. 2. Capacity factor (a) and coefficient of variation (b) per country and technology sorted in descending order of the average across technologies.  
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integrating areas with opposite generation patterns would smoothen the 
aggregate generation profile. Our aim is to identify and quantify the 
complementarities between VRE technologies to achieve a less variable 
generation pattern at the highest possible capacity factor (and thus 
lower unit cost, ceteris paribus). These complementarities can be ach-
ieved by combining two technologies with opposite generation patterns 
in the same regions (Fig. 4), or by integrating regions with opposite 
generation patterns (Fig. 5). 

Wind and solar power are complementary as their generation pro-
files have a negative correlation. Fig. 4 shows wind-solar complemen-
tarity depending on the timescale for each European country. The larger 
the timescale, the higher the complementarity between both technolo-
gies (i.e. stronger negative correlation). Solar and wind are very com-
plementary at the seasonal level, due to summer having lowest wind 
speeds but highest irradiance, and vice versa during winter. 

Solar generation is homogeneous across countries (Fig. 5a), so spatial 
integration of solar resources helps reduce short-term intermittency but 
does not provide significant synergies at higher timescales. On the 
contrary, wind generation is more location-specific (Fig. 5b), so 
combining regions with opposite patterns smooths the aggregate 

generation profile. Figs. 4 and 5 show that the combination of wind and 
solar can reduce the overall seasonality of VRE generation and, to a 
lesser extent, also reduce daily and hourly variability. The integration of 
solar energy across countries in Europe is not likely to bring significant 
benefits due to the highly correlated generation patterns across coun-
tries, but wind power integration can bring benefits thanks to the higher 
heterogeneity of wind generation patterns across countries. The rest of 
this paper formalizes this analysis by adapting modern portfolio theory 
to quantify these potential benefits. 

4. Method 

4.1. Mean-variance framework 

Our goal is to optimize the trade-off between high renewable gen-
eration per unit of installed capacity (CF) and low variability (SD). For 
this purpose, we combine installed capacities of different VRE (wind 
onshore and offshore and solar) across countries. In this framework, the 
equivalent to an asset in the traditional modern portfolio approach is the 
installed capacity of each technology in each country, and the asset’s 

Fig. 3. Capacity factor (a) and coefficient of variation (b) per country for wind power at the current and future timeframe sorted in descending order of the average 
across timeframes. 
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weight in the portfolio is the share of installed capacity of the specific 
technology in a country with respect to the total installed capacity in the 
system. In summary, we want to obtain a portfolio of VRE installed 
capacities across countries that minimizes SD for each attainable CF. The 
expected CF of the portfolio (E(CFp)) is simply the weighted average of 
each technology-country (i) expected capacity factor (E(CFi)) times the 
share of this technology-country on the total installed capacity (Xi): 

E
(
CFp

)
=

∑N

i=1
XiE(CFi)

Likewise, the portfolio SD (σp) is the sum of each asset’s SD weighted 
by its share over the total portfolio and the covariance of each pair of 
assets weighted by their respective shares: 

σp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
X2

i σ2
i +

∑N

i=1

∑N

j=1

j∕=i

XiXjpijσiσj

√
√
√
√
√
√
√

where X are the ith and jth assets’ weights (i.e. the share of installed 
capacity of a technology in a country) for the N technology-country 

combinations, σi are their respective standard deviations and pij are 
the correlations between the ith and jth assets. 

We thus want to identify the weights of the assets (Xi) that minimize 
the portfolio standard deviation σp subject to a “full-investment” 
constraint (i.e. the sums of weights must be 1), a non-negativity 
constraint (i.e. the shares of installed capacities have to be zero or 
positive), and for each attainable CF that we set exogenously iteratively 
to build an efficient frontier of portfolios that have the minimum 
possible variability for each expected CF. 

Min(σi)

s.t.
∑N

i=1
Xi = 1;  

Xi ∈R ≥ 0;  

E
(
CFp

)
= c  

where c is a vector of attainable portfolio expected CF. 
The result of this optimization is a vector of shares of installed ca-

Fig. 4. Correlation between solar and wind capacity factors at hourly, daily and monthly timescales within each country, sorted in descending order.  
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pacities per country and technology. We can build an efficient frontier 
with all the portfolios with the minimum possible SD for each attainable 
CF. By comparing this efficient frontier with each country’s CF and SD in 
autarky, we can quantify the potential benefits of combining technolo-
gies and integrating the VRE generation profile of different countries in 
terms of higher generation per unit of installed capacity (CF) and lower 
variability (SD). Within this frontier, the technical optimum is the 
portfolio with the highest possible CF per unit of variability (SD), or 
equivalently, with the lowest possible coefficient of variation (CV =

SD/CF). This method has the advantage of being simple and requiring 
only hourly CF data. For this reason, this method can easily be applied to 
other locations and at different resolutions as long as CF data are 
available. We focus on Europe because of its potential to integrate a 
continental-scale electricity grid [54], but similar approaches have also 
been applied in other countries (see Table 1). 

Once we have calculated the efficient portfolios, we calculate their 
LCOE as the average of wind and solar costs weighted by their shares in 
the portfolio with the simplified LCOE formula: 

LCOE =
CRF⋅IC + O&M

8760⋅CF  

CRF =
i(1 + i)n

(1 + i)n
− 1  

where the capital recovery factor (CRF) is the ratio (depending on the 
interest rate i and the period of the investment n) by which we multiply 
the total installation cost (IC) to obtain the annualized capacity cost. The 
numerator of the LCOE is therefore the total average annual cost, 
including the annualized capacity cost (CRF⋅CC) and the fixed operation 
and maintenance cost (O&M), and its denominator is the annual gen-
eration, i.e. the number of hours of the year multiplied by the average 
CF. 

For the LCOE calculation, we assume a capacity cost of 790 $/kW for 
solar and 1540 $/kW for wind and a fixed annual operation and main-
tenance cost of 11.4 and 39.1 $/kW per year for solar and wind, 
respectively. These values correspond to the 2020 costs for photovol-
taics and wind onshore according to the IEA Net Zero report [12]. We 
assume a 5% interest rate and 25 years lifetime and the same costs across 
countries and for both current and future scenarios. Whereas this is a 
simplification of reality, it helps us identify the benefits provided by 
wind-solar complementarities excluding all other factors. Assuming the 

same costs for both current and future scenarios overestimates the LCOE 
of the future portfolios, as VRE costs are expected to decline, but isolates 
the effect of the improvements in CF and SD and the optimization pro-
cess from overall cost trends and potential prediction errors if we 
included future cost projections. 

4.2. Research design 

The combination of high temporal (hourly for 30 years), spatial 
(country-level for Europe) and technological (wind onshore and offshore 
and solar) resolution of our dataset allows us to study how different 
strategies optimize the CF-SD trade-off. First, we see the impact of 
aggregating capacities of the same technology across countries, with 
current data and also with the projected future evolution of wind power. 
Then we study the complementarity between wind and solar technolo-
gies, both within and across countries. To see the marginal benefits of 
increasing levels of integration, we define 3 incremental spatial con-
figurations according to the evolution of the market coupling integration 
process in Europe. The Central West Europe (CWE) market coupling 
mechanism was launched in 2010 including the Benelux, France and 
Germany. In 2014, the North-Western Europe (NWE) system integrated 
CWE, Great Britain, the Nordics and the Baltics. The largest configura-
tion is the pan-European, including all countries available in each 
dataset and labelled simply as “Europe”. 

We analyse these dynamics at three different temporal scales: hourly, 
daily and monthly. The hourly level is the most relevant because elec-
tricity supply and demand have to be balanced continuously to keep the 
grid’s stability. Hourly resolution would capture the challenges posed by 
short-term intermittency (such as that caused by clouds for solar) and 
the diurnal cycle. Current energy storage technologies are well-suited to 
balancing this short-term variability, but the lack of economically-viable 
technologies with discharge durations above 24 h [8] makes the 
monthly timescale relevant, as it shows the seasonal complementarity 
between countries and technologies. Between these extremes we also 
consider the daily timescale, which removes the diurnal solar cycle and 
captures medium-term variability (i.e. windy vs calm and cloudy vs 
clear days). We mainly focus on the two extreme timescales: hourly and 
monthly and provide the daily-scale results in the appendix. 

Finally, we will focus on the European Union in Section 5.3 (plus 
Great Britain because it is well connected to the continental electricity 
system and minus Cyprus and Malta for the opposite reason) to evaluate 

Fig. 5. Correlation of solar (a) and wind (b) capacity factors between countries.  
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the potential benefits of spatial integration and deployment coordina-
tion to maximize capacity factor at the minimum possible variability. 
We compare the actual current installed capacities with those projected 
with the EU-reference scenarios, and with the current and future optimal 
portfolios according to the mean-variance framework outlined above. 

5. Results 

5.1. Spatial integration of individual technologies across countries 

First, we evaluate the potential benefits of integrating the generation 
patterns of a single technology across countries. We present the results 
for wind and solar technologies, for hourly and monthly timescales, and 
for estimates of both current and future CF for wind. Fig. 6 shows the 
efficient frontiers for three increasing spatial configurations: Central 
West Europe (CWE: Benelux, France and Germany), North-Western 

Fig. 6. Efficient frontiers (lines) and optimal portfolios (highlighted point on each frontier) for solar (a–b) and wind (c–f) compared to countries in autarky. Current 
(a–d) and future (e–f) timeframes at hourly (a, c, e) and monthly (b, d, f) timescales. Note that the vertical axes are different for each row and the horizontal ones for 
each figure. See Figure A1 for daily timescale. CWE: Central West Europe. NWE: North-Western Europe. 
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Europe (NWE: CWE, the Nordics and the Baltics), and Europe (full 
dataset comprising the individual countries shown on each of the fig-
ures). Each of the lines represents the efficient frontier for each spatial 
configuration, i.e. the set of portfolios (shares of installed capacities per 
country) that have the minimum possible SD for each attainable mean 
CF. Each of the grey dots represents one country in autarky, i.e. the 
expected CF and SD of the specific technology in each country. The 
frontiers representing larger geographical areas tend to lay to the left 
and above the smaller configurations and the autarky points, repre-
senting lower variability and higher capacity factors, respectively. The 
highlighted point on each frontier represents the optimal portfolio, i.e. 
the shares of installed capacities per country that minimize the coeffi-
cient of variation (SD/CF). 

Fig. 6a shows the potential benefits of solar integration across 
countries at the hourly timescale. Because the generation pattern of 
solar is more homogeneous across countries, all the autarky points 
representing individual countries are close to each other, compared to 
the situation of wind (Fig. 6c), where the frontiers are farther apart from 
the autarky points, representing higher complementarities. If we drew a 
regression line on the hourly solar autarky points (Fig. 6a), the coeffi-
cient of determination would be much higher than for wind, and the 
position of each country along the regression line would be easily pre-
dictable with the higher latitude countries at the bottom-left with low CF 
and SD, and low latitude countries at the top-right with higher CF and 
SD at the hourly level. For these reasons, the benefits of solar spatial 
integration and deployment coordination, which are illustrated by the 
movement of the efficient frontiers left and upwards with respect to the 
autarky points, are limited even in the largest configuration including all 
of Europe. 

Whereas the correlation between CF and SD is usually positive, this 
relationship reverses for the case of solar at the monthly timescale (and 
also daily, see Appendix Figure A1). At hourly timescale, the countries 
with higher solar resource have higher peak generation at noon and zero 
at night, which explains the higher SD as the CF increases towards the 
equator. At the monthly level, however, countries with better solar 
resource generate more across all seasons and have lower seasonality 
towards the equator, giving lower variability compared to northern 
countries. For this reason, integrating solar across countries within the 
same hemisphere does not provide much benefits because all capacity 
would be allocated to the countries with the best resource, as they are 
better both in terms of higher CF and lower seasonal variability. 

Fig. 6c–d shows that the integration of wind resources across coun-
tries can provide potential benefits compared to each country in autarky 
due to the more heterogeneous generation patterns across countries 
(Fig. 5b). Additionally, the future projections for wind make spatial 
integration even more critical as the CF and consequently SD are ex-
pected to increase in the future (not necessarily the coefficient of vari-
ation if CF increases faster than its SD). The shape and magnitude of the 
future frontiers shed light on the increasing potential benefits of inte-
gration as CF and SD increase. 

As an example of how to interpret these figures, we can see that e.g. 
countries such as Spain, Sweden or Belgium have a similar expected 
wind CF in autarky to the optimal European portfolio for current wind 
(Fig. 6c). However, the optimal European portfolio can achieve that 
level of expected CF at only a fraction of the variability (SD) of any of 
these countries in autarky. This entails that the integration costs caused 
by variability would be lower in the optimal portfolio than the aggre-
gation of the integration costs caused by variability in each country in 
autarky. 

Whereas the highlighted points along the efficient frontiers represent 
the technical optima (i.e. the minimum coefficient of variation), 
decision-makers could favour other locations along the frontiers 
depending on the preferences regarding capacity allocation across 
countries and the cost of renewable capacity, transmission and alter-
native options for providing flexibility to mitigate output variability. 

Each point along the frontier represents different shares of installed 
capacities per country. The points towards the top of the frontier will 
tend to concentrate capacities in the countries with the highest CF (the 
extreme case, the highest CF portfolio is just 100% of the capacity 
installed in the country with the highest CF), whereas the portfolios 
towards the bottom of the frontier will tend to favour lower variability 
and thus the combination of countries with the most different generation 
patterns that can offset each other and therefore provide a more stable 
aggregate generation profile. 

In summary, these results confirm that (i) the integration of wind 
resources across countries provides more potential benefits than the 
integration of solar, (ii) the benefits of integration arise at all timescales 
from hourly to monthly, and (iii) the benefits of integration will become 
more relevant in the future as both CF and SD increase. 

5.2. Solar-wind complementarity within and across countries 

In this section, we further disaggregate wind into onshore and 
offshore, to see potential complementarities between these two types of 
wind and solar in improving the CF-SD trade-off. First, we optimize the 
share of each of the three technologies in autarky for the selection of 
countries shown in Fig. 7. Then we calculate the efficient frontiers and 
optimal portfolios with the same geographical configurations as in the 
previous section at both hourly and monthly timescales (daily results in 
the appendix). 

The grey points in Fig. 7a and c represent the CF and SD of the 
optimal portfolio of technologies for each country in autarky at hourly 
and monthly timescales, respectively, and Fig. 7b and d shows the cor-
responding shares of each technology per country. At the hourly time-
scale, the solar share is similar for the selected countries, within a range 
of 38–45% of the total. The remaining capacity is allocated to onshore 
and offshore wind, except in the Netherlands and Denmark, where 
offshore dominates and onshore does not have any installed capacity. At 
the monthly timescale, the share of solar is also similar across countries, 
but generally higher (~50–65%) than at the hourly level. At a monthly 
timescale, offshore mostly displaces onshore wind. At the daily time-
scale (Figure A2 in the Appendix), the shares of solar are even higher 
(~68–75%). In general (i.e. across the studied countries and timescales), 
there is a complementarity between wind and solar that, when deploy-
ing capacities at optimal levels, may help mitigate variability and thus 
integration costs. These results also confirm that the benefits of spatial 
integration are higher for the hourly than for the monthly timescale 
(shown by the fact that the autarky points are farther away from the 
efficient frontiers in the hourly than in the monthly figures). These re-
sults also show that integrating resources across countries (the frontiers) 
provides better results than countries in autarky (grey points), even 
when the shares of each technology are optimized. More importantly, 
because the optimal shares of each technology are similar across time-
scales, the combination of wind and solar capacities helps mitigate 
variability at the three timescales simultaneously. 

5.3. European Union 

The European Union (EU) has been developing a joint energy strat-
egy since the first Energy Union communication (COM/2015/080) in 
2015. As a result, electricity markets are becoming more integrated and 
countries are coordinating their policies towards decarbonization. In 
this context, the EU can further benefit from the coordination of VRE 
installed capacities to optimize the trade-off between high capacity 
factors and low variability, consequently reducing both levelized and 
integration costs. 

In this section, we compare the efficient frontiers and optimal port-
folios at the hourly timescale for the current and future expected wind 
and solar generation profiles with the actual current installed capacities 
and the planned wind and solar installed capacities according to the EU 
Reference scenarios. For our purposes in this section, we include the 27 
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Fig. 7. (a) Efficient frontiers (lines) and optimal portfolios (highlighted point on each frontier) including wind onshore and offshore and solar, compared to selected 
countries optimizing technological shares in autarky at the hourly timescale. (b) Optimal share of each technology for each of the selected countries in autarky. 
Panels (c) and (d) are equivalent to (a) and (b) at the monthly timescale. See Figure A2 for the daily timescale. CWE: Central West Europe. NWE: North- 
Western Europe. 

Fig. 8. (a) Efficient frontiers and optimal portfolios for deploying wind and solar power through Europe. Efficient frontiers are shown as lines and optimal portfolios 
are highlighted as a point on each frontier. Labels for each frontier indicate whether they use current or future capacity factors, and numbers in brackets indicate the 
capacity constraint (maximum/minimum capacities are the actual installed capacities multiplied/divided by the number in brackets, respectively). For comparison, 
the actual shares in 2020 and in the EU reference scenarios between 2020 and 2050 (each 5 years) are shown as grey points. All portfolios consider the EU-27 
including Great Britain and excluding Malta and Cyprus. Frontiers for the levelized cost of electricity (panel b) show the unconstrained current and future sce-
narios compared to the actual distribution of installed capacities. 
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EU members excluding Malta and Cyprus for their negligible intercon-
nection with the continent, and including Great Britain for the opposite 
reason. We will refer to this set of countries as the “EU” from now on. 
Because we do not have future solar data, solar capacity factors are 
assumed to remain the same as the current ones. 

Fig. 8a shows that with actual current (2019) wind and solar 
installed capacities across countries and using the simulated hourly CF 
data described above, the average CF of the aggregate EU VRE genera-
tion profile is 19% with a SD of 9%. The installed capacities projected in 
the EU reference scenarios between 2020 and 2050 (every 5 years) do 
not seem to consider the potential complementarities between countries 
and technologies in their planning, as they do not improve the CF-SD 
trade-off. Both the CF and SD of the EU reference scenarios are 
slightly higher (~20% CF and ~10 SD) than the actual current shares. 
However, optimally deploying wind and solar installed capacities across 
countries could achieve an aggregated generation profile that improves 
the actual situation both in terms of a higher CF (23.1%) and lower SD 
(6.7%). 

In summary, the integration of electricity systems across Europe and 
the deployment coordination of VRE installed capacities according to 
their complementarities has the potential to increase the expected CF by 
21.6% (4.1 percentage points) compared to the current situation and at 
the same time reduce generation variability (SD) by 25.6% (2.3 per-
centage points). This would significantly reduce system costs by 
lowering both levelized cost of generation (given the higher CF, 
assuming the same installation costs across countries) and integration 
costs (due to lower variability). In the future, the potential benefits of 
spatial integration and deployment coordination will be even higher due 
to increasing CF and SD. The optimal future portfolio could reach a CF of 
25.6% with a SD of 7.3%. 

By comparing the LCOE of a system with the actual current VRE 
installed capacities (black point in Fig. 8b) with the LCOE curves of the 
efficient frontiers, we can see the potential cost reduction of optimally 
deploying VRE capacities in the EU. The system cost is the sum of LCOE 
and integration costs. Integration costs are determined by wind and 
solar variability, but they are not straightforward because they depend 
on the capacity of the system to integrate variability (e.g. flexible ca-
pacity, demand response, available storage, etc.). For this reason, we 
illustrate LCOE in the vertical axis in relation to variability in the hori-
zontal axis, which may be interpreted as a proxy for integration costs. 
Quantifying the relationship between variability and integration cost 

would allow us to identify the economic optimum that minimizes the 
system cost beyond the technical optimum that maximizes the CF per 
unit of variability (i.e. minimizes the coefficient of variation). 

The optimal portfolios that maximize the CF per unit of variability 
(or equivalently minimize the coefficient of variation) are not usually 
feasible due to all kinds of real-life constraints, such as imperfect 
cooperation, political preferences regarding the distribution of installed 
capacities, capital constraints, etc. For these reasons, Fig. 8a also depicts 
a potential pathway by showing the future efficient frontiers and 
optimal portfolios constraining maximum and minimum installed ca-
pacities per country and technology departing from the actual current 
shares of VRE installed capacities per country and progressively relaxing 
the constraints until the final unconstrained future portfolio. The con-
straints are built such that the maximum relative installed capacity (i.e. 
the maximum asset’s weight in the portfolio) per country and technol-
ogy is the actual current capacity multiplied by a constant, and likewise 
the minimum is the current actual capacity divided by the same con-
stant. For instance, for a constant of 2, the maximum share of each 
technology-country installed capacity is twice the actual current share, 
and the minimum would be half as much. We do this for the values of 2, 
5, 10, and 100. This shows that the efficient future portfolios would need 
to have a radically different distribution of VRE installed capacities 
across countries from the actual current distribution. 

Fig. 9 shows the actual current installed capacities per technology 
and country (panel a, only shares >0.8% shown), compared to the 
shares in the current optimal (b) and the future optimal (c) portfolios. 
The main difference between actual and optimal portfolios is that 
whereas Germany has the highest share of VRE installed capacity in the 
EU with more than a third, Finland would be the country with the 
highest VRE shares in both the present and future optimal portfolios 
with high shares of both wind and solar. Spain has high VRE installed 
capacity, and would still play a main role in the current optimal port-
folio, but it would be substituted by Greece in the future. Portugal, 
Romania and Great Britain have high VRE shares in both the current and 
future optimal portfolios. 

Whereas solar capacities dominate the autarky optima (Fig. 7), wind 
capacities account for about 80% of the total in the optimal European 
configurations (Fig. 9). This is because wind patterns are more hetero-
geneous across countries than solar (Fig. 5), so the allocation of wind 
capacities across locations with complementary patterns provides more 
benefits than combining similar solar patterns. These results, however, 

Fig. 9. Shares of wind and solar per country: actual current installed capacities (a), optimal shares in the current (b) and future (c) scenarios.  
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represent only the technical optima solving the trade-off between ca-
pacity factor and variability. Economically optimal capacity shares in 
real life would differ due to the different cost between technologies and 
countries as well as the inclusion of additional evaluation criteria, such 
as transmission and storage costs and availability, etc. 

5.4. Limitations 

As the main goal of this study is to evaluate the complementarity 
between VRE technologies, the main limitation derives from the 
simplicity of the mean-variance framework, which only takes into ac-
count CF and SD as the relevant variables for capacity optimization. This 
simplicity allows us to uncover the potential benefits of VRE integration 
in the spatial, temporal and technological dimensions, but provide 
theoretical results that are not necessarily optimal when other relevant 
factors, such as the availability of dispatchable technologies, the po-
tential of demand flexibility or the cost of interconnection are taken into 
account. Additionally, because we assume the same installation costs 
across countries, our results show the potential benefits of integration 
and coordination across countries, but not the optimal capacity shares 
defined from a financial perspective, as that would require using real- 
world installation cost data which are not openly available. For a 
more comprehensive analysis, investment and dispatch models may 
provide more relevant insights of actual electricity systems. Further 
research could integrate additional factors, such as interconnection costs 
or constraints, into the mean-variance framework. 

Another limitation is related to the feasibility of such large in-
terconnections. While it may be difficult to expand transmission lines, 
the European Union is advancing towards a unified electricity market 
and has the objective of reaching 15% of interconnection capacity by 
2030 [54]. For this reason, even though there are implementation 
challenges, Europe is particularly well suited to achieve the first 
continental-scale electricity grid that could allow large scale integration 
and coordination among its members. 

6. Conclusions 

In this paper we develop a general framework for assessing the 
benefits of integrating renewable electricity generation across regions 
and different technologies. We use this framework to optimize the trade- 
off between achieving high generation output (and thus lower costs per 
unit of electricity), and low generation variability (and thus lower sys-
tem integration costs). We quantify the potential gains of spatial inte-
gration and deployment coordination across countries by identifying the 
portfolios of wind and solar installed capacities across countries that 
minimize variability for each attainable level of capacity factor, and 
then find the optimal portfolio that provides the maximum capacity 
factor per unit of variability (i.e. that minimizes the coefficient of 
variation). 

We find that the integration of solar resources across countries has 
limited benefits due to the homogeneity of solar generation within re-
gions in the same hemisphere. However, due to the more location- 
specific nature of wind patterns, the integration of wind resources can 

provide significant benefits. Optimally allocating the installed capacities 
of wind and solar across countries can bring substantial benefits in terms 
of higher capacity factors and lower variability. The optimal portfolio of 
wind and solar installed capacities across countries could improve the 
aggregate expected capacity factor by 21.6% (from 19% to 23.1%) and 
reduce its hourly variability by 25.6% (standard deviation declines from 
9% to 6.7%) in the European Union (including Great Britain and 
excluding Cyprus and Malta). 

Because we provide efficient frontiers in addition to the single 
optimal portfolio, and in relation to the autarky situation of each 
country individually, this framework allows us to evaluate near-optimal 
solutions that are more feasible in the real world. We also provide the 
technical benefits in terms of higher capacity factors and lower vari-
ability and economic benefits in terms of lower levelized cost in relation 
to variability, which is a proxy for integration cost. This framework 
could be extended by endogenizing costs into the optimization process 
and integrating the relationship between variability and integration cost 
to achieve the ultimate goal of minimizing system cost of high- 
penetration variable renewables electricity systems. As wind and solar 
will soon become the largest sources of electricity production both 
within Europe, and then worldwide, this framework can help identify 
the optimal combination of resources that maximize production and 
minimize variability, contributing thus to a faster and cheaper decar-
bonization process. 
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J. López Prol et al.                                                                                                                                                                                                                              



Energy 292 (2024) 130348

15

Appendix

Fig. A.1. Equivalent to Fig. 6 at daily timescale.   
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Fig. A.2. Equivalent to Fig. 7 at daily timescale.  
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