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ABSTRACT
The diagnosis and the study of the evolution of the COVID-19 is crucial to tackle the challenge that this 
disease represents for the health care services. Chest X-ray imaging allows to visualize the pulmonary 
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regions, where the COVID-19 causes its main affectation, being very useful. In order to reduce the risk of 
cross-contamination, crucial aspect in the pandemic, portable chest X-ray devices are advantageous being 
easier to decontaminate in comparison with the fixed machinery, despite offering a lower image quality. 
Furthermore, the recent emergence of the COVID-19 implies a data scarcity that must be tackled. In this 
chapter, we present the analysis of a strategy that generates novel synthetic portable chest X-ray images 
using the CycleGAN, an architecture for image translation that is trained with unpaired data. The novel 
set of images is then added to the original dataset, improving the performance of the classification model. 

Keywords: Computer-Aided Diagnosis, Deep Learning, Biomedical Imaging, Image Generation, 
CycleGAN, Image Translation, Computer Vision, Classification 

INTRODUCTION 
The COVID-19 is a pathology that can affect several parts of the body, while its main affectation is located 
on the respiratory tissues. The pathogen that causes this disease is known as SARS-CoV-2, a type of 
coronavirus, which is highly contagious, reason why it was rapidly spread worldwide forcing the World 
Health Organization to declare the COVID-19 as a global pandemic in 12th March 2020 (Ciotti et al., 2020). 
Currently, more than 242 million confirmed cases alongside more than 4.9 million deaths were reported 
worldwide (Coronavirus Resource Center, Johns Hopkins, 2020). There are several techniques to diagnose 
the COVID-19 but the gold-standard is the RT-PCR test (Tahamtan & Ardebili, 2020). However, it could 
be interesting for clinicians to have more information than the simple diagnostic provided by this technique. 
The main affectation of the COVID-19 is located in the pulmonary area and, therefore, chest X-ray imaging 
can be very useful to visualize this region to diagnose the pathology, to study its severity and to understand 
its evolution  (Jacobi et al., 2020), as it has been widely used in the last decades to diagnose other typical 
pulmonary diseases and detect pathological structures as is the case, for example, of the pneumonia  
(Fiszman et al., 2000), the tuberculosis  (Van Cleeff et al., 2005), the fibrosis  (Puderbach et al., 2007) or 
the lung nodules  (Wei et al., 2002). In the context of the COVID-19, this image modality can be used as a 
complement to the diagnostic result of the RT-PCR. With all these ideas into account, we can conclude that 
chest X-ray emerges as a powerful approach to visualize the affection of this pulmonary disease. Despite 
its lower quality in comparison with other advanced methods, as the Computerized Tomography (CT) 
(Hayden & Wrenn, 2009), the chest X-ray captures are easier and cheaper to perform. On the other hand, 
as the SARS-CoV-2 is easily spread, it is very important to decontaminate the capture devices. In the same 
way, many patients are bedridden and, therefore, it is impossible for them to move to the radiology room. 
To solve these problematics, radiologists are recommended to use portable chest X-ray devices instead of 
the fixed machinery (Kooraki et al., 2020), as this kind of devices are easier to decontaminate and can be 
moved to where the patient is placed. However, in some cases, clinicians could decide to use more advanced 
techniques that provide a more detailed visualization of the pulmonary regions if it is necessary, in order to 
have a more precise localization of the pathological structures, despite the higher cost and difficulty of the 
captures. This is the case of the CT, that provide a 3-dimensional visualization of the captured region.  

With the aim to reduce the workload of the healthcare services, the development of computer-aided 
diagnosis systems (CAD) is very relevant (Doi, 2007). To do so, in the last years, the deep learning 
strategies have emerged as powerful techniques to solve medical imaging problems very effectively 
(Suzuki, 2017). However, there are some challenges to tackle when dealing with image modalities as CT 
or chest X-ray. First of all, the inferior level of detail and quality of the chest X-ray images implies that find 
representative patterns of the pathological affectation is more difficult (aspect that is even more accused in 
the case of the captures provided by the portable chest X-ray devices). Secondly, in the case of the CT 
images, despite the higher quality and higher detail of the captures, the methods are inherently more 



complex to develop. A CT image is a conjunction of different X-ray images that are captured with different 
angles. Then, this set of different captures can be merged to create a 3-dimensional representation, in this 
case, of the chest, where each X-ray capture represents a 2-dimensional slice. The difficulty of the analysis 
process mainly emerges from the fact that only certain slices are useful to perform a study of the affectation 
of the disease. Therefore, one part of the methodological proposal must be to remove all the slices that are 
useless for the process. Moreover, both biomedical image modalities are affected by the issue of data 
scarcity. Deep learning models need datasets with large-scale dimensionality to be trained and provide 
effective results. However, it is well-known that in many biomedical imaging domains, the data scarcity is 
a very important problematic to deal with. In the case of the COVID-19, that has emerged very recently in 
contrast with other common pulmonary diseases, the aspect of data scarcity is even more important. 

In this chapter, we explore a methodology developed for the automatic COVID-19 screening using chest 
X-ray images captured using with portable devices, providing the expert clinicians an automatic tool to 
reduce their workload in the global pandemic. Due to the recently emergence of this disease, the available 
data used for training the classification models is scarce. To overcome that data scarcity, the methodology 
can be splitted in 2 different parts. The first step performs a synthetic image generation with the CycleGAN, 
an image translation model (i.e., a model that can convert images from a source scenario to another different 
target scenario) considering 4 different configurations for the generative models: an Unet-128 (Unet with 
7 downsampling blocks), Unet-256 (Unet with 8 downsampling blocks), ResNet-6 (ResNet with 6 residual 
blocks) and ResNet-9 (ResNet with 9 residual blocks). Then, this set of generated images is added to 
original dataset. For the second step of the methodology, the augmented dataset is used to train the screening 
model, while the test is performed using only original images. Apart from data scarcity, the screening 
models must deal with the lower quality and lower level of detail of the images provided by the portable 
chest X-ray devices, in contrast with the fixed machinery. The methodology proposed on that work provides 
a reliable and robust method for COVID-19 screening despite the mentioned issues.  

This chapter is structured as follows: The Background section talks about the techniques that can be found 
on the state of the art for COVID-19 screening or related tasks using chest X-ray and chest CT images, as 
well as some works that develop methodologies for image generation as data augmentation strategies. The 
Synthetic Image Generation and COVID-19 Screening with The Augmented Dataset section describes the 
dataset used for the development of the reference work, the proposed methodology, the experimental 
validation design and the obtained results with their correspondent discussion. The Solutions and 
Recommendations section proposes some of the possible solutions to tackle the problematics that appeared 
during the progress of the developed methodology. The Future Research Directions talks about the possible 
directions that could be follow in the research line that is related with this chapter, as the applications of 
synthetic image generation for biomedical imaging analysis. Finally, in Conclusion, we talk about the most 
important facts extracted from the analyzed topic and the studied methodology. 

 

BACKGROUND 
As chest X-ray and CT imaging are useful to diagnose a variety of diseases, many efforts have been done 
to develop CAD systems able to help clinicians while using this kind of biomedical imaging modalities, 
using classical computer vision techniques and classical machine learning strategies. As reference, the work 
from (Kumar et al., 2014) obtains a set of features from Gabor filtering that are then used as input for a 
classification model, which in this case is a Support Vector Machine (Cortes & Vapnik, 1995), with the 
aim of distinguishing between normal and pulmonary edema. The contribution of (Novo et al., 2015) 
proposes the use of the central adaptive medialness (Krissian et al., 2000), which is a method for detecting 



tubular structures in 3D images, for selecting lung nodule candidates on CT images. In another proposal 
(Novo et al., 2014), the authors used a dataset of thoracic CT images to perform a reliable lung segmentation 
using different region growing approaches, including the juxtapleural nodules. The work from (Yan et al., 
2012) proposes the development of a methodology for the lung segmentation task using chest X-ray images 
with the support of landmarks learned from manual annotation. The proposal of (Gonçalves et al., 2017) 
extracts a set of features from a nodular image region that is used as the input of classical machine learning 
classifier methods as Support Vector Machines and k Nearest Neighbors (Hwang & Wen, 1998) to compute 
the malignancy likelihood of a lung nodule. In this case, the authors use the dataset Lung Image Database 
Consortium (Armato III et al., 2011), that is composed of both CT and chest X-ray images. 

With regards to data scarcity, many contributions have addressed the possible approaches to tackle this very 
relevant problematic. The most conventional data augmentation techniques are based on applying trivial 
transformations on images as random rotations or translations, among many other possible kinds of 
transformations (Wang et al., 2017). However, these data augmentation strategies can be insufficient to 
represent the notable variability of a specific medical imaging domain. In the last years, many works have 
proposed the image generation as a powerful data augmentation technique. Particularly, the Generative 
Adversarial Networks (GANs) are one of the most used network architectures for image generation 
(Creswell et al., 2018). One specific GAN architecture is the Cycle Consistent Adversarial Network, often 
denoted as CycleGAN (Zhu et al., 2017). The CycleGAN is an image translation model which is able to 
convert images from a scenario A to its hypothetical version in a scenario B and vice versa. The motivation 
of using the CycleGAN in this problem is due to the fact that this model is able to deal with unpaired 
datasets, in contrast with other translation models that are specifically designed for paired data. In the 
context of the chest X-ray imaging, GAN models have been used to solve data scarcity problems in some 
specific cases. As reference, the work from (Zhang et al., 2020) uses a GAN to perform organ segmentation 
in chest X-ray images in an unsupervised manner. The contribution of (Xu et al., 2020) uses GANs to 
recover high resolution chest X-ray images from low resolution images in a super-resolution fashion. The 
work from (Malygina et al., 2019) demonstrates the use of the CycleGAN to improve the pathology 
prediction in several different scenarios as pneumonia or fibrosis. With regards to the topic of this chapter, 
the work from (Morís et al., 2021a) demonstrates the suitability of image translation in the context of the 
COVID-19 screening using images provided by portable chest X-ray devices.  

In the case of the automatic screening using chest CT imaging datasets, there are relevant contributions of 
CAD systems to help clinicians in the diagnostic processes. As reference, the work from (Xie et al., 2019) 
uses deep learning for lung nodule classification in 2 different classes, benignant and malignant, obtaining 
an accuracy of 91.60% and an AUC of 95.70%. The contribution of (Shadmi et al., 2018) proposes a deep 
learning strategy for coronary calcium segmentation, an important biomarker to measure the severity of 
cardiovascular diseases. The proposal of (Li et al., 2019) is developing a method for a fast pneumotorax 
detection in chest CT images, obtaining a 100% of sensitivity and an 82.5% of specificity. There are also 
other works that propose methods for image generation, to improve the performance of the screening 
systems. As reference, the work from (Han et al., 2019) uses a deep model based on the GAN paradigm to 
generate synthetic chest CT images with lung nodules. On the other hand, with regards to the main topic of 
this chapter, there are also many interesting works that proposes methods for COVID-19 detection and 
image generation working with chest CT images. As reference, the work from (Zheng et al., 2020) uses 
weakly-supervised deep learning models to detect COVID-19 in chest CT images, obtaining a ROC AUC 
of 0.959. Furthermore, the work from (Acar et al., 2021) tackles the problem of data scarcity using a GAN 
architecture to improve the performance of the COVID-19 screening in chest CT images. 



On the other hand, many contributions have addressed other important tasks directly or indirectly related 
with COVID-19 screening on chest X-ray datasets. As reference, the work from (Vidal et al., 2021) uses a 
transfer learning framework to reuse the knowledge extracted from other different and well-known domain 
with a great number of samples to adapt it to the COVID-19 chest X-ray imaging domain, where data is 
much more scarce, in order to perform a reliable lung segmentation. The work from (Basu et al., 2020) uses 
transfer learning to develop a reliable automatic COVID-19 screening method. The contribution of (Misra 
et al., 2020) uses an ensemble of 3 different ResNet pretrained models to classify in 3 different classes: 
Normal, Pneumonia and COVID-19. (De Moura, Novo, et al., 2020) developed a methodology to perform 
an automatic COVID-19 screening using publicly available data of chest X-ray imaging. The work of (De 
Moura, García, et al., 2020) proposes the use of a classification model for the COVID-19 screening, 
considering a dataset of chest X-ray images captured with portable devices. Moreover, the work of (Morís 
et al., 2021b) proves the utility of adding a novel set of synthetic images generated with the method 
proposed on the above-mentioned work from the same authors, to the original dataset in the context of the 
COVID-19 screening. A work from the same authors (Morís et al., 2021c) proves the potential of training 
with a larger amount of portable chest X-ray imaging data.  

SYNTHETIC IMAGE GENERATION AND COVID-19 SCREENING WITH THE 
AUGMENTED DATASET 

In order to develop this methodology, the authors used a portable chest X-ray imaging dataset provided by 
the Radiology Service of the Complexo Hospitalario Universitario de A Coruña (CHUAC). In this line, the 
authors used a private dataset provided by a local public hospital institution, the Complexo Hospitalario 
Universitario de A Coruña (CHUAC). This dataset is divided in 3 different classes: Normal, Pathological 
and COVID-19. The class Normal is composed of patients without signs of pulmonary affectation that, 
however, can present other kinds of pathologies. The class Pathological is composed of patients that present 
pulmonary affectation caused by pulmonary pathologies different from COVID-19, but with compatible 
symptomatology. Lastly, the COVID-19 class refers to all the genuine COVID-19 cases. Examples of these 
images for each class are depicted in Figure 1. The dataset is balanced as is composed of 240 Normal cases, 
240 Pathological cases and 240 COVID-19 cases. The images have variable resolutions that can be 1523 X 
1904, 1526 X 1753, 1526 X 1754, 1526 X 1910, 949 X 827, 950 X 827 and 950 X 833 pixels. Those images 
were provided by 2 different models of portable chest X-ray devices: the Agfa dr100E GE and the Optima 
Rx200. 

 

Figure 1: Representative examples for each class of the dataset. (a) Normal sample. (b) Pathological 
sample. (c) COVID-19 sample. 



With regards to the proposed methodology itself, that is schematically described in Figure 2, the process is 
divided in 2 different parts where the first part of the methodology is in charge of the synthetic image 

generation that is performed using an image translation model (and is described in detail in Subsection 
Image Generation for Data Augmentation) and where the second part of the methodology uses the novel 
set of synthetic images to artificially increase the size of the original input dataset (and is described in detail 
in Subsection Automatic Screening). 

 

Image Generation for Data Augmentation 

Figure 2: Overview of the methodology for data augmentation and COVID-19 screening using portable 
chest X-ray images. The first part performs the image generation while the second part performs the 
automatic COVID-19 Screening. 



The CycleGAN is composed of 2 different generative models (GAB and GBA) and 2 different discriminative 
models (DA and DB). Its schematical representation can be seen in Figure 3. The model GAB is trained to 
translate images from a domain A to its correspondent representation in domain B. On the other side, the 
model GBA is trained to translate images from a domain B to a domain A. In addition, the discriminative 
model DA is trained to distinguish original images from domain A and fake images generated by GBA while 
the discriminative model DB is trained to distinguish original images from domain B and fake images 
generated by GAB. Therefore, the image translation is performed in 3 different scenarios: the first one 
converts from Normal to Pathological and vice versa, the second one converts from Normal to COVID-19 
and vice versa while the third one converts from Pathological to COVID-19 and vice versa. Moreover, in 
the case of the considered reference work, authors used 4 different configurations for the generative model: 
Unet-128, Unet-256, ResNet-6 and ResNet-9 (those that were allowed by the CycleGAN original 
implementation). With regards to the discriminative models, a 70 X 70 PatchGAN is used as the architecture 

in both cases. Thanks to the implementation of the CycleGAN, both generative and discriminative models 
are trained simultaneously for the 2 possible pathways on each case. 

When all models are trained, GAB and GBA can be used to perform the image translations. Therefore, if we 
consider the class Normal as the domain A and the class Pathological as the domain B, the model GAB is 
able to convert Normal images to their Pathological version while the model GBA converts the Pathological 
images to their Normal version. The same idea applies for the other remaining 2 scenarios. The CycleGAN 
is complex to train, needing the definition of several different types of losses. With regards to this, there 
are 2 loss definitions: the adversarial loss and the cycle consistency loss. The adversarial loss is computed 
using the least-square loss to compare the predicted and the expected output. The expression of the 
adversarial loss is shown in Equation 1:  

 

Figure 3: Overall description of the CycleGAN architecture for image generation. In this schematic 
representation, the class Normal is assumed as the domain A and the class COVID-19 is assumed as the 
class B. 



𝐿𝐺𝐴𝑁 = (𝐺𝐴𝐵, 𝐷𝐵, 𝐴, 𝐵) = 𝐸𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎) [(𝐷𝐵(𝐺𝐴𝐵(𝑎)) − 1)
2
] (1) 

where a denotes a particular original image that belongs to domain A and the generative model GAB and the 
discriminative model DB are used as reference,  

In addition, the discriminative models must be trained to minimize the expression stated in Equation 2 
taking the case of DB as reference and considering b as an original image that belongs to domain B:  

𝐿𝐺𝐴𝑁(𝐺𝐴𝐵 , 𝐷𝐵) =
𝐸𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎)

[(𝐷𝐵(𝐺𝐴𝐵)(𝑎))
2
]+𝐸𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏)[

(𝐷𝐵(𝑏)−1)
2]

2
 (2) 

On the other hand, the model defines the cycle consistency loss. This expression adds 2 weight values, 𝜆𝐴 
and 𝜆𝐵. The weight value 𝜆𝐴 refers to the path that converts images from domain A to domain B and then 
to domain A again while the weight 𝜆𝐵 refers to the path that converts images from domain B to domain A 
and then to domain B again. The expression of the cycle consistency loss is stated in Equation 3:  

𝐿𝑐𝑦𝑐(𝐺𝐴𝐵 , 𝐺𝐵𝐴, 𝜆𝐴, 𝜆𝐵) = 𝜆𝐴 · 𝐸𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎)[||𝐺𝐵𝐴(𝐺𝐴𝐵(𝑎)) − 𝑎||1] 

+𝜆𝐵 · 𝐸𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏)[||𝐺𝐴𝐵(𝐺𝐵𝐴(𝑏)) − 𝑏||1] (3) 

Given an original image a from the domain A the idea of cycle consistency is that, if we convert that image 
to the domain B using the generative model GAB and, afterwards, we use that output as the input of the 
generative model GBA to convert the synthetic image from the domain B to the domain A, the final output 
image (denoted as Cycle A) must be the same as the original a. In other words, this means that a must be 
equal to Cycle A = GBA(GAB(a)). 

Finally, the used implementation of the CycleGAN also uses another loss expression, which is known as 
identity loss. This loss value is used to prevent the model to perform undesired transformations on images. 
Given an image a from the domain A, the idea of identity loss is that, if we use that image as the input of 
the generative model GBA, the model should obtain the same exact image (that can be denoted as idt_A). In 
other words, this means that a must be equal to idt_A = GBA(a). Considering all these aspects, the identity 
loss is expressed as can be seen in Equation 4.  

𝐿𝑖𝑑𝑡(𝐺𝐴𝐵, 𝐺𝐵𝐴, 𝜆𝐴, 𝜆𝐵) = 𝐸𝑎~𝑝𝑑𝑎𝑡𝑎(𝑎)[||𝐺𝐵𝐴(𝑎) − 𝑎||1]𝜆𝐴 · 𝜆𝑖𝑑𝑡 

+𝐸𝑏~𝑝𝑑𝑎𝑡𝑎(𝑏)[||𝐺𝐴𝐵(𝑏) − 𝑏||1] · 𝜆𝐵 · 𝜆𝑖𝑑𝑡 (4) 

where 𝜆𝑖𝑑𝑡 gives a weight value to the identity loss in the final objective expression. With all the loss 
functions defined, the joint expression is shown in Equation 5.   

𝐿(𝐺𝐴𝐵, 𝐺𝐵𝐴, 𝐷𝐴, 𝐷𝐵, 𝜆𝐴, 𝜆𝐵, 𝜆𝑖𝑑𝑡) = 𝐿𝐺𝐴𝑁(𝐺𝐴𝐵 , 𝐷𝐵, 𝐴, 𝐵) + 𝐿𝐺𝐴𝑁(𝐺𝐵𝐴, 𝐷𝐴, 𝐵, 𝐴)

+𝐿𝑐𝑦𝑐(𝐺𝐴𝐵, 𝐺𝐵𝐴, 𝜆𝐴, 𝜆𝐵) + 𝐿𝑖𝑑𝑡(𝐺𝐴𝐵, 𝐺𝐵𝐴, 𝜆𝐴, 𝜆𝐵, 𝜆𝑖𝑑𝑡)
 (5) 

Therefore, to update the networks weights, the expression defined in Equation 6 must be optimized:  

𝐺𝐴𝐵*, 𝐺𝐵𝐴* = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺𝐴𝐵 ,𝐺𝐵𝐴

𝑚𝑎𝑥
𝐷𝐴,𝐷𝐵

𝐿(𝐺𝐴𝐵 , 𝐺𝐵𝐴, 𝐷𝐴, 𝐷𝐵, 𝜆𝐴, 𝜆𝐵, 𝜆𝑖𝑑𝑡) (6) 

Other important training detail is that all the input images are resized to 256 X 256 X 3. Moreover, the 
CycleGAN models are all trained during 250 epochs with the Adam algorithm (Kingma & Ba, 2014) and a 
mini-batch size of 1. In terms of the optimization algorithm parameters, the authors use a constant value of 
learning rate of α=0.0002. Finally, an important aspect that must be noted is that all the images of the input 
dataset were used with the aim of training the CycleGAN models.   



 

Automatic Screening 

For the second part of the methodology, the new set of synthetic images is added to the training set of the 
COVID-19 screening. Therefore, the model is trained with a higher amount of data while the test is 
performed using only original images, in order to have a fair comparison against previous state of the art 
methods. The automatic COVID-19 screening is performed to prove 2 different hypotheses. First of all, it 
is used to measure the separability among the synthetic images generated for the 3 different above-
mentioned scenarios (i.e., Normal vs Pathological, Normal vs COVID-19 and Pathological vs COVID-19). 
The second hypothesis to prove is that using the novel set of synthetic images can improve the performance 
of the screening model. 

In order to develop this COVID-19 screening method, the reference work adapts the training details 
designed for a previous approach. Particularly, for the classification task, authors use a Densely Connected 
Convolutional Network (DenseNet) as the network architecture (Huang et al., 2017), more precisely, a 
DenseNet-161. All screening models were trained during 200 epochs, optimizing with the Stochastic 
Gradient Descent Algorithm (SGD) (Ketkar, 2017) and a constant learning rate of α = 0.01 with a first-
order momentum of 0.9. Moreover, a mini-batch size of 4 was used, the input dataset is randomly splitted 
in 3 different sets, using a 60% of the samples for training, 20% of the samples for validation and the 
remaining 20 % of the samples for test and the training process is conducted 5 times. To have a global 
metric representative of the models behavior, given the values of the 5 repetitions, the mean and the standard 
deviation are obtained. Furthermore, the loss function used to train the screening model was the cross-
entropy, which is defined in Equation 7:  

𝐿 = −𝑌 · 𝑙𝑜𝑔(Ŷ) (7) 

 

Results and discussion 

To validate the methodology, authors made a qualitative analysis of the generated synthetic images and 
they performed 5 different experiments with the automatic screening method as well as an additional sixth 
experiment, that are briefly described below: 

 1st experiment: validates the separability between the class Normal and the class Pathological using 
only generated images.  

 2nd experiment: performs the separability validation between the class Normal and the class 
COVID-19 using only generated images. 

 3rd experiment: studies the separability between the class Pathological and the class COVID-19 
using only generated images. 

 4th experiment: the screening model is trained with the augmented dataset (composed of both 
original and generated images) but tested only with original images to separate between the class 
NON-COVID-19 (that merges the class Normal with the class Pathological) and the class COVID-
19. 

 5th experiment: ablation study to understand the behavior of the screening model given the number 
of generated images.  



 6th experiment: qualitative analysis of the synthetic generated images. 

To make the experimental validation, authors used metrics that are usually used in the state of the art. 
Denoting TP as True Positives, TN as True Negatives, FP as False Positives and FN as False Negatives, 
accuracy is expressed in Equation 8, recall is stated in Equation 9, precision is shown in Equation 10 and 
F1-Score can be seen in Equation 11.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ·
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (11) 

Moreover, authors complement the experimental validation with the correct classification and the 
misclassification ratios obtained from confusion matrices representative of each experiment and each 
generative model configuration. 

 

1st Experiment: Separability Between Normal and Pathological (Only Generated Images) 

Considering the test results of the first experiment (that validates the separability between the generated 
Normal samples and the generated Pathological samples), in terms of accuracy, the screening models obtain 
a 95.83%, 97.92%, 100.00% and 96.88% for each of the generative models configurations, respectively, 
Unet-128, Unet-256, ResNet-6 and ResNet-9. On the other hand, precision, recall and F1-Score of this first 
experiment are depicted in Figure 4. There, it can be seen that all metrics are equal or over 96% and, even 
in some cases, values are 100%, demonstrating the robustness of the method. Moreover, Figure 5 depicts 
the confusion matrices for the third experiment, where it can be seen that the correct classification ratios 
are satisfactory for both Normal class and Pathological class with all the 4 configurations, being higher or 
equal than 96% in all cases. 



 

Figure 4: Metrics values in the case Normal vs Pathological (separability among generated images). (a) 
Values obtained for the Normal class. (b) Values obtained for the Pathological class. 

 



 

Figure 5: Confusion matrices of the 1st experiment given the 4 CycleGAN configurations that were selected. 
(a) Unet-128. (b) Unet-256. (c) ResNet-6. (d) ResNet-9. 

 

2nd Experiment: Separability Between Normal and COVID-19 (Only Generated Images) 

With regards to the test results of the second experiment, the separability between the Normal class and the 
COVID-19 class is proved, as it can be seen in Figure 6. In particular, once again, all values are close to 
100%. The same happens with regards to the accuracy values and, in the same order as in the previous case, 
the screening models obtained a 94.79%, 100.00%, 96.88% and 96.88%. For this case, the confusion 
matrices are shown in Figure 7 where it can be seen that the correct classification ratio is always higher or 
equal than 94% for both classes and with all the configurations. 



 

Figure 6: Metrics values in the case Normal vs COVID-19 (using only generated images). (a) Metrics 
values obtained for the Normal class. (b) Metrics values obtained for the COVID-19 class. 

 



 

Figure 7: Confusion matrices results achieved during the 2nd experiment showing the 4 CycleGAN 
configurations that were chosen. (a) Unet-128. (b) Unet-256. (c) ResNet-6. (d) ResNet-9. 

 

3rd Experiment: Separability Between Pathological and COVID-19 (Only Generated 
Images) 
In terms of test results for the third experiment, Figure 8 has the metrics values for this experiment, showing 
that all cases are significantly close to 100% in a similar way as in the previous cases. Accuracy values 
have an identical behavior with a 98.96%, 100.00%, 97.92% and 100.00% considering the same order as 
in the previous cases. The confusion matrices that are shown in Figure 9 depict similar results as those seen 
in previous experiments. The correct classification ratios are significantly high for both classes and for all 
the 4 configurations considered for the image generation. 



 

Figure 8: Metrics in the case Pathological vs COVID-19 (separability among generated images). (a) 
Normal class. (b) COVID-19 class. 

 



 

Figure 9: Confusion matrices results for the 3rd experiment with regards to the 4 CycleGAN configurations 
that were taken into account. (a) Unet-128. (b) Unet-256. (c) ResNet-6. (d) ResNet-9. 

 

4th Experiment: Separability Between NON-COVID-19 and COVID-19 (Augmented 
Dataset) 

Finally, the fourth experiment is the one that trains with the augmented dataset. In this experiment, the 
Normal class and the Pathological class are merged together to create a new NON-COVID-19 class, while 
the original COVID-19 class remains the same. For this last experiment, test results demonstrate that the 
automatic COVID-19 screening performed using the augmented dataset can obtain considerably acceptable 
results. The best effectiveness is obtained when generating the novel set of images configuring the 
generative model with the ResNet-9, obtaining an accuracy of 98.61%. More detailed results are shown in 
Figure 10, in terms of precision, recall and F1-Score. There it can be seen that, in an identical way as in the 
previous cases, all metrics are significantly close to 100%. Furthermore, in terms of correct classification 
ratios, values are higher or equal than 96% in all cases, for both classes and for all the considered 
configurations for image generation as it is shown in the confusion matrices of the Figure 11.  

With respect to the previous contribution of (De Moura, García, et al., 2020) that proposes the same 
architectural and training details but without generating synthetic images, there is a significant improvement 



from 90.27% to 98.61% in terms of accuracy. More detailed results can be seen in Figure 12 regarding 
recall, F1-Score and precision. For those results, it is remarkable the improvement in all metrics for both 
classes, but specially in the case of the COVID-19 class, as they improve from less than 90% to values 
considerably close to 100%.  

 

Figure 10: Metrics values in the case NON-COVID-19 vs COVID-19 (training with the augmented dataset 
and testing with only original images). (a) Values achieved in the case of the NON-COVID-19 class. (b) 
Values achieved in the case of the COVID-19 class.  



 

Figure 11: Confusion matrices results obtained during the 4th experiment with respect to the 4 CycleGAN 
configurations that were chosen for this work. (a) Unet-128. (b) Unet-256. (c) ResNet-6. (d) ResNet-9. 

 

 

 



 

Figure 12: Metrics values comparison between 2 approaches: the screening with data augmentation (Morís 
et al., 2021b) and the screening without data augmentation (De Moura, García, et al., 2020). (a) Results 
in the case of the NON-COVID-19 class. (b) Results in the case of the COVID-19 class. 

 

5th Experiment: Impact of the number of used generated images on the performance of 
the screening model 

Moreover, authors conducted 5 additional experimental tests to prove the impact on the performance of the 
number of used generated images. In particular, they analyzed the performance while using the 0% of the 
whole set of generated images, the 20% (288 images), the 40% (576 images), the 60% (864 images), the 
80% (1152 images) and the 100% (1440 images).  To do this, they only considered 1 configuration for 
image generation, the ResNet-9, the one that achieved the best performance for the fourth experiment. The 
results, that can be seen in Figure 13, clearly show that performance increases when the number of synthetic 
images is higher, while it starts to converge at about the 80%.  



 

Figure 13: Impact of the number of synthetic images on the automatic screening effectiveness 

 

6th Experiment: Qualitative Analysis of the Synthetic Generated Images 

With regards to the synthetic image generation, the image translation models are able to generate fully 
synthesized images with a realistic appearance and with representative patterns of the scenario that want to 
be modeled, as it can be seen in the examples depicted in Figure 14. The difference images show that the 
most remarkable differences are noticed in pulmonary regions. Thus, as models are able to recognize the 
most remarkable patterns of each class, they can compute the differences to have a proper representation of 
the image in the target domain. Once the novel set of generated images is available, it can be added to a 
small size dataset, to increase its dimensionality and improve the performance that the deep models could 
achieve training with that artificially augmented dataset.  

Therefore, the method is able to not only generate realistic chest X-ray images, but also to generate useful 
samples for clinical uses without paired data. Moreover, the great differences in the pulmonary regions, 
which are the most important areas of the images representative of the disease affectation, demonstrate that 
the method is focused on clinical criteria rather than other possible artifacts or irrelevant regions of the 
images for the diagnostic process.  



 

Figure 14: Examples of generated images and the differences between the generated and the original 
version for the 3 different scenarios (Normal vs Pathological, Normal vs COVID-19 and Pathological vs 
COVID-19) 

 

SOLUTIONS AND RECOMMENDATIONS 

The proposed methods for image generation have some problems that could be tackled to improve the 
performance of the screening models. As is stated on the content of this chapter, the portable chest X-ray 
devices provide images with lower quality, aspect that could be mitigated with several techniques such as 
the super resolution to resize original images to a higher resolution without losing quality or other classical 
enhancement strategies. Other interesting approach would be to train an image translation model to convert 
images from portable devices to their hypothetical version if they were captured with fixed machinery, to 
improve their quality. On the other hand, to help models to focus on the most important parts of the input 
images, an interesting approach would be to apply a ROI mask for images to only obtain the pulmonary 
regions. Furthermore, authors specified that they use a resolution of 256 X 256 X 3, which is considerably 
small. This makes the development of automatic screening methods more challenging and especially in this 
case, as the resolution of the chest X-ray images is very important because the pathological affectation must 
be explored looking at the fine details.  

Apart from these challenges, many chest X-ray images from this kind of datasets show artifacts related with 
elements that are placed on patients to do the captures, elements that are placed on patients due to their 
condition (like the tubes that most critical patients need for mechanical ventilation), as well as other artifacts 
such as implants or other foreign objects that can appear on images. An approach to tackle this problem is 
to remove those elements from images. In the same way, as the important elements related with COVID-
19 affectation can be detected on lung regions, bones suppression on images can be very useful.  

 



FUTURE RESEARCH DIRECTIONS 

Data scarcity is a challenging and well-known problem in the domain of biomedical imaging, not only for 
COVID-19 but also for many image modalities and for an important diversity of pathologies, especially 
when trying to train deep learning models, that need great amounts of data. Many efforts have been done 
in the direction of overcoming this data scarcity, developing several strategies as the application of 
traditional data augmentation techniques (such as random translations, rotations and other kind of linear 
and non-linear transformations), the transfer learning, the multi-task learning, the self-supervised learning 
or the weak supervised learning, among many others. In the last years, the focus has also been put on 
synthetic image generation, a powerful technique to artificially augment the size of the datasets, mitigating 
the data scarcity problem.  

The Generative Adversarial Networks (GANs) have been often used for image generation in recent 
contributions. However, most of the GAN implementations are initially tested on broad domain image 
datasets. Therefore, their strength dealing with biomedical imaging problems is less frequently proved. 
Nevertheless, this chapter shows that are some interesting works that deal with this problematic. In 
particular, for the topic of this chapter, they demonstrate that image generation is a powerful data 
augmentation to overcome data scarcity in the domain of the COVID-19 when using image modalities as 
the CT or the chest X-ray, even with low quality images. Thus, the most probable future research directions 
are focused on developing and proving the strength of image generation methods to overcome data scarcity 
in specific biomedical imaging domains, different from those described in this chapter and applied to a 
great variety of diseases.  

On the other hand, as it is well-known, in contrast with a broad domain, a particular biomedical imaging 
domain always represents the similar reality. This means that models can learn better from the reality they 
are looking at, presumably obtaining greater results. Furthermore, in the context of GANs applied to 
biomedical imaging, the image translation models are very relevant, especially those that can be trained 
without paired and registered data, as this kind of data is usually difficult to retrieve.  

 

CONCLUSION  

The COVID-19 disease has represented a great challenge for the whole humanity. Many efforts have been 
done to develop useful tools to tackle the dramatic situation of the healthcare services. One of the most 
important parts to mitigate the expansion of the pathogen that causes the COVID-19 is the early diagnose 
and the assessment of the evolution of the disease. There are several techniques to do so but, as the main 
affectation provoked by the coronavirus SARS-CoV-2 is located at the pulmonary regions, biomedical 
image modalities as chest X-ray are very useful to understand the severity of the disease on each moment. 
Chest X-ray imaging is a cheap and easy to perform diagnosis technique that allows clinicians to visualize 
the captured regions and, therefore, analyze the patterns that can be representative of different types of 
diseases. In the case of the COVID-19, considering the importance of cutting the chains of transmission, 
the decontamination of chest X-ray devices is a critical aspect. In that sense, the portable chest X-ray 
devices provide an alternative to fixed machinery, as they are easier to decontaminate.  

The CAD systems have shown their utility in the last decades and specially in the last years with the raise 
of novel powerful strategies for biomedical imaging analysis. Particularly, the contributions of machine 
learning and, more precisely, the contributions of deep learning are remarkable in this field. These models 
are able to perform complex tasks directly dealing with raw data. During the COVID-19 pandemic, this 



kind of systems are helpful for the clinicians to alleviate their workload, providing an automatic tool that 
also mitigates the subjectivity of the human experts. With regards to the chest X-ray image modality, deep 
models are able to directly deal with images of patients with suspected COVID-19 and extract the patterns 
that can conclude if that sample presents COVID-19 affectation or not, in a fully automatic way.  

In this chapter, we analyzed the proposals of methods for portable chest X-ray image generation to improve 
the COVID-19 screening. To do so, we have taken into account a representative work from the state of the 
art. In that work, the methodology is splitted in 2 different modules. The first module generates the synthetic 
images using a CycleGAN architecture and considering 4 different configurations for the generative 
models. The CycleGAN architecture is used to do an image translation that can convert images from a 
source scenario to another target scenario. For the specific case of the reference work, the input dataset has 
3 different classes: Normal, Pathological and COVID-19. Therefore, the translations are performed in 3 
different contexts: the context where Normal images are converted to their Pathological version and vice 
versa, the context where Normal images are converted to their COVID-19 version and vice versa, and the 
context where Pathological images are converted to their COVID-19 representation and vice versa. This 
novel set is characterized of having synthetic images very similar to real chest X-ray captures and 
representative of the variability of the domain. Thus, this means that image generation represents a more 
powerful strategy in comparison with the classical data augmentation techniques.  

For the second part of the methodology, an automatic COVID-19 screening is performed. This part of the 
methodology is developed using a DenseNet-161 architecture as the classification model. To prove the 
separability among the generated images, authors performed 3 different experiments, one for each 
translation scenario. Therefore, the first experiment is performed to validate the separability between the 
Normal and the Pathological class, the second experiment is performed to validate the separability between 
the Normal and the COVID-19 class and the third experiment is performed to validate the separability 
between the Pathological and the COVID-19 class. While these experiments are solely conducted using 
synthetic images, authors performed a fourth experiment using both original and synthetic images for 
training. In this case, they merge the Normal and the Pathological class to create a novel NON-COVID-19 
class while the original COVID-19 class remains as the new COVID-19 class. To make a fair comparison 
with previous state of the art methods, they only add the novel set of generated samples in the training set. 
Therefore, the test is only performed with original images. Results show that there is a satisfactory 
separability between the generated images for all the considered scenarios. Furthermore, the fourth 
experiment proves that adding the novel set of synthetic images is useful to improve the automatic COVID-
19 screening, obtaining an accuracy of 98.61% in contrast with the previous state of the art approach that 
only obtained a 90.27%. A fifth experiment was conducted to understand the impact of the number of 
generated images on the screening performance demonstrating that the effectiveness gets better when the 
amount of generated images is bigger. Finally, the sixth experiment performs the qualitative analysis of the 
generated synthetic images.  
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KEY TERMS AND DEFINITIONS 

Chest X-ray: Medical image modality that allows to visualize the inside of the thoracic region of a patient 
using a low dose of ionic radiation. 

Computer Aided Diagnosis: Systems that are developed to improve the comprehension of medical images 
and help clinicians to make decisions.  

Computerized Tomography: Medical image modality that combines a set of X-ray slices to get a 3-
dimensional representation of a particular studied region of the body. 

Deep Learning: Type of machine learning strategies that allows to create powerful classification and 
regression models able to deal directly with raw data. 

Image Translation: Algorithmic process that converts an image from a source domain to another different 
target domain (for example, convert the image of an orange to an image of an apple). 

Portable X-ray Devices: X-ray capturing devices that can moved to where the patients are placed.  

Screening: Medical strategy that performs a diagnostic test on people that are considered healthy a priori 
with the aim to detect a possible disease on its mild stages. 
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