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Abstract

The present research describes a novel adaptive anomaly detection method to optimize the performance of nonlinear and time-
varying systems. The proposal integrates a centroid-based approach with the real-time identification technique Recursive
Least Squares. In order to find anomalies, the approach compares the present system dynamics with the average (centroid) of
the dynamics found in earlier states for a given setpoint. The system labels the dynamics difference as an anomaly if it rises
over a determinate threshold. To validate the proposal, two different datasets obtained from a level control plant operation have
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2 Novel Adaptive Approach for Anomaly Detection in Industrial Systems

been used, to which anomalies have been artificially added. The results shown have determined a satisfactory performance of
the method, especially in those processes with low noise.

Keywords: Anomaly detection, fault detection, online identification, centroids.

1 Introduction

The ongoing technological advancement is causing the development and implementation of complex
industrial processes capable of performing very sophisticated tasks. These processes use many
systems made up of a huge number of interconnected components, sensors and actuators that must
work in a correct and coordinated way to ensure a good performance of the whole process. This
vast number of elements involved in the processes entails working with a significant volume of data,
which can sometimes be challenging. Furthermore, this massive volume of information can increase
the potential risk of failures or anomalous behavior within the process, leading to a loss of production
performance, safety problems or economic losses. For all these reasons, detecting anomalies or fail-
ures in this kind of system is critical in ensuring these systems’ correct, efficient and safe operation.

Any process or application might have anomalies for various causes, including sensor measure-
ment errors, actuator problems and human mistakes, among others. Therefore, identifying anomalies
in an industrial process requires a sophisticated procedure that considers many characteristics and
requires prior knowledge of the process’s proper operation. Nowadays, failure or anomaly detection
systems are widely used in many industrial processes and applications, such as the detection of
failures in electric car power cells [16, 18], in the production of biocomponents [11, 12], in the
medical field [17, 23] and in cybersecurity [7, 20, 24], and so on [9, 10, 13, 25].

In recent years, the intricacy of modern industrial systems and advancements in computational
resources have prompted numerous researchers to focus on developing and optimizing novel
anomaly detection techniques and their integration into various applications, processes and systems.
Depending on the unique characteristics of the process and application, diverse methods can be
employed to identify anomalous behavior [6, 26].

In the field of industrial processes, it is very frequent to implement artificial intelligence
techniques based on machine learning to detect possible malfunctions. In this aspect and depending
on the available information, supervised, semi-supervised or unsupervised techniques can be used
[4, 22].

For example, in [21], supervised machine learning techniques are used to detect anomalies in
industrial control systems. The results obtained with this proposal have been very satisfactory.
However, despite the good results, supervised techniques require a high-quality labeled dataset
containing samples of both normal operation and anomalous situations. The quality of the dataset
and its labels is a critical factor in achieving good model performance. In many cases obtaining these
datasets is a very complex task that, in most systems, is not really feasible.

Due to the complexity of obtaining quality labeled data sets in many processes, in recent
years, much research has been focusing on developing and implementing semi-supervised and
unsupervised techniques for anomaly detection. For example, in [15], the authors applied and
compared the performance of different semi-supervised (also known as one-class) techniques to
detect anomalies in industrial control loops. Modeling the system’s dynamics enables anomaly
identification; consequently, the model can detect anomalous measurements with high performance.
On the other hand, in [14] the authors implemented unsupervised techniques to detect anomalies in
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industrial processes. The methods tested showed a good performance for the case study approach.
However, to effectively detect the anomalous samples, a detailed analysis of the system is required
to determine the cluster boundaries obtained according to whether they correspond to abnormal
behaviors. Currently, a large number of research deals with the implementation of semi-supervised
and unsupervised techniques in different fields [1, 5, §].

However, despite their good result, all these anomaly detection methods suffer a loss of
performance when the systems are affected by temporary variations produced by various reasons
such as small component degradations, changes in working conditions (changes in temperature,
humidity, etc.) and so on [19, 28]. All these variations directly affect the dynamics of the systems
themselves. These changes in dynamics cause the performance of machine learning techniques to
drop after a specific time since they have been trained. This loss of performance can lead to the
detection of many false alarms, which can cause significant losses for the companies. Therefore, to
maintain a good performance of the fault detection system, in many cases, a costly retraining process
of the models generated after a specific operation time is needed.

For all these reasons and taking into account the current context of technological progress as well
as the great relevance of anomaly detection systems in the industrial field, this paper presents a
novel adaptive anomaly detection system for detecting faults in industrial control loops. The method
presented consists of a model-based anomaly detection system. For this purpose, the proposal
combines a real-time identification algorithm based on the Recursive Least Squares method and
the estimation of data volumes from centroids. This new adaptive system is optimized to detect
anomalies in nonlinear and time-varying industrial systems without the need to adjust the models
after a specific time of operation since it can adjust to temporal variations and operating conditions.

The present paper is structured as follows: after the Introduction, Section 2 describes the case
of study. Then, Section 3 presents the proposed anomaly detection method. Section 4 lists the
experiments and results. Finally, Section 5 exposes the conclusions and future works.

2 Case of study

This section defines and explains in detail the industrial system used to test and prove the proposal’s
performance presented in this research. The system’s main components are described, including
its sensors and actuators, as well as the expected performance. The dataset used is also explained,
commenting on the variables acquired as well as other data of relevance.

2.1 Tank control level system

The main goal of this study is to evaluate the effectiveness of the suggested fault detection system in
a real scenario.

The level control plant is one of the industrial mockups in the Optimization and Control
Laboratory of the Faculty of Engineering of the University of A Coruifia. On a small scale, this system
emulates the tank filling control system, corresponding to one of the most frequent systems in many
industrial processes. Figure 1 shows the real system whereas Figure 2 represents the plant scheme.

This plant includes two tanks located at two different heights. The upper tank is where the filling
level is controlled. For this purpose, the system has water stored in the lower tank, connected through
a pipe to the centrifugal pump (coupled to a 0.8 HP three-phase motor) to propel the water to the
upper tank. Finally, the water is discharged from the upper tank to the storage tank through two pipes,
thus closing the water operation cycle.

To control the whole process, the system has different sensors and actuators. On the one hand,
to control the three-phase motor coupled to the centrifugal pump, a Schneider Altivar 31 variable

20z AelN 0z UO oSN 80IAISS "SANS "SIOMS-809%2£29 Ad 12/0292/0,09€Z(/[edBIl/g60 L 0 L/10p/sl0me-20uAPE/[edBIf/0o"dno-olWapeoe)/:SARY WOy papeojumoq



4 Novel Adaptive Approach for Anomaly Detection in Industrial Systems

FIGURE 1. Level control plant.

frequency drive is used, which offers a 0/10 V analog input to regulate the motor rotation speed and
thus control the water flow rate. On the other hand, a Banner S18UUA ultrasonic sensor is placed at
the top of the tank to measure the water level in the filling tank. This sensor provides a continuous
0/10V output signal. The plant also has two valves, one manual and the other electric, controlled by
a 0/10V signal to regulate the water discharge flow to the lower tank.

Finally, and because it is an educational model, the control plant has a large number of safety
devices, including an emergency stop button that stops the system completely when activated, as
well as safety buoys that ensure that the water does not overflow from any of the tanks and that the
water pump runs out of water.

2.2 System integration and control implementation

For the control of the system, it is important to note that the plant control signals, both input and
output, correspond to analog signals 0/10V. A data acquisition card, model USB-6008 12-bit of
National Instruments manufacturer, is used to read and acquire these signals. This card is connected
via USB to a computer where all the control logic is implemented. It is important to note that the
data acquisition board used has analog inputs in the 0-10 V range. However, it does not have 0-10
V analog outputs since they are 0-5 V, so an auxiliary amplifier circuit is used to convert the output
signal to the 0-10 V range so that it can be sent to the variable frequency drive.

Figure 3 shows the control loop that is implemented for its control. A virtual PID controller
implemented in Matlab has been used for this research.

Following the scheme shown in Figure 6, the desired fill value is initially set in the computer, and
the controller generates a control signal from its programmed logic and the error signal (difference
between the expected and real fill value). This control signal is sent to the data acquisition card,
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FIGURE 3. Scheme of the control loop implemented.

which is converted to a 0/10V voltage signal that can be interpreted by the variable frequency drive
to control the centrifugal pump. The level measured by the sensor is also acquired and conditioned
by the data acquisition card to be processed by the executed control algorithm.

2.3 Dataset

The control signal, set point and process value were recorded during 35 minutes of normal plant
operation to obtain the dataset used. An adaptive PID controller based on the Dahlin PID [3] was
implemented for data collection. For this purpose, the manual and electric piloted valves were fully
open. The sampling time was 0.5 seconds, so 4200 samples were recorded for different operating
points from 25% to 85% in steps of 10%. The range limitation is necessary since the plant does
not perform well for below or above percentage values due to its design. The 10% increment is
implemented since the change in system dynamics is not very appreciable for smaller increments.
The real data registered correspond to a correct operation, and this work aims to detect anomalies.
Therefore, a total of 30 anomalies have been generated by modifying the process value signal by
deviating a random percentage between 4 and 10% of the total filling. Due to the control loop used
to control the plant, the system output signal affects the control signal, so this signal is also modified
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in the same samples in an inverse way to the output signal deviation. Since a variation of the control
signal affects the system output to a greater extent, this signal is modified the half percentage varied
in the process value signal. These anomalies simulate small interferences in the signals or problems
of valve obstruction, leaks, etc. Likewise, the sensor output signal has also been modified for 0-100%
values to emulate ultrasonic sensor measurement failures.

In order to evaluate the anomaly detection system in processes with signals with a considerable
noise ratio, a second dataset has been generated from the previously mentioned. This second dataset
differs in that a random variation between 1% of the level has been added to the system output
signal, thus emulating a higher system noise.

3 Methodological approach

This research aims to develop a new adaptive system for anomaly detection in nonlinear and time-
varying systems based on on-line identification algorithms. In general, the system uses the RLS
on-line identification method to identify the system dynamics at a particular time, and this value
is then contrasted with the centroid obtained from the last identification processes determined for
that setpoint. An anomaly is detected if the measured distance between the centroid and the new
data exceeds a specified threshold. Therefore, this method consists of two main stages: the RLS
identification algorithm, to identify the system dynamics in real-time, and the fault detection process
based on data clusters and centroids.

The proposal scheme is shown in Figure 4 where SP corresponds to the setpoint value; CP is the
control process signal and PV is the process value.

3.1 Online identification stage

For the correct performance of the proposed approach, it is essential to accurately detect changes in
the dynamics of the level control plant. Therefore, this identification has to be performed in real-time
(online).

Due to its efficiency and simplicity, the Recursive Least Square (RLS) approach is one of the
most used methods in the field of online identification. This technique aims to determine the
value of transfer function parameters, as described in the 6 vector that reduces prediction error and
best correlate system input and output signals [2]. Additionally, since it is a simple computational
method, a wide range of devices with minimal processing power, such as low-cost boards (Arduino,
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BeagleBone...) or microcontrollers, can execute this method. As a result, the RLS approach may be
incorporated into many other systems and applications.
In general terms, the RLS method works as follows:

1. Firstly, the gain matrix, K defined by Equation 1, is calculated.

_ Pr—1x5—1
A +x]{71Pk_1xk_1

K (M

In Equation 1, x is the regressor vector containing input and output system signals, P
corresponds to the covariance matrix defined in Equation 4, and X is the forgetting factor
that will be explained below.

2. Secondly, the prediction error, &g, is obtained by means of Equation 2.

£k = Yk — X_10k-1 2
3. Then, transfer function parameter vector, 6, is updated following Equation 3.
Ok = Or—1 + er Ky 3)
4. Finally, covariance matrix, P is obtained by using Equation 4.

1
Pp = 5 (Pe1 — Kixl_ Pr—1) “4)

The vector, 6, can be initialized with random numbers. In addition, the regressor vector must be
initialized with a close to zero value, whereas covariance matrix initial value is defined by P = «,
with o being high integer and 7 the identity matrix.

Considering Equation 4, it is essential to highlight that RLS is a recursive method, so an
exponential forgetting factor, defined as A, frequently A € [0.8, 1] [27), is added to the algorithm.
To ensure optimal algorithm performance is crucial to tune this parameter properly by considering
its impact on the identification process. A lower value of A leads to higher sensitivity of the
identification algorithm and reduced memory, potentially resulting in errors due to system noise.
Conversely, higher values, closer to 1, result in lower sensitivity and more significant memory, which
makes the algorithm more robust to system noise, but much slower in detecting changes in process
dynamics.

Since the transfer function best fits most systems, the tank fill level plant is defined in this study
as a second-order transfer function with time delay, Equation 5:

boz
-1\ _ 0
Gp (Z ) - 1 —aoZ_1

—k

. s)

—ayz—

where:

k is the time delay (for this research k=1)

by corresponds to the system gain

ag defined the first order coefficient

ay is the second order transfer function coefficient

Therefore, the RLS method is used to obtain the parameters by, ag and a| that best identify the
performance of the tank filling plant for a given level.
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FIGURE 5. Example of identified parameter subsets in nonlinear systems.

3.2 Fault detection stage

Once the RLS algorithm has identified the system dynamics for a certain sample, the transfer
function parameters and the desired filling level value are sent to the anomaly detection stage. This
stage is divided into three different blocks:

e Data cloud storage and centroid calculation block
e Distance measurement module
e Decision module

3.2.1 Data cloud storage and centroid calculation block This stage stores the last N samples of
the transfer function parameters identified for normal operation and computes the centroid (mean
value). Since the proposed solution is designed to work with nonlinear systems, it is essential to split
the transfer function parameters according to the specified set point, generating small subsets of
data that are related to an operating point or a specific range. This is necessary because, in nonlinear
systems, the change of operating point causes a change in the dynamics of the process. Figure 5
shows an example of the different data clouds that can be formed depending on the setpoint. This
figure represents the different samples identified for a nonlinear system in a three-dimensional space.

For this module, it is essential to determine the number of samples, N, to be stored to calculate
the associated centroid. A very large value of stored samples may cause the system to have too much
memory, which may not reflect the dynamics of the last samples well. Conversely, a small value of
stored samples may cause the system to become very sensitive to noise.

3.2.2 Distance measurement module This module calculates the distance measurement between
the calculated centroid associated with the selected working point (selected fill level) and the new
sample obtained in the identification process, defined by the transfer function coefficients (bg, ag
and ap). The Euclidean distance, d, defined by Equation 6, is used as the distance measure in the
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Stored data
e Centroid
e Newdata

FIGURE 6. Example of Euclidean distance measurement between two three-dimensional points.

proposed system.

ld(a, Bl = @1 — b1)* + (@2 — 52)? + - + (an — by)? ©)

Finally, it is important to note that the value of the distance between the centroid and the new
samples corresponds to a dimensionless value since this distance depends directly on the value of
the transfer function coefficients, which are also dimensionless values. Figure 6 shows an example
in three-dimensional space of the functioning of this block.

3.2.3 Decision module Once the distance between the centroid and the identified sample has been
calculated, the decision module determines whether the new data corresponds to normal operating
dynamics or to an anomaly. To this end, this block uses a distance threshold, which is used to
determine the volume that is taken up by the system dynamics for a given filling value. Therefore,
this system can detect anomalies if the measured distance exceeds the threshold, Equation 7. On the
other hand, if the data is considered normal, its value is added to the cluster subset linked with the
chosen operating point.

\ld(centroid,new data))| > threshold — Anomaly detected @)

This creates an adaptive system that employs iterative centroids to adjust to the slow changes in
the dynamics of time-varying systems. Figure 7 shows an example of how the subsets of data are
shifted according to the temporal variations of the systems.

Considering this block’s functioning, it is essential to correctly adjust the decision threshold to
achieve a good system performance. The value of this threshold will largely depend on the system
on which the anomaly detection method is applied and the amount of noise contained in the identified
samples. Therefore, in order to select its value, an initial study of the system is required to determine
the maximum distances measured between the centroids obtained and the furthest points of their
corresponding normal operating samples.
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Cluster 0 in t0
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Cluster 1in t0
Cluster 1in tn
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FIGURE 7. Example of system dynamics changes over time.

3.3 Anomaly detection system workflow

For a better understanding of the operation of the developed fault detection system, this section
explains its operation flow.

1.

Initially, the system waits until the steady state is reached. This is essential because, during
the transitory regime, the RLS identification process usually does not provide very accurate
results.

Once steady state is reached, the fault detection system is activated.

. It checks if data is stored for the selected operating range. If there is stored data, the centroid

of that subset is calculated. If not, the data is stored, and a new iteration is started.

The distance between the data cluster’s centroid and the RLS’s new sample is measured.

The distance is compared with the determined threshold. If the distance is greater, an anomaly
is detected.

If the data is anomalous, the system discards the new sample, and the RLS method working
variables are updated to the previous values so that this anomaly does not affect the
identification process of future samples.

On the other hand, if the data is identified as normal operation, it is stored in the associated
data cloud. If the number of data stored in the subset equals the maximum stored data, defined
by N, the oldest stored sample is deleted, and the new data is added. This ensures that only the
latest samples that best identify the system’s dynamics are stored.

4 Experiments and results

Several tests were performed to test and validate the proposed anomaly detection method. First,
the optimal value for the centroid data window, forgetting factor and distance threshold had to be
determined. The original data set was evaluated without adding anomalies or noise to calculate the
threshold value. The system was run to acquire the greatest measured distance between the identified
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data point and its associated centroid. Using this method, it was found that the greatest distance
ranged from 0.9 to 1.1, depending on the operational point chosen.

The forgetting factor and distance threshold were adjusted empirically using the datasets with
anomalies to find the best values. Different parameter values were tested by running the system with
dataset with and without noise. As it was an anomaly detection task, the metric used to compare
results was the f1-score, which calculates the harmonic mean of precision and recall. A score of 1 in
fl indicates that all anomalies were detected and no normal data points were incorrectly labeled as
anomalies. Also, precision and recall are measured.

In Table 1, the results obtained for the dataset without noise are shown, whereas Table 2 shows the
results for the dataset with noise.

Analyzing the tables, it can be seen that in the case of the dataset without noise, Table 1, a high
system performance is obtained for different configurations of its hyperparameters. In this case, all
anomalies are detected without any false positive, with a threshold value of 1.1, a forgetting factor
of 0.94 and time windows of 10, 20 and 50 samples. On the other hand, the proposal’s performance
does not reflect good efficiency when the forgetting factor of the RLS is 0.96, since the identification
method becomes too robust and the changes in dynamics caused by the anomalies are not detected.

On the other hand, the results obtained with the dataset with noise were worse than those obtained
with the data without noise. In this case, a maximum F1 score value of 0.967 is reached for a
threshold of 1, storing the last 10 values and a forgetting factor of the RLS method of 0.94. It
can also be seen that the use of high values of the forgetting factor, 0.96, significantly worsens the
results obtained.

5 Conclusions and future works

This research presents a new adaptive method based on online identification for anomaly detection
in nonlinear and time-varying systems. The method has been validated using two different datasets
obtained from a real-level control plant, to which anomalies and noise have been artificially added.

For the dataset without noise, the results have been excellent, being able to detect all the anomalies
generated and presenting an F1 score value of 1, which indicates that no normal operating data has
been classified as anomalous. Using the dataset with noise, the system’s performance has been
found to be worse, however, with a fine-tuning of the system operating hyperparameters, a good
performance can also be obtained, with F1 score values higher than 0.9 in some cases. Despite
the good results, tuning the system operating parameters, i.e. the forgetting factor of the RLS
identification method, the number of data stored for each operating point and the threshold, can
be challenging, as a prior performance analysis is required. The correct setting of these parameters
is key to achieving good performance of the proposal.

On the other hand, one of the great advantages of the proposed system is that it is very light and
does not require a large computational capacity so it can be implemented and executed in a large
number of low-cost devices.

In future work, and for a correct generalization of the proposed method, we will analyze its
performance using a more complete dataset that includes operating samples over a longer period
of time. In addition, we will try to optimize the system to facilitate the configuration of the operating
hyperparameters, such as the forgetting factor, the number of stored samples and the threshold. We
will also consider the possibility of developing a method capable of automatically self-adjusting
these values as a function of the process. On the other hand, we will analyze the performance of the
proposal in other types of industrial processes, such as temperature control loops and systems with
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TABLE 1. Results obtained for the dataset without noise
Threshold Centroid data window (N) Forgetting factor Precision Recall F1-score
0.9 10 0.92 0.857 1.000 0.923
0.94 0.938 1.000 0.968
0.96 0.053 0.933 0.1
20 0.92 0.769 1.000 0.87
0.94 0.938 1.000 0.968
0.96 0.067 0.833 0.124
50 0.92 0.055 1.000 0.105
0.94 0.833 1.000 0.909
0.96 0.053 0.933 0.1
100 0.92 0.055 1.000 0.104
0.94 0.057 1.000 0.109
0.96 0.055 0.967 0.103
1 10 0.92 0.909 1.000 0.952
0.94 1.000 1.000 1.000
0.96 0.029 0.933 0.056
20 0.92 0.882 1.000 0.938
0.94 0.968 1.000 0.984
0.96 0.107 0.867 0.19
50 0.92 0.056 1.000 0.107
0.94 0.938 1.000 0.968
0.96 0.107 0.867 0.19
100 0.92 0.056 1.000 0.106
0.94 0.857 1.000 0.923
0.96 0.107 0.867 0.19
1.1 10 0.92 0.968 1.000 0.984
0.94 1.000 1.000 1.000
0.96 0.028 0.9 0.054
20 0.92 0.938 1.000 0.968
0.94 1.000 1.000 1.000
0.96 0.107 0.867 0.19
50 0.92 0.811 1.000 0.896
0.94 1.000 1.000 1.000
0.96 0.055 0.967 0.103
100 0.92 0.732 1.000 0.845
0.94 0.882 1.000 0.938
0.96 0.053 0.933 0.1
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TABLE 2. Results obtained for the dataset with noise
Threshold Centroid data window (N) Forgetting factor Precision Recall F1-score
0.9 10 0.92 0.833 1.000 0.909
0.94 0.031 0.933 0.059
0.96 0.107 0.867 0.19
20 0.92 0.667 1.000 0.8
0.94 0.055 0.967 0.104
0.96 0.121 0.933 0.214
50 0.92 0.099 0.867 0.178
0.94 0.714 1.000 0.833
0.96 0.031 0.833 0.06
100 0.92 0.096 0.867 0.173
0.94 0.05 0.933 0.096
0.96 0.062 0.833 0.115
1 10 0.92 0.833 1.000 0.909
0.94 0.967 0.967 0.967
0.96 0.069 0.8 0.127
20 0.92 0.75 1.000 0.857
0.94 0.444 0.933 0.602
0.96 0.2 0.9 0.327
50 0.92 0.714 1.000 0.833
0.94 0.106 0.867 0.188
0.96 0.057 0.733 0.105
100 0.92 0.089 0.933 0.163
0.94 0.106 0.867 0.188
0.96 0.068 0.967 0.127
1.1 10 0.92 0.882 1.000 0.938
0.94 0.068 0.967 0.128
0.96 0.024 0.733 0.046
20 0.92 0.109 0.867 0.194
0.94 0.059 0.9 0.111
0.96 0.194 0.867 0.317
50 0.92 0.625 1.000 0.769
0.94 0.236 0.867 0.371
0.96 0.045 0.867 0.085
100 0.92 0.102 0.867 0.182
0.94 0.789 1.000 0.882
0.96 0.036 0.833 0.07
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multiple inputs and outputs. Finally, we will study the possibility of obtaining graphs that explain
the transitory when an anomaly appears.
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