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Context encoder self-supervised approaches for eye
fundus analysis

Daniel I. Morı́s1,2 and Álvaro S. Hervella1,2,* and José Rouco1,2

and Jorge Novo1,2 and Marcos Ortega1,2

Abstract.
The broad availability of medical images in current clinical prac-

tice provides a source of large image datasets. In order for these
datasets to be useful in the training of deep neural networks, it is
necessary to provide annotations associated to each image. However,
the image annotation is a tedious, time consuming and error prone
process that requires the participation of experienced specialists.

In this work, we propose different complementary context encoder
self-supervised approaches to learn relevant characteristics for the re-
stricted medical imaging domain of retinographies. In particular, we
propose a patch-wise approach, inspired in the previous proposal of
broad domain context encoders, and a complementary fully convo-
lutional approach. These approaches take advantage of the restricted
application domain to learn the relevant features of the eye fundus,
situation that can be extrapolated to many medical imaging issues.

Different representative experiments were conducted in order to
evaluate the performance of the trained models, demonstrating the
suitability of the proposed approaches in the understanding of the
eye fundus characteristics. The proposed self-supervised models can
serve as reference to support other domain-related issues through
transfer or multi-task learning paradigms, like the detection and eval-
uation of the retinal structures or anomaly detections in the context
of pathological analysis.

1 INTRODUCTION
The human eye is one of the most complex anatomical parts of the
body. In particular, the main relevance of the retinal observation
is related with common diseases like glaucoma [14] or age-related
macular degeneration (AMD) [4] which are among the main causes
of blindness. Additionally, many systemic diseases, as hypertension
[10] or diabetes [7] are also frequently studied in the eye fundus as
they directly affect the retinal structures. In the analysis of all those
systemic and eye diseases, the early detection and treatment is cru-
cial to avoid or mitigate their outcome. In this context, the support of
Computer Aided Diagnosis (CAD) [9] systems is extremely useful.

The analysis of the retina is typically based on the inspection of
ophthalmic image modalities that graphically represent the eye fun-
dus. The automatization of this analysis using machine learning tech-
niques is the usual target of current CAD systems [12]. In this con-
text, the use of deep learning models has been increased during the
last years given their advantages when dealing with raw signal data
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(including medical imaging) [19]. These models represent a pow-
erful alternative to the classic machine learning approaches that re-
quire the processing of raw data using hand-engineered feature ex-
traction methods. However, in spite of these advantages, the training
of deep learning models is usually supervised and requires a signif-
icantly larger amount of labeled data. Despite the wide availability
of raw image data, the corresponding annotations are difficult to re-
trieve, specially in domains like the biomedical environment where
the manual labeling is a tedious and error-prone process that must
be performed by experienced specialists. This potential data scarcity
represents an important limitation for the application of deep learn-
ing techniques in many biomedical applications.

Data scarcity is a well-known limitation in deep learning, existing
several strategies to mitigate its impact. The most commonly used
method is data augmentation [11]. It consists in artificially increas-
ing the size of an image dataset using direct image transformations
as random rotations, random color intensity variations, pixels transla-
tions, etc. Other approaches like transfer learning or multi-task learn-
ing techniques aim to take advantage of labeled data for complemen-
tary tasks. Transfer learning [22] implies the reuse of knowledge ex-
tracted from an already learned task to optimize the posterior learn-
ing on other related task (which is actually the target task). Similarly,
multi-task learning [5] consists in training the model to perform both
tasks simultaneously. Both techniques are based on the hypothesis
that if there is a problem of data scarcity with a target task, the model
training can be supported with the learning of complementary related
tasks, helping to increase the final target performance. However, the
labeled data for appropriate complementary tasks may also be scarce
on many application domains. This motivated the recent proposal
of different self-supervised learning paradigms [1]. It is considered
self-supervised as it is not necessary to support the training process
with manual labeling. Instead, the target labels are automatically de-
rived from the unlabeled data. We can find many applications of self-
supervised learning models as, for reference, colorization [24], au-
toencoders [3] or future predictors [13]. In particular, in ophthalmol-
ogy, some applications can be found as the multimodal prediction of
fluorescein angiographies from classical retinographies [6] [18].

In self-supervised learning, the use of context encoders [15] rep-
resent a powerful strategy where an omitted region in an image is
reconstructed using information from the context. Context encoders
have proved their potential in generic domains [17], being able to
generate images with genuine appearance and being also capable of
learning relevant features from the analyzed pictures. As result, con-
text encoding has demonstrated its effectiveness as pre-training task
to improve the performance of other classification, detection and seg-
mentation related tasks [17]. However, the application of context en-



coders have been limited to applications in broad domain images,
where the diversity of structures that may be present is difficult to be
covered.

In this context, biomedical imaging represents a more restricted
and plausible scenario for context encoding. Image modalities of a
particular specialty always capture and represent the same domain
and structures of the patients. Thus, it should be possible to predict
the image contents from the context with a higher accuracy and level
of detail. If context encoding demonstrated its potential from generic
domains, its capacity can be better exploited in the medical envi-
ronment to even allow the exploitation of specific semantics of the
application domain.

In this work, we propose different context encoder approaches us-
ing self-supervised learning for the analysis in a particular medical
domain, ophthalmology, for the comprehension of the eye fundus.
With this aim, two alternative strategies are presented:

Patch-wise context encoder. This first approach is inspired in the
original context encoder proposal for generic domain [17], adapted
to analyze the target retinographies. In line with the original pro-
posal, and in order to deal with the much higher image resolution,
the retinographies are sampled in patches of a defined size where the
central regions are omitted. This forces the system to learn to recon-
struct the omitted data only using its immediate local neighborhood.

Fully-convolutional global mask context encoder. Given the
limited context of analysis to generate each omitted region of the
previous approach, and considering the restricted context of anal-
ysis of this medical image modality (as many others), an alterna-
tive global approach is also proposed and studied, using directly the
whole image as the input of the network. In addition to the efficiency
improvement in terms of time, the fully-convolutional global mask
context encoder uses context from the whole image in order to get
the reconstruction data. This could help to improve the performance
of the model as it is well-known that, in medical domains, using the
global context from the images is a desirable characteristic for any
CAD procedure in the analysis of many diseases. This is related, once
again, with the idea that medical images from a particular environ-
ment reflect always the same reality (in our case, the eye fundus).
The hypothesis is that using a global context could bring a better
effectiveness from the model.

Successfully trained models of either approach present the poten-
tial to improve the performance of other related tasks with the support
of transfer learning or multi-task learning techniques, or can be used
to model normal images in the context of anomaly detection [21].

2 MATERIALS AND METHODS
In this work, we propose two approaches allowing to provide retinal
pattern understanding through context encoding. The first approach,
named patch-wise context encoder (PW-CE), is inspired in a previ-
ous proposal in generic domain [17] and consists in the application
of the paradigm in a patch-wise fashion. In the second approach, in-
stead, we propose a novel strategy allowing to perform context en-
coding in a fully-convolutional fashion with the whole images thanks
to the application of global masks following a specific local omission
pattern. This alternative approach is denoted as fully-convolutional
global mask context encoder (GM-CE).

2.1 Patch-wise context encoder
Context encoders [17] were originally proposed using a Generative
Adversarial Network (GAN) architecture [8], composed of a gener-

ator and a discriminator, that is trained to fill in a missing portion of
the input image according to the surrounding context.

The use of a GAN model allows to integrate a point-wise recon-
struction loss of the generator with the adversarial loss derived from
the discriminator, which can evaluate the plausibility of the overall
aspect of the generated image. The used training loss for the genera-
tor network g is a linear combination of adversarial and reconstruc-
tion losses defined as

L = λrec Lrec + λadv Ladv , (1)

where λrec and λadv are parameters weighting the importance
of the reconstruction Lrec and adversarial Ladv losses, respectively.
The used reconstruction loss for each image is defined as

Lrec = ||M� [x− g((1−M)� x)]||22 , (2)

where � denotes the element-wise product operation, M a binary
omission mask, x an input image, g(·) the generator network and
|| · ||22 the L2 norm. Differently, the adversarial loss Ladv for the
image x is given by

Ladv = log (d(x) + log (1− d(g(1−M)� x))) , (3)

where d(·) denotes the discriminator network. The training dis-
criminator network d, contrary to the network g, is performed so that
the adversarial loss Ladv is maximized.

The proposed network architecture, based in [17], is composed of
a generator and a discriminator, both detailed in Figure 1. It works
with input images of fixed size (128× 128) and outputs of 64× 64.
The input images are masked with a central omission square of
32 × 32 pixels. This omission mask is smaller than the one in the
original paper (64× 64) to alleviate the prediction complexity of the
problem as there will be a surrounding context with trivial recon-
struction. In addition, this allows the discriminator to evaluate the
generated output conditioned by this trivial context. The use of low
resolution and fixed size images in the original approach is not ap-
propriate for medical imaging applications, which usually require a
much higher resolution. Additionally, it would not be appropriate to
predict the whole center part of a medical image, as the important
features are usually related to fine details of local structures. Thus, in
order to apply the prior work on the retinal image context, we pro-
pose the use of a patch-wise processing approach.

Figure 2 depicts the general scheme of the proposed training strat-
egy. First, each image in the training and validation stages is split into
a dense set of non-overlapping image patches of size 128×128. This
set of image patches is then used for training as originally proposed,
by applying the omission mask in the center region of size 32× 32.

Additionally, we propose a patch-wise reconstruction approach for
the test images that allows to generate synthesized images at full res-
olution. In this case, as depicted in Figure 3, the test images are split
into a dense set of 128× 128 size patches. However, in this case, the
patches are overlapped by using a stride of a quarter the size (32 pix-
els on each dimension). Then, the trained generator network is used
to generate 64 × 64 images from each masked input patch, from
which only the central 32 × 32 regions are used, and placed back
into their original image position. This gives rise to a full resolution
image that is completely synthesized by the network from the local
context.
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Figure 1. Architectures used in the PW-CE approach. Example with an input patch size of 128× 128 for the generator and 64× 64 for the discriminator.

Figure 2. Training process of the PW-CE approach.

Figure 3. Generation of the reconstruction images using the PW-CE
approach.

2.2 Fully convolutional global mask context
encoder

The PW-CE approach has several a priori limitations. On one hand,
the size of the image patches and allowed omission masks is fixed
in the network architecture design, and requires specific processing
for the training dataset. However, the omission and context sizes are
linked to the scale of the relevant information that the network can
encode and predict. Thus, this scale parameter should probably be
adjusted for each application. On the other hand, despite that the local
structures are important in medical imaging, these images are char-
acterized for usually having a normalized viewpoint, with a relevant
global context. However, the local analysis provided by the PW-CE
can not account for this relevant global context information. To solve
these issues, an alternative approach is proposed named fully con-
volutional global mask context encoder (GM-CE), based on the use
of fully-convolutional neural networks (FCN) and global masks with
local omission patterns.

In relation to the omissions, we propose two alternative global
masks following two local omission patterns: checkerboard (CB) and
center surround patterns (CS). Examples of these masks are illus-
trated in Figure 4 and the training process for this approach is de-

(a) (b)

Figure 4. Examples of masked images for the GM-CE approach. (a)
Checkerboard pattern mask (CB). (b) Center surround pattern mask (CS).

Figure 5. Example of the training process using a GM-CE (CB) approach.

picted in Figure 5. These masks allow to adjust the size of the local
omitted regions. Additionally, they can be easily shifted spatially as a
data augmentation technique, allowing to account for a wider diver-
sity of local regions. Note that this same effect could be achieved us-
ing the PW-CE approach, but it would imply the extraction of dense
overlapping patches from the images, which is not practical in com-
putational terms. The main difference between both mask pattern re-
side on the amount of local context that is available to predict each
of the omitted parts. The local omission patterns (i.e. the masking
squares) are of size 32 × 32 in this work for comparison purposes
with the previous approach.

Regarding the network architecture, we propose minor modifica-
tions to the PW-CE network in 1 so that it is fully convolutional
with equal input and output sizes. To that end, an additional up-
convolutional layer is added at the end of the generator, being com-
pletely symmetric. Likewise, an additional convolutional layer with
stride 2 is added to the discriminator to increase the receptive field to
128× 128. Additionally, to provide a scalar output for the discrimi-
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Figure 6. Image generation procedure using GM-CE (CB).

Figure 7. Image generation procedure using GM-CE (CS).

nator, a global average pooling is added as the last layer.
The generation of completely synthetic images is simplified using

these models. The reconstruction procedures for the case of GM-CE
(CB) using the checkerboard pattern, and the GM-CG (CS) using
the center surround pattern, are depicted in the schemes of Figures
6 and 7, respectively. The overall idea is to combine the outputs of
the trained generator network using the input image masked with the
original global mask and all its complementary versions. This allows
to generate fully synthetic images based on the context by only using
two inference calls to the trained generator, in the case of the GM-CE
(CB), and four inference calls, in the case of the GM-CE (CS).

2.3 Retinal image datasets

In order to test and validate the proposed context encoder approaches,
two different public retinal image datasets of reference were used:
DRIVE [20] and MESSIDOR [2]. The MESSIDOR dataset has
been established to help studies on CAD software also for diabetic
retinopathy, containing 1, 200 eye fundus images from three differ-
ent departments, presenting resolutions that vary from 1, 440 × 960
to 2, 304 × 1, 536 pixels. Instead, the DRIVE dataset contains 40
retinographies from a diabetic retinopathy program with a resolution
of 565 × 584. From the 40 cases, 7 present signs of mild early dia-
betic retinopathy, and the remaining 33 are from healthy subjects.

In this work, we aim at providing a preliminary validation of the
proposed approaches with a subset of the MESSIDOR dataset, along
with images from the DRIVE dataset. Specifically, we selected a ran-

dom subset of 160 healthy and pathological images from MESSI-
DOR for training. Also, a complementary test set of 40 images from
MESSIDOR was used. The DRIVE images were used to corrobo-
rate the reached conclusions on an independent set. The eye fundus
ROI was identified in all the images to omit the background, homog-
enizing their resolutions to a convenient ROI size of 1, 408× 1, 408
(multiple of 128×128). This allows to obtain a homogeneous size of
the retinal structures for all the varying input resolutions. This stan-
dardized ROI size dataset is used for both the PW-CE and GM-CE
approaches. In the case of the GM-CE approach, the images are di-
rectly used as the network inputs. On the other hand, for the PW-CE
approach, the images from the training and validation sets are split
into 128 × 128 patches. Using the indicated patch size, 121 non-
overlapping samples are obtained from each retinography, which re-
sults in 19, 360 patches for training and 4, 840 patches for validation.

Related with the training processes, the PW-CE is trained with a
mini-batch size of 121 patches. On the other hand, the GM-CE are
trained with a mini-batch size of 1 image. Additionally, in this case,
an online data augmentation is performed in the form of random hor-
izontal flips, which transform right eye images into left eye appear-
ance, and vice versa. Moreover, the global masks are applied with
horizontal and vertical random shifts of up to 32 pixels..

2.4 Evaluation of the context encoder approaches
In order to evaluate the capabilities of the proposed approaches, we
performed different complementary quantitative and qualitative anal-
yses. Firstly, we studied the model errors during the training process.
Given that the training with a GAN model is more difficult than a
standard network due to the use of the two losses combined, its evo-
lution can be better understood graphically. Secondly, with respect to
the reconstruction stage, fully reconstructed retinography examples
are provided to offer a direct and graphical idea about the perfor-
mance of the approaches. Finally, two additional quantitative anal-
yses are provided based on global reconstruction errors and their
corresponding reconstruction error maps. The global reconstruction
errors are calculated using as reference the complete reconstructed
retinographies and their corresponding original retinographies. For
each image, the differences are computed using three error metrics:
L1 and L2 and SSIM [23]. The first two integrate pixel-wise dif-
ferences along the images. SSIM, instead, integrate local statistics
(computed in 7×7 image windows) to evaluate the structural similar-
ity between image patches. These reconstruction errors are averaged
for the entire test set to obtain global metrics. In addition, we cal-
culated an L2 error map for each retinography by locally computing
the squared difference on each image position, and locally integrat-
ing them in 8 × 8 size windows. This allows to evaluate the image
patterns achieving a higher reconstruction error.

3 RESULTS
All the experiments to analyze and validate the proposed approaches
were performed in the three proposed cases, i.e. the patch-wise
context encoder PW-CE model, along with the fully-convolutional
global mask context encoder GM-CE for the cases of checkerboard
pattern GM-CE (CB) and center-surround pattern GM-CE (CS). The
Adam optimization algorithm [16] was used to train all the compared
networks. The learning rate was set to α = 2e − 4, and the decay
rates to β1 = 0.5 and β2 = 0.999. Meanwhile, the weighting val-
ues of the loss in Eq. 1 are λrec = 0.9999 and λadv = 0.0001 for
reconstruction and adversarial losses, respectively. All the networks
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were trained for a fixed number of 1, 000 epochs, although from the
examination of the training curves, and the generated images, it was
observed that the GM-CE approaches could have been benefit from
further training, while the PW-CE approach almost stalled.

With respect to the loss during the training process, we can see rep-
resentative examples of the evolution of each approach in Figure 8.
In both approaches, the adversarial loss (discriminative model loss)
is significantly higher than both the reconstruction loss and the joint
loss. A relevant aspect that can be observed in the PW-CE approach
is the significant oscillation of the adversarial loss. Probably, this is
because the network inputs are considerably different among them as
they are patches from any part of the retinal fundus. This represents
a very complex scenario for the discriminative model as the criterion
of what is realistic or non-realistic seems to be difficult to find. Fi-
nally, as expected, the joint loss and the reconstruction loss are very
similar, being the joint loss slightly higher. On the other hand, the
oscillation of the adversarial loss in both GM-CE is less significant
than in the PW-CE approach. This is probably because the discrim-
inator inputs can take advantage of the global context to smooth the
existent local differences. Due to this, it is easy for the discriminative
model to find the criterion to understand what is realistic and what is
non-realistic.

Table 1 shows the global reconstruction error obtained for the pro-
posed approaches in the MESSIDOR test set. It is observed that the
PW-CE approach obtains higher reconstruction error compared to the
GM-CE approaches, regardless of the evaluation metric. The GM-CE
approaches present a similar performance between them, considering
their standard deviations. The most significant differences between
the PW-CE and GM-CE, are in terms of SSIM. This is a quantita-
tive indication of the higher reconstruction accuracy for the GM-CE
models regarding the structural information, i.e. the appearance of
the relevant local shapes matches the original image better, regard-
less of the similarity of the independent pixel values.

Considering completely independent images from both the train-
ing and test sets, some representative fully-reconstructed retinogra-
phies from the DRIVE set are depicted in Figure 9. In particular,
we have selected one healthy (first row), and two pathological cases,
one of them presenting a pathological optic disc (second row), and
the other with bright retinal lesions (third row). Additionally, the cor-
responding error maps for the first example are presented in Figure
10. Globally, it is observed that the main structures of the eye fundus
can be easily recognized in the reconstructed images, regardless of
the approach. In fact, the reconstructed images generally show that
the appearance is very similar to the original retinographies. Specif-
ically, those relevant structures are the main vasculature, the optic
disc or the macula. Additionally, many secondary small vasculature
is also recognized, being a complex identification case for any com-
putational method. We would like to remark that this microvascula-
ture plays an important role in the analysis of the retinal microvascu-
lature that is associated with many diseases.

By visual inspection, the direct comparison between both
paradigms allows to identify some important differences. Regard-
ing the vascular tree, it is observed that the GM-CE approaches pro-
vide more coherent and continuous vessels. The PW-CE reconstructs
much less small vessels, which are sometimes inconsistent or with
a staircase appearance. This same staircase reconstruction pattern is
specially observed at the ROI boundary reconstruction. This is spe-
cially appreciated comparing the error maps of Figure 10, and clearly
visible in the details of Figure 11. This is due to the independence
among the patches during the reconstruction, as well as the signifi-
cantly lower shift sampling variability during the training phase.

(a)

(b)

(c)

Figure 8. Evolution of the training loss. (a) PW-CE. (b) GM-CE (CB).
(c) GM-CE (CS).

Regarding the optic disc, the overall intensity reconstruction does
not present significant differences among the compared approaches.
However, it should be noticed that there is a more complex vascu-
lar pattern in this region that, once again, is better handled by the
GM-CE approaches, despite that the reconstruction is not accurate in
some cases (see the first row example in Figure 9, and the second row
details in Figure 11, where there is an horizontal vessel that is missed
in the reconstruction). In this case, the better appearance of the ves-
sel tree is due to structural consistency. The PW-CE approach shows
split vessels with incoherent orientation, while the global appearance
of the GM-CE results looks like a regular vessel tree pattern. This
is an indication that the GM-CE approaches are able to learn higher
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Table 1. Average and standard deviation reconstruction errors on the MESSIDOR test set for the three tested models.

L1 (×10−2) L2 (×10−2) 1-SSIM

PW-CE 3.8799± 0.5688 0.3068± 0.0894 0.0782± 0.0102

GM-CE(CB) 2.2415± 1.2391 0.1329± 0.1233 0.0355± 0.0115
GM-CE(CS) 2.4862± 1.3864 0.1581± 0.1658 0.0332± 0.0111

Figure 9. Example fully-reconstructed retinographies from the DRIVE test dataset. Each row corresponds to a normal retinography, a retinography with
pathological optic disc, and a retinography bright retinal lesions, respectively. The first column is the original image. The subsequent columns correspond to

PW-CE, GM-CE (CB) and GM-CE (CS) results, respectively.

level semantics from the eye fundus contents. Another example of
this semantic enforcement of learnt retinal patterns is observed in
the boundaries of the pathological optic disc in the second row ex-
ample of Figure 9, and the detail images in the third row of Figure
11. In this case, we can appreciate the generation of artificial vas-
cular structures surrounding the pathology. This is symptomatic of
the anomalous complex pathological patterns of this image not being
sufficiently represented in the training set. Due to this, the GM-CE
networks are not able to deal with them accurately, when compared

to the input image. Instead, the network opts to provide a semanti-
cally coherent reconstruction with respect to the learnt normal retinal
patterns, which is that those anomalous boundaries corresponded to
vessels. Thus the provided generated image is coherent.

Another indication of the more semantically coherent retinal re-
construction obtained by the GM-CE approaches can be found in
the retinal background. The PW-CE approach presents a naive per-
formance regarding the reconstructed colors, by simply limiting the
inference to mimicking the surrounding context color. Nevertheless,
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(a) (b) (c)

Figure 10. L2 error maps for the example in the first row of Figure 9. All the images are gamma corrected with γ = 1/3 for enhanced visibility, and
normalized using the same transformation. (a) PW-CE. (b) GM-CE (CB). (c) GM-CE (CS).

Figure 11. Reconstruction example details. The columns correspond to the
PW-CE, GM-CE (CB) and GM-CE (CS) models, respectively.

both GM-CE approaches tend to artificially change the whole retina
color patterns to those that were learnt during the training. This is
specially visible in anomalous color appearances, like in the second
row example of Figure 9. This is a symptom, once again, that these
models were capable of learning, as normal, the specific retinal back-
ground color patterns that were presented during the training stage.

Finally, it is observed that the smallest pathological lesions in the
third example of Figure 9 were removed by all the compared ap-
proaches, while the larger ones were preserved. This is an indication
of the relevance of the omission mask scale, as already discussed in
Section 2.2. It should be noticed that the experimentation with differ-
ent omission scales is simplified for the case of GM-CE approaches,
as this scale is neither fixed by the network architecture design nor
requiring an ad-hoc dataset preprocessing.

4 CONCLUSION
This work presents different context encoder approaches using self-
supervised learning taking advantage of a restricted domain as is
frequent in medical image analysis. In particular, the different ap-
proaches face the analysis of the eye fundus using the widely spread
and frequently used retinographies. Thus, a patch-wise approach, in-
spired in a previous proposal of general scope, is presented as well
as two fully-convolutional global mask approaches, with a great po-
tential of global context analysis given the recurrent eye fundus ob-
servation of this application.

Representative experiments were conducted to validate and
demonstrate the suitability and potential of the proposed context en-
coder approaches in the restricted domain of ophthalmological im-
ages. In particular, in this issue, the approaches were capable of
fully reconstructing the target retinographies, clearly representing
the main structures of the eye fundus as the fovea, the optic disc
or the retinal vessels tree. The presented results evidenced that the
patch-wise approach was able to recognize and reconstruct the rel-
evant local patterns as appeared in the input images. However, the
global mask approaches, additionally, recognized more general pat-
terns and reconstructed higher level structures with a higher global
consistency, and according to the learnt semantics of the retinogra-
phies during the training.

We would like to emphasize that these self-supervised context
encoder approaches present the potential of being used in different
transfer learning or multi-task learning settings or to model normal
retinographies for anomaly detection.
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