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Abstract. Recent advances in OCTA allow the imaging of blood flow
deeper than the retinal layers at the level of the choriocapillaris (CC),
where a pattern of small dark areas represents the absence of flow, called
flow voids. The distribution of flow voids can be used as a biomarker
to diagnose and monitor the progression of relevant pathologies or the
efficacy of applied treatments. A pixel-to-pixel comparison can help to
carry out this monitoring effectively, although in order to carry out this
comparison, the used images must be perfectly aligned. CC images are
characterized by their granularity, presenting numerous and complex lo-
cal deformations, so a deformable registration is necessary to carry out a
reliable comparison. However, CC OCTA images also present a charac-
teristic absence of visually significant anatomical structures. This land-
mark scarcity hardens drastically the identification of points of interest
to achieve an accurate registration. Based on this context, we designed a
methodology to accurately perform this deformable registration in this
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challenging scenario. Hence, we propose a convolutional neural network
model trained by unsupervised learning to register images in a real clini-
cal scenario, being obtained at different time instants from patients with
central serous chorioretinopathy (CSC) treated with photodynamic ther-
apy. Our methodology produces superior alignment to those achieved
with other proven methods, helping to improve the monitoring of the
efficacy of photodynamic therapy applied to patients with CSC. Our ro-
bust and adaptable methodology can also be exploited in other similar
scenarios of complex registrations with anatomical landmark scarcity.

Keywords: Ophthalmology · OCTA imaging · choriocapillaris · De-
formable image registration · Flow voids · Convolutional Neural Net-
works

1 Introduction

Optical coherence tomographic angiography (OCTA) is a noninvasive imaging
modality characterized by its capability to show a detailed visualization of the
retinal vascularity. OCTA uses the variation in signal intensity of the OCT image
over time as a contrast mechanism to obtain images [10, 15]. Recent advances in
OCTA allow imaging of blood flow deeper than the retinal layers, at the level of
the choriocapillaris (CC), providing new dynamic information about choroidal
physiology. OCTA is currently the only noninvasive modality available for imag-
ing the CC in a clinical setting. Also, CC flow is not adequately visualized in
traditional angiography so OCTA is the only usable alternative. When OCTA is
used to image the choroidal innermost thickness, a granular image is obtained
[24] showing a pattern of bright areas, representing flow, and a pattern of small
dark regions showing areas of no flow called flow voids. Several examples of this
type of image can be seen in Figure 1. Several studies [8, 19, 6] reported a close
correlation between abnormal flow void distribution and multiple retinal and
choroidal diseases such as age-related macular degeneration, diabetic retinopa-
thy, glaucoma, etc. Therefore, this different distribution of flow voids can be used
as a biomarker to diagnose and monitor the progression of certain pathologies.
In addition, it can also be used to monitor the efficacy of an applied treatment,
as is the case, for example, in the treatment of central serous chorioretinopathy
(CSC) [12].

In order to carry out an accurate and objective monitoring over time of the
evolution of a pathology or the effectiveness of a treatment, it is necessary to
perform an adequate comparison of the different progressive obtained images. A
pixel-to-pixel comparison can adequately reflect these changes in the flow voids
distribution over time as long as the images are properly aligned. CC images
are characterized by a very rough and grainy appearance, presenting numer-
ous complex local deformations that make pixel-to-pixel comparisons unfeasible
and inappropriate. In order to carry out this type of comparison, these local
deformations must be corrected as much efficiently and accurately as possible
without distorting the original image by means of a deformable registration.
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Fig. 1. Two examples of OCTA cc images.

However, there are several factors that hinder this registration process. Firstly,
the roughness of the images discussed above, which gives rise to numerous com-
plex deformations. Secondly, the characteristic absence of visually significant
anatomical structures. This landmark scarcity hardens drastically the identifica-
tion of points of interest to achieve an accurate registration. Lastly, the regular
use of high-resolution imaging (1024 × 1024 pixels) in the clinical setting. The
use of high-resolution images complicates the alignment process in terms of time
and accuracy. To the best of our knowledge, there are no works that try to solve
this deformable image registration problem in this novel image modality.

From the perspective of deformable registration in other medical imaging
modalities, several traditional optimization methods such as B splines [22] or
dense vector fields [25] deal with matching pairs of images. Unfortunately, these
methods often require considerable time and computer resources to register a
given pair of images. In the state of the art, several contributions have proposed
the use of neural networks to perform medical image registration issues [17, 9].
There are some perspectives that use unsupervised training that does not rely
on any ground truth directly, although it can be used in a complementary way
[18, 4]. In general, these works propose the use of a convolutional neural network
such as U-net [21] and a spatial transformation function [14] that warps images
to one another. These architectures proved to be useful in solving registration
tasks in modalities such as magnetic resonance imaging (MRI) where there are
clearly defined anatomical structures that facilitate the registration process in a
natural(due to the presence of characteristic points on the image) or guided way
(as complementary ground truth). In contrast, CC OCTA images are character-
ized by their granularity, and unlike other imaging modalities as MRI, there do
not present clear and defined anatomical structures, making it complicated to
accurately align images. In addition, these architectures are designed to work
with relatively small image resolutions (typically 256 × 256). The use of high-
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resolution images poses several problems, the main one being the loss of model
efficiency due to factors such as insufficient receptive field. To adequately per-
form a registration task, the receptive field of the convolutional kernel in the
smallest layer of the network must be at least as large as the expected maximum
displacement. An increase in image resolution causes the maximum expected
displacement to be larger than the cases of smaller images, resulting in a loss
of quality in the registration. To increase the receptive field of the network and
solve this problem, several works in related tasks such as semantic segmentation
have used techniques such as dilated convolutions [29], wider networks [28] or
multiscale images [30].

In this work, a novel approach is proposed using a convolutional neural net-
work trained by unsupervised learning to register CC OCTA images. The pro-
posal aims at achieving an efficient registration by overcoming the limitations
imposed by the characteristics of using rough images, without clearly defined
structures and presenting high resolution. Our methodology is tested with cases
of a real clinical study about monitoring the response to a treatment.

2 Materials and Methods

2.1 Dataset

The dataset consists of a total of 821 CC OCTA images (1024 × 1024 pixels)
from 52 patients with chronic CSC obtained using the Zeiss Plex Elite capture
device. All the images were acquired by two well-trained clinical experts, being
preliminarily used in a clinical study to evaluate the efficacy of studying changes
in CC and choroid (CH) flow signal voids as a biomarker for monitoring the
response of photodynamic therapy applied to CSC. Within the dataset, there
are two different types of images, CC slab and CH slab images. For each patient,
images were obtained at different times during treatment. The time instants cor-
respond to pre-treatment, 2 to 4 days after treatment, 1 month after treatment,
3 months after treatment and 6 months after treatment. An example of the first
4 time instants for the CC image modality and the CH modality is shown in
Figure 2.

2.2 Network architecture

We created an architecture (PyTorch 1.6 [20]) composed of convolutional layers
and a spatial transform. The input of our network consists of the reference image
and the image to be registered. The network is divided into 3 branches that use
the input images at different scales (low, medium and high resolution images).
In each of these branches, convolutions are applied with kernels of size 3 × 3
and a stride of 2. Each convolution is followed by a batch normalization layer
that helps the convergence of the model acting as a regulating factor [13] and a
LeakyReLU layer. The low resolution branch allows to make convolutions in a
fast and efficient way, being able to accumulate several consecutive convolutions
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Fig. 2. Images for the first 4 temporal instants of a patient.

which increases the receptive field. In order to further increase the receptive
field, the last convolution of this branch is applied using a dilation. This branch
allows us to obtain most of the image features in a coarse but efficient way. This
allows the independent medium and high resolution branches to concentrate
specifically on fine details that refine the final result without having to provide
a complete representation of all the features that make up the image so that far
fewer convolutions are needed. This reduces the number of model parameters
that must be optimized, which reduces the risk of overfitting and aids in the
convergence [5]. The 3 branches are merged using transpose convolutions, also
using skip connections. Several extra convolutions are used to refine the result
at the final resolution. The output of this plus the image to be registered serve
as input to the spatial transformer which produces the final registered image.
Figure. 3 shows an overview of the neural architecture.

2.3 Training details

The dataset was randomly divided into training (533 images), validation (128)
and test (160) subsets. All the sets were independent from each other and all
the images of a patient belonged to a single set. Local normalized cross correla-
tion [3], a popular metric that is robust to intensity variations, was used as loss
function. Network parameters were initialized using the He et al. [11] method.
A batch size of 5 was used as it offered the best results in previous tests. As
optimizer, we used the stochastic gradient descent with an initial learning rate
of 0.001. It used a dynamic learning rate that was reduced by a factor of 0.7 if
the loss of validation did not fall after 40 epochs. Early stopping was performed
based on the validation loss. To make the model more robust and avoid overfit-
ting, an exhaustive data augmentation process has also been applied [7]. Some
transformations were grouped so that only one from the group could be applied
at a time. Table 1 shows all the transformations applied to the images.
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Fig. 3. Overview of the neural architecture. The network is composed of 3 branches
(green, red and blue) that accept different sizes of inputs formed by convolutional
layers, an expansive part that ends with some extra convolutional layers (yellow) and
finally a spatial transform that outputs the registration image. FM=Feature maps.

Table 1. Transformations applied to fixed and moving images in each batch. From
each group only one transformation can be applied at a time.

Groups Transformations

Group 1 Coarse Dropout
Group 2 Elastic Transform, Piecewise Affine
Group 3 Shift Scale Rotate
Group 4 Horizontal Flip
Group 5 Vertical Flip
Group 6 Random Rotate 90º
Group 7 Blur, Gaussian Blur, Motion Blur, Median Blur
Group 8 CLAHE, Brightness Contrast
Group 9 Gauss Noise, Image Compression, Multiplicative Noise
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2.4 Baseline Methods

In this work, we selected representative baseline methods to compare and remark
the suitable performance of the proposal. In particular, we use as first baseline
Symmetric Normalization (Syn) [1], one of the best performing registration al-
gorithms [16]. We use the version of this algorithm in the publicly available
software package Advanced Normalization Tools (ANTs) [2], using mutual in-
formation (Syn) and cross-correlation (SynCC) as optimization metrics. We also
tested other registration algorithms belonging to this package, such as the time-
varying diffeomorphism using mean square metrics (TVMSQ) or some simple
affine transformations.

2.5 Evaluation metric

As metrics to quantitatively evaluate the alignment of this proposal, we selected
different complementary statistics that are frequently used in these issues. For
example, MSE is a traditional and simple method for measuring point distances
between two images. The two images are compared pixel by pixel and the average
of the square of the difference between the error of the two images is calculated.
Other types of metrics such as SSIM [26] are also commonly used to evaluate
image quality, being a type of metric that correlates well with human visual per-
ception, as it evaluates structural differences between images by comparing local
statistics rather than measuring point distances. In particular, we considered:
MSE, NRMSE, SSIM, MSSIM[27], and VIF[23].

3 Results and Discussion

3.1 Quantitative Evaluation

Table 2 shows the results obtained for the different similarity metrics by the
registration algorithms that were tested. In the table header, the value before
registration is shown below the metric name and the time is given in seconds.
All the experiments were performed using an intel(R) Core(TM) i5-6300HQ pro-
cessor and NVIDIA GeForce GTX 950M graphics. As can be seen, our proposal
achieves the best values for all the tested similarity metrics, demonstrating the
ability to achieve better image alignment than the other tested algorithms. Also,
the registration efficiency of our method is superior to the rest of the tested al-
gorithms involving lower execution times than the rest of the tested methods
using a CPU or even better exploiting GPU capabilities.

3.2 Qualitative Evaluation

While the used metrics show that our proposal is efficient in achieving image
alignment, we must check if our method is able to align the images obtained at
different time instants in such a way that no strange deformations are produced,
the noise produced by a bad alignment is mitigated whereas the truly significant
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Table 2. Performance of different registration methods and the proposal in terms of
time and image similarity. The header of each metric: the pre-registration value.

Methods
SSIM
0.0931

MSSIM
0.2103

VIF
0.0394

MSE
1482.1

NRMSE
0.3180

CPU
seconds

GPU
seconds

Affine 0.1564 0.3901 0.0527 1384.7 0.3068 361.2
TVMSQ 0.1130 0.2230 0.0390 1437.3 0.3132 15787.6
Syn 0.2920 0.5772 0.0828 1109.3 0.2744 1372.8
SynCC 0.4452 0.6659 0.1180 965.3 0.2550 47772.6
Our Model 0.7228 0.7113 0.1694 473.0 0.1796 233.7 38.1

differences between the images are maintained. We must also check if our method
allows a pixel-to-pixel comparison and that this ultimately produces a benefit
for the clinician. Figure. 4 shows illustrative results of applying the different
registration algorithms to the same pair of images. Column one shows the fixed
image, column two the registered image and column three the pixel by pixel
differences between the fixed and registered images with a color code where the
red represents a darker value in the fixed image, blue a darker value in the moving
image and white the same value. Two values whose intensity value is less than
20 units apart are counted as equal as being not representative. As can be seen,
our method substantially improves the visualization of pixel-to-pixel differences
compared to the other tested methods. In addition, it manages to register the
images without producing strange and undesired deformations.

Fig. 4. Comparison of the registration of the different tested algorithms. Column 1,
the fixed image; column 2, the image after the registration (except the first row, where
the default unregistered images are shown); and column 3, pixel by pixel differences
between the fixed and the moving image. The difference image shows in red the darkest
areas in the first image, in blue the darkest areas in the second image and in white the
areas that are considered equal in both images.
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As can be seen in Figure. 5, our proposal is able to eliminate a large part of
the noise resulting from local deformations without altering the truly significant
changes in the image such as changes in the distribution of the flow voids. Re-
garding the clinical case that was used to test our methodology, this produces an
improvement in the monitoring of the efficacy of photodynamic therapy treat-
ment in patients with CSC, and can also be used as a complementary preliminary
step to other computational and clinical analyses. Although our experiment was
based on the monitoring of photodynamic therapy in patients with CSC, our
methodology is expandable to other pathologies associated with this type of
image. Therefore, our methodology has a direct clinical relevance. Also, our pro-
posal presents the potential of being applied to other complex medical image
modalities, specially to other depths of OCTA imaging, of a great complexity
and interest.

Fig. 5. Images and pixel-to-pixel differences obtained with our proposal for different
time instants of the same patient. First row of each set, the fixed image and the
unregistered moving image; second row, the fixed image and the registered image.

4 Conclusions

In this work, we have presented a robust registration methodology that em-
ploys a convolutional neural network trained by unsupervised learning to reg-
ister CC OCTA images. The quantitative and qualitative obtained results have
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demonstrated that our methodology is capable of achieving efficient and effec-
tive image registration in a current clinical problem such as CSC treatment
monitoring, overcoming the limitations imposed by the characteristics of us-
ing high-resolution, rough images without clearly defined anatomical structures.
Furthermore, our methodology can be applied to other pathologies associated
with this type of imaging and being adapted to other medical imaging modalities
of great complexity and lack of representative visual anatomical structures. As
future work, a more detailed ablation study of the proposed architecture could
be performed to see which of its components most affect the performance of the
architecture.
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