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Abstract
Age-related macular degeneration is the leading cause of vision loss in developed countries, and wet-type AMD requires 
urgent treatment and rapid diagnosis because it causes rapid irreversible vision loss. Currently, AMD diagnosis is mainly 
carried out using images obtained by optical coherence tomography. This diagnostic process is performed by human clini-
cians, so human error may occur in some cases. Therefore, fully automatic methodologies are highly desirable adding a layer 
of robustness to the diagnosis. In this work, a novel computer-aided diagnosis and visualization methodology is proposed 
for the rapid identification and visualization of wet AMD. We adapted a convolutional neural network for segmentation of a 
similar domain of medical images to the problem of wet AMD segmentation, taking advantage of transfer learning, which 
allows us to work with and exploit a reduced number of samples. We generate a 3D intuitive visualization where the exist-
ence, position and severity of the fluid were represented in a clear and intuitive way to facilitate the analysis of the clinicians. 
The 3D visualization is robust and accurate, obtaining satisfactory 0.949 and 0.960 Dice coefficients in the different evalu-
ated OCT cube configurations, allowing to quickly assess the presence and extension of the fluid associated to wet AMD.

Keywords Computer-aided diagnosis · 3D visualization · Optical Coherence Tomography · Age-related macular 
degeneration

Introduction

Age-related macular degeneration (AMD) is a progressive 
and degenerative disease of the central retina, which can 
lead to a significant loss of the central vision. It affects 
approximately 8.7% of the population of the world, being 
the leading cause of irreversible vision loss in industrial-
ized countries and the third leading cause of blindness 
worldwide [1–3]. While there are many subtypes of AMD, 
they can essentially be grouped into two: non-neovascular, 
known as dry AMD, and neovascular, known as wet AMD 
[4]. Dry-type AMD is the most common and mildest form 
of the disease, characterized by a gradual destruction of 
the retinal pigment epithelium and the photoreceptors. 
About 20% of the cases of this type of AMD are trans-
formed into wet-type AMD [5]. Although wet AMD is 
less common than its dry variant, it is present in 80% of 
the patients suffering from AMD with severe vision loss 
[6]. In addition, several studies have linked wet AMD to 
a significant decrease in the quality of life and have iden-
tified wet AMD as a risk factor for depression [7]. Wet-
type AMD is the most severe and aggressive form of the 
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disease, in which fluid appears near the retinal layer due 
to the creation of new thin-walled capillaries that filter 
fluid into the macula. The resulting scarred retina signifi-
cantly and irreversibly reduces the visual capacity, there-
fore an early detection is critical [8, 9]. Although several 
treatments exist, the current main treatment for wet-type 
AMD are invasive intravitreal injections of anti-vascular 
endothelial growth factor (anti-VEGF) agents [10].

Currently, the main technique used in the diagnosis 
of this disease is optical coherence tomography (OCT), 
an in vivo non-invasive technique based on the differ-
ent reflectance of the layers that are present in the ocular 
structure that allows the acquisition of transversal images 
of the retina with semihistological resolution [11]. As a 
result of an OCT test, a sequence of 2D slices is gener-
ated which together form a 3D volume. An example of the 
interface of an OCT device is shown in Fig. 1. It shows an 
image of the fundus and a particular cross section.

Each OCT exam results in hundreds of scans that must 
be analyzed by a physician, involving a process influenced 
by the subjectivity and experience of the physician [12]. 
The likelihood of human error associated with these fac-
tors can be alleviated with the development of a fast and 
reliable automated system that can detect and visualize the 
presence and extent of the fluid associated with wet AMD. 
A representative example of the fluid accumulations pre-
sent in a patient with wet AMD is shown in Fig. 2.

The problem of the automatic AMD-associated fluid 
segmentation in OCT images has been explored using dif-
ferent methods and from different perspectives of use. One 
of the first works on wet AMD fluid segmentation in OCT 
images was done by Fernández [13] and consisted of a 
semi-automatic 2D approach based on active contours. A 
similar approach was later used by Zheng et al. [14]. One 
of the first works with an automated approach was pro-
posed by Quellec et al. [15], where information based on 
retinal texture and thickness properties were used.

From the perspective of deep learning, there are several 
works focused on the segmentation of the different appear-
ances of fluid present in the OCT images (they may be 
present by AMD or other diseases) with variations in their 
methodologies but mainly for 2D analysis of particular 
histological cuts of the entire 3D OCT scans. In the state 
of the art, the works that use the U-net [16] architecture 
or some of its variants stand out. Thus, in the work of Lee 
et al. [17], a variant of the U-net was used to perform a 
binary segmentation of the intraretinal fluid. In the work 
of Venhuizen et al. [18], an approximation to the prob-
lem was made using two U-nets simultaneously: the first 
delimited the retinal region, while the second used this 
information to segment the cystoid fluid associated with 

Fig. 1  On the left, the fundus image with the analysis area marked and a green line marking the particular slice. On the right, the OCT slice is 
shown

Fig. 2  OCT image showing subretinal fluid associated with AMD 
(surrounded by a yellow box)
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AMD. In the work of Rashno et al. [19], a convolutional 
network and Graph Shortest Path were used to segment 
fluids in subjects with AMD and diabetic macular edema. 
In the work of Tennakoon et al. [20], an adversarial net-
work was used during the training of a U-net adaptation 
to code higher order relationships between image regions 
and segment retinal fluids in subjects with AMD. Finally, 
Lu et al. [21] applied another U-net variation and a random 
forest classifier for multiclass retinal fluid segmentation.

As seen, the vast majority of strategies are based on 
a 2D analysis of particular histological cuts, which can 
reflect only a certain aspect of the body tissue informa-
tion. The physician needs to infer the 3D structure of the 
pathological tissue of the entire 3D OCT through the two-
dimensional representation according to his or her clinical 
knowledge and experience, which limits the use of medical 
imaging in the clinical diagnostic process and is prone 
to be affected by the subjectivity of the clinician. Three-
dimensional reconstruction allows physicians to make a 
more accurate and intuitive diagnosis, which reduces their 
subjectivity in the diagnostic process and therefore greatly 
improves the accuracy of the medical diagnosis [22].

Regarding the 3D visualization of OCT images, most of 
the works deal with the visualization of blood capillaries 
such as Athanasiou et al. [23], Zhang et al. [24] and Spaide 
[25]. Works dealing with 3D AMD fluid visualization are 
much scarcer. In the work of Bower et al. [26], a manual 
segmentation of the photoreceptor layer and drusen was 
performed and a 3D reconstruction of these was done inde-
pendently in order to easily visualize the factors associated 
with dry AMD. In the work of Chen et al. [27], an auto-
mated graph-theory method was used to create a 3 colours 
display where the fluid between the upper and lower layers 
of the retina was shown.

Although there are works that deal with fluid segmenta-
tion in OCT images, most of them work using particular 
2D cuts, while our work focuses on the entire 3D vol-
ume of the OCT scan. Besides, all these works are usu-
ally focused on one of these two objectives. On one hand, 
to improve the segmentation algorithm itself, either for 
fluid associated to AMD, fluid in general or to catalogue 
different subtypes of fluid. On the other hand, to use the 
segmentation to obtain a biomarker. In contrast, the objec-
tive of our work is to use the segmentation with the ulti-
mate goal of offering the physician a clear and intuitive 
3D visualization that will allow the physician to diagnose 
at a glance if a patient has AMD and its severity. As previ-
ously stated, the diagnosis and monitoring of the evolution 
of wet AMD is a time-consuming, exhausting and prone 
to subjectivity process. Therefore, an automatic system 
is highly desirable to help the physician to make an early 
diagnostic, critical to prevent irreversible vision impair-
ment in this disease. To the best of our knowledge, there is 

no system with these specific characteristics. In summary, 
the main contributions of this article are:

• Proposal of a fully automatic methodology to segment 
the intraretinal and subretinal fluid associated with AMD 
in OCT images.

• Robust and representative methodology, trained and 
tested with different characteristic configurations of 3D 
OCT volumes.

• Use of deep learning and transfer learning to take advan-
tage of information from a similar medical imaging 
domain, allowing for the use of a reduced number of 
images to achieve an adequate performance.

• Intuitive and coherent 3D visualization of the fluid asso-
ciated with AMD that facilitates the work of doctors and 
allows a robust diagnosis, independently of the subjectiv-
ity of the physician.

• Interactive 3D visualization that allows the physician 
to view the entire 3D volume from any needed angle, 
instead of viewing the 2D slices individually.

Material and Methods

Dataset

The dataset consists of a total of 4,832 images obtained 
from 48 OCT volumes. 42 of these OCT volumes are from 
patients who present AMD and 6 from control patients who 
do not present AMD. All the OCT cubes were taken using 
an OCT capture device DRI OCT Triton from Topcon Corp.

Within this set of cubes, there are two different configu-
rations of volumes. The first type of volume, that we will 
now call OCT256, consists of 256 cross-sectional OCT 
images with a resolution of 512 × 992. This configuration 
is the most common in OCT volumes obtained by Triton. 
The second type, that we will now call OCT320, consists 
of 320 cross-sectional OCT images with a resolution of 320 
× 992 pixels. These volumes are obtained as an intermedi-
ate by-product of a frequently taken ophthalmological test. 

Fig. 3  Example of OCT image (left) and corresponding mask (right)
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As shown in Fig. 3, each image includes the corresponding 
ground-truth mask associated with it, where all the pixels 
were labeled as background (black) or fluid (white) by an 
expert.

Software Resources

Regarding the software resources, we used Python 3.7.9 with 
PyTorch 1.6 framework [28] and the VTK 9.0.1 open source 
library [29]. Additionally, a pre-trained U-net model from 
the work of Buda et al. [30] was used, trained with images 
from 110 patients for a total of 7,858 images.

Methodology

In order to develop a system capable of adequately segment 
the 3D fluid and provide an intuitive 3D reconstruction, our 
methodology was divided into two main stages. First, we 
exploit the capabilities of deep learning and transfer learn-
ing in order to train with a reduced number of samples a 

model capable of effectively segment the fluid associated to 
wet AMD. Then, the creation of an intuitive 3D visualiza-
tion that allows at a glance to identify the 3D presence and 
extent of the fluid associated to wet AMD. A diagrammatic 
summary of the methodology associated with these sections 
can be seen in Fig. 4.

Transfer Learning

We first started by using a model previously trained in a 
similar medical imaging domain such as MRI. This model 
has been trained with a large number of images for the task 
of glioma (a type of brain tumor) segmentation. The choice 
of this particular model was due to the similarities present 
between our type of image and the images belonging to 
the magnetic resonance modality as well as the similarity 
between the patterns of the pathologies, which implies that 
this model is closer to the convergence than a model initiated 
randomly and allows us to train and achieve an adequate per-
formance with fewer images. In addition, the U-net model 

Fig. 4  Diagram showing the 
methodology used to carry out 
the final 3D reconstruction
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has proven its robustness and reliability in tasks related to 
our target medical imaging field in numerous state-of-the-art 
works. In this way, we use transfer learning to continue the 
training of the network using our OCT image dataset to solve 
our specific segmentation task.

Training of the Models

All the images in the dataset were resized to 256 × 256 pix-
els to fit the pre-trained network. The dataset was divided 
into the training and validation dataset and the test data-
set. The training and validation dataset consists of a total 
of 1,056 (942 images in the training set and 114 images in 
the validation set) images obtained from 35 OCT volumes 
of eyes with AMD. 20 of these volumes were used to obtain 
the images of the training set and the other 15 were used to 
obtain the images of the validation set. The remaining 13 
OCT volumes, independent of the training and validation 
process, were used as whole cubes (a total of 3,776 images) 
in the test dataset. Within these 13 cubes, 6 volumes belong 
to the OCT256 group while the other 7 volumes belong to 
the OCT320 group. Additionally, in the 6 volumes from 
OCT256 and in the 7 volumes from OCT320, we have guar-
anteed the presence of at least and at most of two control 
patients (cubes from healthy individuals) used to evaluate if 
our system is robust against false positives.

In this work, the Smooth Dice loss was used as a loss 
function when training the network (1). Smooth Dice loss 
works much better than other standard metrics such as cross 
entropy [31] when using imbalanced datasets. Thus, in our 
images, there was a general imbalance between fluid and 
background classes, the latter being much more common.

A batch size of 10 was used as it offered the best results 
in previous tests. As an optimizer, we used the stochastic 
gradient descent (SGD) with an initial learning rate of 0.001 
using the momentum strategy of Nesterov [32]. It used a 
dynamic learning rate that was reduced by a factor of 0.3 if 
the loss of validation did not fall after 40 epochs. Addition-
ally, an early stopping function was used which stopped the 
training if the validation loss did not drop for 80 epochs in a 
row, always keeping the model with the best validation loss.

To make the model more robust and avoid overfitting and 
optimize the performance with the reduce presented of sam-
ples to the network, data augmentation techniques have been 
also implemented. The images undergo a series of online 
transformations with a 50% of probability. In each batch, 
the sampled images of the training set undergo a horizontal 
flip. In addition, noise was added to the image. The different 
considered types of noise were Gaussian, salt and pepper or 

(1)SmoothDiceLoss(X, Y) = 1 − 2
(X ∩ Y) + 1

X + Y + 1

speckle type. After that, an elastic transformation [16] was 
applied. The elastic transformation is particularly interest-
ing in this problem, since the elastic transformations imitate 
the possible deformations that both normal and pathological 
retinas usually present. Finally, the contrast of the image 
was randomly changed. A graphic example of each of these 
transformations can be seen in Fig. 5. Several examples of 
the overall application of all these transformations can be 
seen in Fig. 6.

Evaluation

Two different metrics were used to evaluate the quality of 
the segmentation predicted by our network in a quantitative 
way. Both metrics measure the degree of similarity between 
two sets. The first metric used to evaluate the quality of our 
segmentation is the Dice coefficient (DSC) [33] (2). The 
intersection over the union (IoU) [34], also known as the 
Jaccard index (3), is also used.

3D Reconstruction and Visualization

Several processing steps were applied to the images and 
masks predicted by our model in order to produce an accu-
rate and intuitive visualization.

• Pre-Processing: The first step of this processing was 
a smoothing of the binary masks. The function of this 
step was, on one hand, to smooth the edges of the fluid 
and, and on the other hand, to improve the segmenta-
tion and the resulting 3D model by mitigating possible 

(2)D(X, Y) =
2 ∗ (X ∩ Y)

X + Y

(3)IoU(X, Y) =
X ∩ Y

X ∪ Y

Fig. 5  Individual examples of each transformation on the same image
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artifacts resulting from the segmentation. An example 
of these artifacts can be protrusions (in areas that should 
be softer) that represent false positives. This smoothing 
can be done either by applying a closing or an opening. 
On one hand, the closing could improve the segmenta-
tion by slightly increasing the size of areas that should 
be larger, thus removing some false negatives. On the 
other hand, an opening could improve segmentation by 
removing small false positives present in the images, but 
could also worsen it by removing small regions of fluid 
that are true positives.

• Retinal Fluid Thickness analysis: The distance transform 
was applied on each slice of the generated masks cube 
to obtain an estimation of the fluid thickness present in a 
particular OCT image.

• Volume Merger: The cube containing the images and the 
cube containing the masks that were predicted by our 
network were merged. The original cube kept the values 
of its pixels where the generated mask cube had a value 
of 0. The value of these pixels was within the range [0, 

255]. On the other hand, the rest of the pixels adjusted 
their value in the range [256, 510] based on the value the 
pixel had in the distance-transformed cube. Subsequently, 
this allowed the cube to maintain its original appearance 
in the voxels where there was no fluid, while also con-
taining the fluid thickness information to be used in the 
reconstruction transfer function.

• Reconstruction and Colour Mapping: Once the fused 
cube was obtained, the ray casting algorithm was used 
to obtain the final representation. A linear interpolation 
was used and the transfer function was adjusted to give 
color to the pixels where there was fluid. To do so, a Red-
Green color scale was used, where red values represent 
a greater fluid presence. The selection of this color scale 
is common in programs used by clinicians and the color 
gradient helps the clinicians to see differences between 
the different levels of severity more clearly. In the com-
position process, the maximum intensity (maximum 
value found in the scalar values of a given ray) was used 
to obtain the intensity value of each pixel.

Fig. 6  Several examples of the overall application of all the transformations on the same image. The first 2 images correspond to the original 
image and the original mask
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Results and Discussion

Evaluation of the Segmentation

The evolution of the loss in the training and validation sets 
during the training epochs is shown in Fig. 7. The training 
of our network ended due to the early stopping and we kept 
the model with the best validation loss.

In order to see if the quality of the segmentation is 
affected by the type of used volumes, we calculated DSC 
and IoU separately for the test cubes belonging to the 
OCT256 group as well as those belonging to the OCT320 
group. Table  1 summarizes the values that were obtained 
for the metrics calculated in the OCT256 and OCT320 
configurations.

The DSC and IoU values indicate a high degree of simi- 
larity between the masks created by the expert and those 

predicted by the model, which implies that the segmenta-
tion is faithful to the ground truth. We can see that the 
cubes of the OCT320 group present a slightly better seg-
mentation performance than those of the OCT256 group. 
This is due to the fact that the OCT256 group presents a 
greater number of slices with small regions of fluid than 
the OCT320 cubes. These regions are segmented pre-
cisely by the network, except in the transition slices to a 
zone without fluid. These transition areas of small regions 
present a diffuse limit that is difficult to establish, giving 
rise to small differences between the masks created by the  

Fig. 7  Evolution of the training loss in red and the validation loss in blue throughout the training process

Table 1  Values obtained in the 
segmentation evaluation metrics 
for OCT256 and OCT320

Metrics OCT256 OCT320

DSC 0.9492 0.9603
IoU 0.9033 0.9205
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expert and the masks predicted by our network, as it is 
shown in Fig. 8. In addition, OCT320 has a higher resolu-
tion of slices which implies wider and less diffuse transi-
tion margins than the lower resolution OCT256 volumes. 
The cubes of healthy patients present a perfect segmenta-
tion, since there are no false positives. Thus showing that 
the network is robust when it comes to detect the absence 
of the disease in healthy subjects.

Complementarily, a qualitative comparison of the seg-
mentation carried out by our proposal with respect to the 
masks produced by the human expert can be established in 
Fig. 9.

3D Reconstruction and Visualization

As explained in "3D Reconstruction and Visualization", 
before carrying out the 3D reconstruction, several processing 
steps were performed. The first pre-processing step involves 
the use of a closing or opening operator to smooth out the 
protrusions from the segmentation. To decide whether to 
apply a closing or an opening, we calculated independently 

the similarity metrics without applying smoothing meth-
ods. In Table  2, we can see the metrics obtained in each 
case. Comparing them, we can see that the closing slightly 
improves the similarity metrics while the opening reduces it. 
Our network detects a negligible number of false positives 
as we can see from the healthy cubes and the images of the 
pathological cubes in which there is no fluid present. With 
this in mind, we can infer why the opening does not improve 
the similarity metrics: There are almost no false positives to 
eliminate and only the negative effects are seen. The applica-
tion of the opening worsens the segmentation by removing 
very small fluid present mainly in the transition areas where 
the network has more problems. On the other hand, the clos-
ing operation produces a small improvement in the similarity 
metrics, improving the segmentation in these small specific 
areas where the edges are diffuse. For all these reasons we 
finally chose the closing to be included in our preprocessing 
strategy. The effect of applying the closing operation on the 
3D visualization is shown in Fig. 10.

Several representations of the different interactive 3D 
models generated with the set of volumes OCT256 and 

Fig. 8  Example showing 
network segmentation errors 
in three successive slices with 
a transition to non-fluid areas. 
Row one shows 3 close slices of 
a cube, row 2 shows the masks 
made by the expert for these 
slices and row 3 shows the pre-
diction made by the network
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OCT320 are presented in Fig. 11. Each 3D model is recon-
structed using all the 2D OCT histological sections of each 
cube and the segmented fluid. Each 3D reconstruction is 

shown from a different plane and is accompanied by a 3D 
reconstruction made with the masks created by the experts 
in order to establish a comparison. The interactive 3D 

Fig. 9  Representation and com-
parison between some images 
(Image columns) of the test 
cubes, the segmentation made 
by the human expert (Label col-
umns) and the mask predicted 
by the network (Pred columns)

Table 2  Values obtained in the segmentation evaluation metrics for OCT256 and OCT320 and in OCT256 and OCT320 after applying a closing 
or an opening

Metrics OCT256 OCT256 Close OCT256 Open OCT320 OCT320 Close OCT320 Open

DSC 0.9492 0.9498 0.9487 0.9603 0.9605 0.9600
IoU 0.9033 0.9036 0.9028 0.9205 0.9206 0.9202

Fig. 10  3D reconstruction of the 
fundus of the patient. The fluid 
associated with AMD is marked 
in the color range from red to 
green. From left to right: cube 
reconstructed with the masks 
annotated by the expert, cube 
reconstructed with the masks 
predicted by the net and cube 
reconstructed with the masks 
predicted by the net using the 
smoothing
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reconstruction allows the physician to rotate, move or zoom 
the reconstructed 3D volume to observe the distribution of 
the fluid from any plane that the physician needs. We divided 
the figure into 4 groups based on the amount of fluid in each 
cube, thus showing the different levels of extension that can 
be found. The first one, called healthy, corresponds to the 
cubes reconstructed with images of healthy patients. The 
second, third and fourth correspond, respectively, to cubes 
reconstructed with images of wet AMD patients with little, 
quite or much fluid.

The 3D reconstruction allows us to assess at a glance 
whether the patient has the disease or not. It is clearly 
observed how there is no presence of fluid in the cubes 
corresponding to healthy patients, while it is observed 
in the cubes corresponding to patients with wet AMD. 
Therefore, our proposal offers an useful visualization that 
helps to diagnose if the patient is developing wet AMD. 

In addition, as can be seen in the various pathological 
examples, the 3D visualization allows to quickly quan-
tify how widespread the fluid is, helping the clinician to 
quickly find out the severity of the pathology and produc-
ing a more appropriate treatment decision.

Conclusions

Nowadays, the development of computational tools that 
reduce the workload and subjectivity of medical diagnosis 
is of vital importance. Thus, diseases such as wet AMD 
need urgent treatment and therefore their early detection 
is of special interest when developing this type of systems.

In this work, we have presented a methodology to auto-
matically create a 3D visualization of AMD-associated 
fluid using OCT images. We took advantage of a pre-
trained model with a large number of MRI images for a 
tumor segmentation task to obtain an accurate and robust 
segmentation model with a reduced number of samples. 
Thanks to this, we are able to generate a 3D reconstruc-
tion and visualization, a powerful tool that helps to diag-
nose and monitor this disease. Our proposal facilitates and 
lightens the medical workload by allowing for a quick and 
repeatable analysis, significantly reducing the impact of 
subjectivity in the final diagnosis. This promotes an early 
detection of the disease as well as proper monitoring, a 
critical factor in preventing the severe, irreversible vision 
loss that characterizes wet AMD.

As future work, there are several prospects for improving 
the method and increasing its usefulness for the clinical sec-
tor. Although the closing improves the quality of the final 
visualization, there are other methods capable of producing 
a similar effect that may work better. Moreover, it would 
be interesting to explore the possibility of using a three-
dimensional segmentation network that uses information 
from multiple adjacent slices in order to improve the seg-
mentation of our method. This perspective is of particular 
interest, since it may help with small regions of fluid present 
in the transition slices to areas where no fluid is present. 
Finally, it would be interesting to expand the use of this 
methodology with other ocular diseases in order to create a 
multifunctional automatic visualization.
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